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Abstract :

An improved method for speech enhancement, which is based on particle filtering, is pre- sented in this paper. The Rao-
Blackwellized particle filter (RBPF) is used to estimate the model parameters and recover a clean speech signal. The proposed 
method (named DFT- RBPF) enhances the complex discrete Fourier transform (DFT) coefficients of a noisy speech signal. The real 
and imaginary parts are filtered separately, under the assumption of mu- tual independence, using a low-order time-varying auto-
regressive (TVAR) process with a linear Gaussian model. The obtained results, in terms of the coherence speech intelligi- bility index 
(CSII), perceptual evaluation of speech quality (PESQ), segmental and overall signal-to-noise ratios (SNRseg, SNR), demonstrate the 
improved performance of the pro- posed method, when compared with the recent methods based on particle filters and the existing 
algorithms for speech enhancement.

 

 

 

 

 

 

 

 

 

 

 

1. Introduction

Single-channel speech enhancement algorithms attempt to recover a clean speech signal from a signal that has been

corrupted by additive noise. Statistical model-based approaches are one of the most commonly used classes of speech en-

hancement algorithms. The short-time spectral amplitude is estimated using the maximum likelihood (ML) [1] and mini-

mum mean square error estimators (MMSE) [2] . The Kalman filter (KF) can be considered to be a recursive Bayesian estima-

tor [3,4] . An auto-regressive (AR) model that exploits the time correlation between the component models of speech signals

has been used in [5] to deduce the state-space equations, and the Kalman filter has been exploited to estimate the states

under a linear Gaussian model. However, in practice, the AR model parameters are not known, and the segmentation does

not consider the variations in the speech signal. Furthermore, the vocal tract is continuously changing. Thus, a time-varying

auto-regressive (TVAR) model is more appropriate for modelling speech signals [6] , and the assumption of quasi-stationary

speech signals can be avoided. The resulting non-linear model estimation issues do not have analytical solutions, and ap-

proximation methods have to be employed for these computations. 

The sequential Monte Carlo (SMC) algorithm, also called the particle filter (PF) in the filtering context, has been used in

[6] and associated with the Rao-Blackwellization method (RB) to form the RBPF [7] , to filter a noisy speech signal [6] . In [8] ,

the performances of the PF and the RBPF for speech enhancement in the time domain were analyzed. The authors found
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that the residual noise level was modulated by the speech signal power. Many works have tried to reduce this residual

noise, and several hybrid approaches have been proposed [9] . In [10] , the RBPF was operated in the discrete cosine domain

(DCT) to enhance the noisy speech signal. The PF was also used to estimate the amplitudes and phases of the speech

signal coefficients in the DFT domain [11] . An alternative to the estimation of the short-time spectral amplitude was the

estimation of the real and imaginary parts of the clean-speech DFT components [12] . In [13] , the complex AR parameters

were estimated using the autocorrelation vector obtained from the past restored samples. 

Based on the fact that noise does not affect the speech signal uniformly over the entire spectrum [14] , in this work,

we propose the use of the RBPF method, to enhance the complex DFT coefficients of the noisy speech signal. The real and

imaginary parts are processed separately, under the linear Gaussian model, and a low-order TVAR process is adopted over

each frequency bin. The remainder of this paper is organized as follows. In Section 2 , the state-space model is presented.

Section 3 gives an overview of the SMC and RBPF approaches. Subsequently, in Section 4 , we describe the proposed DFT-

RBPF method. Section 5 provides the experimental results. Finally, Section 6 lists the concluding remarks. 

2. State-space model

Let us consider the observed noisy speech signal y n at time n , resulting from the linear combination of the clean speech

x n and the noise v n . After windowing with overlapping, the noisy signal Fourier transform Y m,k at the k th frequency bin,

derived from the frame with index m , is modeled as a linear sum of the spectral components of the clean signal X m,k and

the noise V m,k : 

Y m,k = X m,k + V m,k. (1) 

For the above modelling, the correlation over the time–frequency trajectory is maintained for the speech TVAR model

order under consideration, and the additive noise is assumed to be uncorrelated with the speech signal over this trajectory

[15] . Based on the study of the scatter plots of the real and imaginary parts of the DFT coefficients of clean speech [13,15] ,

the real and imaginary parts are assumed to be independent. Hence, (1) can be written as follows [12] :

Y m,k ( real ) = X m,k ( real ) + V m,k ( real ) (2) 

Y m,k ( imag ) = X m,k ( imag ) + V m,k (3) 

Subsequently, equations hold for the both parts over all frequency bins. The real and imaginary parts of the spectral

components of the clean speech signal are assumed to follow a TVAR model, as in: 

X m,k = 

p ∑ 

b=1

a b,m,k X m −b,k + U m,k (4) 

where a b,m,k are the TVAR model coefficients, p is the TVAR order, and U m,k is the prediction error assumed white

Gaussian process with zero mean and variance σ 2 
U m,k 

, which is uncorrelated with all previous values of X m,k . We note

U m,k ∼ N ( 0 , σ 2 
U m,k 

) . The state-space transition equation can be described as follows: 

⎡ 

⎣ 

X m −p+1 ,k 

.. . 
X m,k 

⎤ 

⎦ = 

[
0 p−1 ×1 I p−1 ×p−1 

a p,m,k . . . a 1 ,m,k 

]⎡ 

⎣ 

X m −p,k 

.. . 
X m −1 ,k 

⎤ 

⎦ + 

[
0 p−1 ×1 

σU m,k 

]
e m,k (5) 

with e m,k ∼ N ( 0 , 1 ) . We can write the corresponding matrix form as: 

αm,k = Am,k αm −1 ,k + B m,k e m,k (6) 

where αm,k = 

⎡ 

⎢ ⎣ 

X m −p+1 ,k 

. . 

. 

X m,k 

⎤
⎥ ⎦ 

, A m,k = 

[
0 p−1 ×1 I p−1 ×p−1 

a p,m,k . . . a 1 ,m,k 

]
, and B m,k = 

[
0 p−1 ×1 

σU m,k 

]
. 

Assuming, that V m,k is additive white Gaussian noise (AWGN) with zero mean and variance σ 2 
V m,k 

, we note V m,k ∼
N ( 0 , σ 2 

V m,k 
) . The state-space measurement equation is: 

Y m,k = 

[
0 1 ×p−1 1 

] ⎡ 

⎣ 

X m −p+1 ,k 

.. . 
X m,k 

⎤ 

⎦ + 

[
σV m,k 

]
g m,k (7) 

with g m,k ∼ N ( 0 , 1 ) . We can write the corresponding matrix form as: 

Y m,k = C m,k αm,k + D m,k g m,k (8) 

where C m,k = [ 0 1 ×p−1 1 ] and D m,k = [ σV m,k 
] .
DOI : 10.1016/j.compeleceng.2017.07.024 2



 

 

 

 

 

 

 

 

 

 

 

 

 

W  
3. Sequential Monte Carlo method

The a posteriori probability density without channel index can be written as follows [16] : 

p ( αm 1 : m 2 
/ Y 1: m 

) = 

p ( αm 1 : m 2 
, Y 1: m 

)

p ( Y 1: m 

) 
(9)

Once (9) defines the estimate ˆ αm 1 : m 2 
of the state αm 1 : m 2 

, conditionally to the observations Y 1: m 

, is derived according to

an optimization criterion (absolute error value, error square value, etc.). 

3.1. Importance sampling (IS) 

If (9) cannot be derived analytically, the approximation with Monte Carlo (MC) method is used [17,16] ; for

m 1 = 0 and m 2 = m : 

ˆ p ( α0: m 

/ Y 1: m 

) ∼= 1 

N 

N ∑ 

i =1

δ
(
α0: m 

− αi 
0: m

)
(10)

where δ(.) denotes the Dirac function and αi 
0: m 

are the independent identically distributed particles according to

p ( α0: m 

/ Y 1: m 

). We note that αi 
0: m 

∼ p( α0: m 

/ Y 1: m 

) , and N is the total number of used particles.

Using (10) , a posteriori expectation of the function f ( α0: m 

) becomes: 

E ˆ p ( α0: m / Y 1: m ) [ f ( α0: m 

) ] = 

1

N 

N ∑ 

i =1

f 
(
αi 

0: m 

)
(11)

However, the a posteriori density is unknown. Let us consider q ( α0: m 

/ Y 1: m 

), the importance density, which is similar to

the probability density of interest, where: 

p ( α0: m 

/ Y 1: m 

) > 0 ⇒ q ( α0: m 

/ Y 1: m 

) > 0. Thus, (9) can be written as follows: 

p ( α0: m 

/ Y 1: m 

) = 

p ( α0: m 

, Y 1: m 

) 

q ( α0: m 

/ Y 1: m 

) 
q ( α0: m 

/ Y 1: m 

) 

∫ p ( α0: m 

, Y 1: m 

) 

q ( α0: m 

/ Y 1: m 

) 
q ( α0: m 

/ Y 1: m 

) d α0: m 

(12)

p ( α0: m 

/ Y 1: m 

) = 

w ( α0: m 

, Y 1: m 

) q ( α0: m 

/ Y 1: m 

) 

∫ w ( α0: m 

, Y 1: m 

) q ( α0: m 

/ Y 1: m 

) d α0: m 

(13)

Using the MC approximation of the importance density, (13) becomes: 

ˆ p N ( α0: m 

/ Y 1: m 

) ∼=
∑ N

i =1 w 

(
αi 

0: m 

, Y 1: m 

)
δ
(
α0: m 

− αi 
0: m

)
∑ N

i =1 w 

(
αi 

0: m 

, Y 1: m 

) (14)

ˆ p N ( α0: m 

/ Y 1: m 

) ∼=
N ∑ 

i =1

W 

i 
0: m 

δ
(
α0: m 

− αi 
0: m

)
(15)

where 

W 

i 
0: m = 

w 

i 
0: m∑ N

j=1 w 

j 
0: m

(16)

w 

i 
0: m 

= w
(
αi 

0: m 

, Y 1: m 

)
= 

p 
(
αi 

0: m 

, Y 1: m 

)
q 
(
αi 

0: m 

/ Y 1: m 

) (17)

 

i 
0: m 

is the normalized importance weight, which measures the importance of particle i at the frame with the index m .

Hence, (11) can be written as follows: 

E ˆ p N ( α0: m / Y 1: m ) [ f ( α0: m 

) ] =
N ∑ 

W 

i 
0: m 

f 
(
αi 

0: m 

)
(18)
i =1
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3.2. Sequential importance sampling (SIS) 

If the importance density is chosen to be factorized such that [17,16] : 

q ( α0: m 

/ Y 1: m 

) = q ( α0: m −1 / Y 1: m −1 ) q ( αm 

/ α0: m −1 , Y 1: m 

) (19) 

we can write 

w 0: m 

= 

p ( α0: m −1 , Y 1: m −1 ) p ( αm 

/ αm −1 ) p ( Y m 

/ αm 

)

q ( α0: m −1 / Y 1: m −1 ) q ( αm 

/ α0: m −1 , Y 1: m 

) 
(20) 

w 0: m 

= w 0: m −1 
p ( αm 

/ αm −1 ) p ( Y m 

/ αm 

) 

q ( αm 

/ α0: m −1 , Y 1: m 

) 
(21) 

Thus, w 

i 
0: m 

in (17) becomes: 

w 

i 
0: m 

= w 

i 
0: m −1

p 
(
αi 

m 

/ αi 
m −1 

)
p 
(
Y m 

/ αi 
m 

)
q 
(
αi 

m 

/ αi 
0: m −1 

, Y 1: m 

) (22) 

To minimize the variance of the importance weight [7] , a resampling step is applied, where particles with large nor-

malised importance weights are duplicated with replacements, and the other particles are not propagated again. Then, all

normalised weights are set to (1/ N ), which defines the sequential importance sampling with resampling. The resampling

step is usually implemented depending on the effective sample size N eff compared to a prefixed level. 

N e f f 
∼= 

1 ∑ N
i =1

(
w 

i 
m 

)2
(23) 

3.3. Rao–Blackwellization for sequential importance sampling 

In order to reduce the variance of the MC estimator, the Rao–Blackwellization approach is used, where a hybrid filter is

obtained such that a part of the calculation is obtained analytically and the other part is realized by MC [16] . Assuming that

we can decompose the state α0: m 

as ( α0: m 

, θ0: m 

), the a posteriori expectation of the function f ( α0: m 

, θ0: m 

) becomes: 

E p ( α0: m , θ0: m / Y 1: m )

[
f 
(
α0: m 

, θ0: m 

)]
= 

∫ ∫ 
f 
(
α0: m 

, θ0: m 

)
p 
(
α0: m 

, θ0: m 

, Y 1: m 

)
d α0: m 

d θ0: m∫ ∫ 
p 
(
α0: m 

, θ0: m 

, Y 1: m 

)
d α0: m 

d θ0: m 

(24) 

This a posteriori expectation can be deduced using either the PF algorithm or the RBPF algorithm, where (24) is devel-

oped as follows: 

E p ( α0: m , θ0: m / Y 1: m )

[
f 
(
α0: m 

, θ0: m 

)]
= 

∫ ∫ 
f 
(
α0: m 

, θ0: m 

)
p 
(
α0: m 

/ θ0: m 

, Y 1: m 

)
p 
(
θ0: m 

, Y 1: m 

)
d α0: m 

d θ0: m ∫ ∫ 
p 
(
α0: m 

/ θ0: m 

, Y 1: m 

)
p 
(
θ0: m 

, Y 1: m 

)
d α0: m 

d θ0: m 

(25) 

Considering the importance density q ( θ0: m 

/ Y 1: m 

), (25) becomes: 

E p ( α0: m , θ0: m / Y 1: m )

[
f 
(
α0: m 

, θ0: m 

)]
= 

∫ ∫ 
f 
(
α0: m 

, θ0: m 

)
p 
(
α0: m 

/ θ0: m 

, Y 1: m 

) p ( θ0: m , Y 1: m ) 
q ( θ0: m / Y 1: m ) 

q 
(
θ0: m 

/ Y 1: m 

)
d α0: m 

d θ0: m 

∫ p ( θ0: m , Y 1: m ) 
q ( θ0: m / Y 1: m ) 

q 
(
θ0: m 

/ Y 1: m 

)
d θ0: m 

(26) 

Using the MC approximation of the considered importance density, (26) becomes: 

E ˆ p N ( α0: m , θ0: m / Y 1: m ) 

[
f 
(
α0: m 

, θ0: m 

)] ∼=
∑ N

i =1 w 

(
θi 

0: m 

) ∫ 
f 

(
α0: m 

, θ
i 
0: m 

)
p 
(
α0: m 

/ θi 
0: m 

, Y 1: m 

)
d α0: m 

∑ N
i =1 w 

(
θi 

0: m 

) (27) 

with ∫ f ( α0: m 

, θ
i 
0: m 

) p( α0: m 

/ θi 
0: m 

, Y 1: m 

) d α0: m 

being calculated analytically.

4. Proposed speech enhancement methods using particle filters

Conceptually, the PF algorithm acts as a basic framework for the proposed DFT-RBPF. It offers flexibility and circum-

vents the difficulty of measuring the parameters from the noise-corrupted signal. The DFT-RBPF method can be described as

follows: candidate states are estimated using the Kalman filter from the corresponding estimated TVAR model parameters

(particles). The predictive densities of the resulting TVAR model parameters are evaluated using only one step of the Kalman

filter. These predictive density weights are then used to compute the estimate of the clean signal coefficients (either for the

real or imaginary part) as a weighted sum of the Kalman filter outputs. The resampling is performed to select the most

likely candidate to be propagated over the frequency trajectory to the next frame. 
DOI : 10.1016/j.compeleceng.2017.07.024 4



Fig. 1. Block diagram of the proposed DFT-RBPF speech enhancement method.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Speech enhancement using RBPF for the noisy speech complex DFT coefficients (DFT-RBPF) 

The block diagram of the proposed filtering method for the complex DFT-RBPF coefficients of the noisy speech signal, is

depicted in Fig. 1 . 

Depending on the adopted state-space model, the estimation of the hidden states requires the definition of a vector of

parameters θm,k = [ a m,k σ 2 
U m,k 

] , where a m,k = [ a p,m,k . . . a 1 ,m,k ] is the vector of prediction coefficients. For each fre-

quency bin, we have: 

p 
(
αm 

, θ0: m 

/ Y 1: m 

)
= p 

(
αm 

/ θ0: m 

, Y 1: m 

)
p 
(

θ0: m 

/ Y 1: m 

)
(28)

From Section 3 , if the a posteriori density function p ( θ0: m 

/ Y 1: m 

) is defined using SMC, the resulting model is linear and

Gaussian, conditional to each parameter vector, and for f ( αm 

, θm 

) = αm 

( θm 

) , (27) becomes: 

E ˆ p N ( αm , θ0: m / Y 1: m ) 

[
αm 

(
θm 

)] ∼=
∑ N

i =1 w 

(
θi 

0: m 

)
∫ αm 

(
θi 

m 

)
p 
(
αm 

/ θi 
0: m 

, Y 1: m 

)
d αm ∑ N

i =1 w 

(
θi 

0: m 

) (29)

It is equivalent to the modulation of the recursive Kalman filter output by the normalized weight of the corresponding

parameter vector. We can write: 

ˆ αRBPF 
m 

= 

N ∑ 

i =1

W 

i 
0: m

∫ 
αm 

(
θi 

m 

)
p 
(
αm 

/ θi 
0: m 

, Y 1: m 

)
d αm 

(30)

p 
(
θ0: m 

, Y 1: m 

)
= p 

(
θ0: m −1 , Y 1: m −1 

)
p 
(
Y m 

/ Y 1: m −1 , θ0: m 

)
p 
(
θm 

/ θm −1 

)
(31)

The vector of parameters is assumed to evolve according a first-order Markov model, and its prior density is adopted as

the importance density for the SIS, i.e., 

q 
(
θm 

/ θ0: m −1 , Y 1: m 

)
= p 

(
θm 

/ θm −1 

)
(32)

Thus, θi 
m 

∼ p( θm 

/ θi 
m −1 

) , and the weights of the particles in (29) become:

w 

i 
0: m 

= w 

i 
0: m −1 p 

(
Y m 

/ Y 1: m −1 , θ0: m

)
(33)

For each particle θi 
m 

, we propagate the posterior mean and covariance using exact computations with a Kalman filter as

follows: 

αi 
m/m −1 = A 

i 
m 

αi 
m −1 /m −1 (34)

P i m/m −1 = A 

i 
m 

P i m −1 /m −1 A 

i 
m 

T + B 

i 
m 

B 

i 
m 

T
(35)

K 

i 
m 

= P i m/m −1 C 
T
m 

[
C m 

P i m/m −1 C 
T 
m 

+ D m 

D 

T
m

]−1
(36)

αi 
m/m 

= αi 
m/m −1 + K 

i 
m

(
Y m 

− C m 

αi 
m/m −1

)
(37)

P i m/m 

=
(
I p×p − K 

i 
m 

C m 

)
P i m/m −1 (38)
DOI : 10.1016/j.compeleceng.2017.07.024 5



Fig. 2. Performance comparison of the proposed DFT-RBPF and speech enhancement algorithms based on PF, for AWGN and various input SNR levels, in

terms of: (a) CSII, (b) PESQ, (c) SNRseg, and (d) overall SNR.

 

 

 

 

 

where αi 
m/m −1 

= E[ αi 
m 

/ Y 1: m −1 ] , α
i 
m/m 

= E[ αi 
m 

/ Y 1: m 

] , P i 
m/m −1 

= Cov [ αi 
m 

/ Y 1: m −1 ] , P i m/m 

= Cov [ αi 
m 

/ Y 1: m 

] , and K 

i 
m 

is the Kalman

filter gain. Hence, we have [6,18] : 

p 
(
Y m 

/ Y 1: m −1 , θ
i 
1: m 

)
= N 

(
Y m 

;C m 

αi 
m/m −1 , C m 

P i m/m −1 C 
T 
m + D m 

D 

T
m

)
(39) 

The parameters and the Kalman filter output (a posteriori covariance, a posteriori mean) are then resampled before the

transition step. Therefore, (33) becomes 

w 

i 
m 

∝ p 
(
Y m 

/ Y 1: m −1 , θ
i 
0: m 

)
(40) 

The components of the parameter vector are assumed to be independent and to evolve randomly according to the Gaus-

sian random walk with the first-order Markov model. The stability of the TVAR model is maintained by keeping the instan-

taneous poles of the model, or the roots of the polynomial ( 1 − ∑ p 

b=1 
a b,m 

z −b ) , strictly within the unit circle [6] . Similarly,

the variance of the excitation is assumed to evolve according to a Gaussian random walk, and to keep it positive, the prop-

agation is done over its logarithm. i.e.,: 

p 
(
θ0 

)
= p ( a 0 ) p 

(
φU 0 

)
(41) 

p 
(
θm 

/ θm −1 

)
= p ( a m 

/ a m −1 ) p 
(
φU m / φU m −1 

)
(42) 

where, p( a m 

/ a m −1 ) = N ( a m −1 , σ
2 
a I p×p ) under the condition of stability, and p( φU m / φU m −1 

) = N ( φU m −1 
, σ 2 

φU 
) , with φU m =

log ( σ 2 
U 

) . 

m

DOI : 10.1016/j.compeleceng.2017.07.024 6



Fig. 3. Spectrograms of (a) the clean sentence (sp01.wav) ‘The birch canoe slid on the smooth planks’, (b) the sentence corrupted by AWGN at 5 dB SNR,

the corrupted sentence enhanced by: (c) DFT-RBPF, (d) DCT-RBPF, and (e) Time-RBPF.

Table 1

RBPF algorithm for filtering real and imaginary parts of the noisy-speech complex DFT coefficients.

1: for m ≥ 1 

2: for i = 1: N 

3: a i 
m,k 

∼ p( a m,k / a 
i 
m −1 ,k 

) (with stability condition) 

4: φ i 
U m,k 

∼ p( φU m,k 
/φ i 

U m −1 ,k 
) 

5: Deduce the matrices in (5)

6: Compute the prediction step in the Kalman filter

7: Compute the weight according to (39)

8: Compute the correction step in the Kalman filter

9: end for i

10: Compute the sum of the weights

11: Normalize weight

12: Compute the sum of the weighted outputs ˆ X RBPF
m,k 

= 

∑ N
i =1 W 

i
m,k 

C m,k ˆ α
i 

m,k

13: Resample according to the normalized weight: the parameters and the a posteriori covariance matrix and a posteriori mean for the next time step

14: end for m

 

 

 

The variance values { σ 2 
a , σ

2 
φU

} are prefixed, and are the same for both parts of the DFT coefficient. Table 1 presents the

RBPF algorithm for filtering the real and imaginary parts of the noisy-speech complex DFT coefficients. 

5. Results and discussion

5.1. Experimental setup 

For the proposed method evaluation, we use the NOIZEUS speech corpus [14] . The database contains 30 sentences, pro-

duced by three male and three female speakers, corrupted by eight different real-world noises at different SNR levels. The
DOI : 10.1016/j.compeleceng.2017.07.024 7



Fig. 4. Performance comparison of the proposed DFT-RBPF and enhancement algorithms based on PF, for Babble noise and various input SNR levels, in

terms of: (a) CSII, (b) PESQ, (c) SNRseg, and (d) overall SNR.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

phonetically balanced sentences were originally sampled at 25 kHz and downsampled to 8 kHz. From the database, we use

the sentences corrupted with the Babble noise; and we also generate a corresponding synthetic set affected by AWGN at

four SNR levels: 0 dB, 5 dB, 10 dB, and 15 dB 

The algorithms are evaluated using the coherence speech intelligibility index (CSII), perceptual evaluation of speech qual-

ity (PESQ), segmental SNR (SNRseg) and overall SNR (SNR) in dB. The CSII [19] is based on the speech intelligibility index

(SII) measure. It estimates the amount of speech information reaching a listener, by computing a weighted sum of the signal-

to-distortion ratios (SDRs) instead of the SNRs used in the SII. The PESQ, ITU-T standard P.862, uses a perceptual model to

convert the input and degraded speech into internal representations. The difference is used to estimate the mean opinion

score (MOS). It was shown in [20] that the PESQ measure yielded the highest correlation in terms of the overall quality and

signal distortion. The SNRseg values are evaluated in the time domain. For this measure, it is important that the original and

processed signals are aligned in time and that any phase error present is corrected. The SNRseg is calculated by splitting

the two signals into smaller segments and calculating the SNR value for each segment. The final SNRseg value is obtained

by averaging the resulting per-segment SNR values. An extensive development of the used objective metric can be found in

[14] .

The performance results are obtained by averaging the resulting objective measure values from the used sentences. Ow-

ing to the stochastic nature of the proposed algorithm, the same noisy speech signals are enhanced several times using the

proposed method. 

The evaluation is achieved in two parts. In the first part, the DFT-RBPF algorithm is compared with the algorithms based

on SMC. For this part, we assume perfect knowledge of the noise variance. Subsequently, the proposed DFT-RBPF algorithm

is compared with the existing speech enhancement algorithms, and the noise variance is estimated during a silent frame,

using a simple voice activity detector (VAD) based on the posterior SNR evaluated over each frame separately. For the noise

variance initiation, the first five frames are considered as silence frames, which matches the used sentences. Furthermore,

we introduce an overestimate factor that allows additional tuning for the estimated noise variances over each frame [21] . 

In the first part of the simulation, the following methods are compared: 

• The proposed DFT-RBPF speech enhancement method with: the first order TVAR (1) model; 100 particles for each DFT

coefficient part { σ 2 
a = 0 . 001 , σ 2 

φ
= 0 . 1 } , , a Hanning window of length 20 ms, half overlapping, and 512 fast Fourier
U
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Fig. 5. Spectrograms of: (a) the clean sentence (sp01.wav) ‘The birch canoe slid on the smooth planks’, (b) the sentence corrupted by Babble noise at 5 dB

SNR, the corrupted sentence enhanced by: (c) DFT-RBPF, (d) DCT-RBPF, and (e) Time-RBPF.

 

 

 

 

 

 

 

 

 

transform (FFT) samples. The used Gaussian random walk variances are fixed based on careful manual tuning with the

objective of achieving the best performance. 

• DCT-RBPF [10] , with TVAR (2) and 100 particles.

• Time-RBPF [6] , with the TVAR (10) model and 10 0 0 particles.

In the second part of the simulation, the following methods are compared: 

• The proposed DFT-RBPF speech enhancement method with : the first order TVAR (1) model, 100 particles for each DFT

coefficient part, { σ 2 
a = 0 . 001 , σ 2 

φU
= 0 . 1 } , a Hanning window of length 20 ms, half overlapping, and 512 FFT samples. The

used Gaussian random walk variances are fixed based on careful manual tuning with the objective of achieving the best

performance. 

• LSA: minimum mean square error log spectral amplitude estimator [22] .

• MAP: maximum a posteriori estimator of magnitude-squared spectrum [23] .

• GSS: spectral amplitude estimators based on a parametric generalized spectral subtraction method [24]

• NC-LSE: log spectral amplitude estimation based on a non-causal a priori SNR estimator [25]

• Wiener: Wiener filter based on a priori signal to noise estimation [26]

5.2. Results and discussion 

The performance comparisons between the proposed methods and the existing particle-filter speech enhancement algo-

rithms, in terms of the CSII, PESQ, SNRseg, and the overall SNR, for the case of AWGN, are depicted in Fig. 2 . The speech en-

hancement using DFT-RBPF results in better improvement of the objective measurement in terms of intelligibility ( Fig. 2 (a)).

In terms of the speech-quality score, the proposed method outperforms the DCT-RBPF and the Time-RBPF ( Fig. 2 (b)) meth-

ods. In terms of the SNRseg ( Fig. 2 (c)), the Time-RBPF presents the best improvement for low input SNRs, as it performs

better during the silent periods of speech segments [8] . However, the DFT-RBPF outperforms this method when the input
DOI : 10.1016/j.compeleceng.2017.07.024 9



Fig. 6. Performance comparison of the proposed DFT-RBPF with other speech enhancement algorithms for AWGN and various input SNR levels in terms

of: (a) CSII, (b) PESQ, (c) SNRseg, and (d) overall SNR.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SNR exceeds 5 dB. In terms of the overall SNR, the proposed method presents the highest SNR ( Fig. 2 (d)), when compared

to the reference methods. 

Fig. 3 shows the spectrograms for the speech processed by the proposed method and the existing methods based on

the PF algorithm. A sample sentence was corrupted by AWGN at 5 dB SNR ( Fig. 3 (b)). The Time-RBPF ( Fig. 3 (e)) presents

the lowest residual noise during the silent period. However, unlike the Time-RBPF, the DFT-RBPF ( Fig. 3 (c)) and DCT-RBPF

( Fig. 3 (d)) do not present a residual noise, that is modulated by speech power during the speech activity period, which

confirms the performances presented in Fig. 2 . In the cases of the DFT-RBPF and DCT-RBPF, the modulation occurs over each

frequency channel; therefore, the residual noise is modified. From Fig. 3 , we observe that the DFT-RBPF presents less speech

distortion and residual noise when compared with the other methods. 

Fig. 4 shows the performance comparisons between the proposed DFT-RBPF method and the existing particle-filter speech

enhancement algorithms, in terms of the CSII, PESQ, SNRseg, and the overall SNR, for the case of Babble noise. The speech

enhancement using the proposed DFT-RBPF gives the best intelligibility index ( Fig. 4 (a)), followed by that using the DCT-

RBPF. In terms of speech-quality scores, the DFT-RBPF outperforms the DCT-RBPF and the Time-RBPF ( Fig. 4 (b)). For the

SNRseg ( Fig. 4 (c)), the Time-RBPF exhibits the best improvement for low input SNRs, when compared with the other meth-

ods, nevertheless, this performance degrades rapidly at high SNRs because of the modulated residual noise that characterizes

this method. In terms of the overall SNR ( Fig. 4 (d)), the DFT-RBPF shows the best improvement, followed by the DCT-RBPF. 

Fig. 5 shows the spectrograms of speech processed by the proposed and existing methods based on the PF algorithm.

The sample sentence was corrupted by Babble noise at 5 dB SNR ( Fig. 5 (b)). The DFT-RBPF ( Fig. 5 (c)) presents less residual

noise and speech distortion, when compared with the existing speech enhancement methods, which is in accordance with

the Fig 4 (d). The resulting spectrograms from the DFT-RBPF and DCT-RBPF appear similar, but the DFT-RBPF contains more

peaked formants, compared to the DCT-RBPF. 

Fig. 6 shows the performance comparisons between the proposed method and the MAP, GSS, LSA, Wiener, and NC-LSA

algorithms, in terms of the CSII, PESQ, SNRseg, and overall SNR, for the case of AWGN. In terms of the intelligibility index,

the proposed method outperforms the reference methods ( Fig. 6 (a)). In terms of the PESQ score ( Fig. 6 (b)), the DFT-RBPF

outperforms the reference methods for input SNRs ranging from 0 dB to 10 dB. However, the MAP presents the highest
DOI : 10.1016/j.compeleceng.2017.07.024 10



Fig. 7. Spectrograms of: (a) the clean speech sentence (sp10.wav) ‘The sky that morning was clear and bright blue’, (b) the sentence corrupted by AWGN

at 5 dB SNR, the corrupted sentence enhanced by: (c) DFT-RBPF, (d) MAP, (e) GSS, (f) LSA, (g) Wiener filter, and (h) NC-LSA. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

speech quality score when the input SNR exceeds 10 dB. The DFT-RBPF ( Fig. 6 (c)) demonstrates a SNRseg performance that

is close to that of the MAP. In terms of the overall SNR, the proposed method outperforms the reference methods used

( Fig. 6 (d)). 

Fig. 7 shows the spectrograms of speech processed by the proposed method and the MAP, GSS, LSA, Wiener, and NC-

LSA methods. The sample sentence was corrupted by AWGN at 5 dB SNR ( Fig. 7 (b)). The proposed DFT-RBPF ( Fig. 7 (c))

presents less residual noise and less speech distortion, and no musical noises are observed in the informal listening tests.

The resulting spectrogram using the DFT-RBPF presents more apparent formants, compared to the other methods, which

confirms the obtained objective results for this input SNR. 

Fig. 8 shows the performance comparisons between the proposed method and the MAP, GSS, LSA, Wiener, and NC-LSA

algorithms, in terms of the CSII, PESQ, SNRseg, and overall SNR, for the Babble noise. The intelligibility performances pre-

sented by the DFT-RBPF ( Fig. 8 (a)) are higher than those resulting from the other methods. The NC-LSA gives an intelligibility

performance close to that of the MAP algorithm. In terms of the speech-quality scores, the DFT-RBPF gives the best score

compared to the reference methods used ( Fig. 8 (b)). In Fig. 8 (c), the evaluation using the SNRseg depicts that the Wiener

filter based on a priori signal to noise estimation presents the best SNRseg for low input SNRs. However, the proposed DFT-

RBPF gives the best SNRseg when the input SNR increases. In terms of the overall SNR, the DFT-RBPF presents the highest

SNR improvement ( Fig. 8 (d)). 

Fig. 9 shows the spectrograms of speech processed by the proposed method and the MAP, GSS, LSA, Wiener, and NC-

LSA methods. The sample sentence was corrupted by Babble noise at 5 dB SNR ( Fig. 9 (b)). The proposed DFT-RBPF method

( Fig. 9 (c)) presents more residual noise, compared to the case of the AWGN, that matches linear Gaussian model. Likewise,

the other methods also present more residual noise. Nevertheless, the proposed DFT-RBPF method presents the least residual

noise and less speech distortion. 

Table 2 presents the results of multiple comparisons of the statistical tests based on paired sample t-tests, which were

conducted to assess the performance differences between the proposed method and the other methods. Differences between

the scores are considered to be statistically significant if the obtained p - value (level of significance) is smaller than 0.05.

In other words, the null hypothesis H0 (if the proposed method reaches the same or lower performance than the other

methods) can be rejected if p ≤ 0 . 05 [27] . From Table 2 , it can be inferred that the tests are statistically significant ( p <
DOI : 10.1016/j.compeleceng.2017.07.024 11



Fig. 8. Performance comparison of the proposed DFT-RBPF with other speech enhancement algorithms, for Babble noise and various SNR levels, in terms

of: (a) CSII, (b) PESQ, (c) SNRseg, and (d) overall SNR.

Table 2

P -values for objective CSII, PESQ, SNRseg, and SNR evaluations of the comparisons with Time-RBPF, DFT-RBPF, DCT-RBPF, MAP,

GSS, LSA, Wiener, and NC-LSA for AWG and additive Babble noise with 5 dB input SNR.

Noise type Metric p -value of the DFT-RBPF speech enhancement methods

DCT-RBPF Time-RBPF MAP LSA GSS NC-LSA Wiener

AWGN CSII 0,0 0 04039 0,030398 0,0063927 0,0 0 0 0 094 0,0 0 0 0 046 0,0 0 0 0 01 0,0 0 0 0 07

Babble noise 0,0017260 0,0 0 0 0436 0,0016514 0,0 0 03087 0,0 0 01975 0,0 0 0812 0,0 0 0 039

AWGN PESQ 0,0 0 03688 0,0 0 0 0995 0,0 0 07121 0,0017784 0,0 0 08905 0,002873 0,0 0 0323

Babble noise 0,0021755 0,0 0 0 0186 0,0 0 0 080 0 0,0256265 0,0012899 0,011358 0,0 0 0148

AWGN SNR 0,0047343 0,0 0 07641 0,0092629 0,0 0 0 0351 0,0 0 0 0349 0,002965 0,0 0 0 023

Babble noise 0,0058705 0,0017841 0,0 0 0 0399 0,0 0 0 0 0 05 0,0 0 0 0 0 07 0,008020 0,0 0 0 0 01

AWGN SNRseg 0,0 0 0 0162 > 0.05 0,0323207 0,0 0 01497 0,0 0 01706 0,005272 0,005174

Babble noise 0,0 0 01307 > 0.05 0,0015258 0,0 0 0 0 062 0,0 0 0 0 0 03 0,001803 0,034870

 

 

 

 

 

 

 

 

0 . 05 ) in terms of the CSII, PESQ score, and overall SNR. In terms of segmental SNR, the tests are statistically significant

( p < 0 . 05 ) in all cases, except for the case of Time-RBPF, for AWG and Babble noises. The resulting statistical t-tests confirm

the performance of the proposed speech enhancement method for the considered input SNR. 

5.3. DFT-RBPF complexity 

The Kalman filter speech enhancement complexity is O(p) if fast Kalman filter techniques are applied [5] . For L - points

DFT, the complexity is O( L log ( L ) ) . The overall complexity of an N -particle Time-RBPF is approximately O( Np ) computations

per unit time [10] . Hence, considering the half overlapping decimated rate of ( L /2) times, compared to Time-RBPF, and taking

into account the symmetric properties of the FFT, the DFT-RBPF complexity for ( N ) particles used with ( L ) frequency bins, is

approximately ( 
( 2( L 

2 
−1 )+1 + 1 ) 

L/ 2 O( Np ) + O( L log ( L ) ) = O( 2 Np ) + O( L log ( L ) ) ) . 

The complexities of the proposed DFT-RBPF, Time-RBPF and DCT-RBPF speech enhancement algorithms based on PF, de-

picted in Table 3 , depend on the number of used particles and the adopted TVAR model order. The AR vectors are generated
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Fig. 9. Spectrograms of: (a) the clean sentence (sp10.wav) ‘The sky that morning was clear and bright blue’, (b) the sentence corrupted by Babble noise

at 5 dB SNR, the corrupted sentence enhanced by: (c) DFT-RBPF, (d) MAP, (e) GSS, (f) LSA, (g) Wiener filter, and (h) NC-LSA. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3

Complexity of the Time-RBPF, DCT-RBPF, and the proposed DFT-RBPF.

Algorithms Time-RBPF DCT-RBPF DFT-RBPF

Complexity O( Np ) [10] O( Np ) + O( L log ( L ) ) O( 2 Np ) + O( L log ( L ) ) . 

 

 

 

 

 

 

 

 

 

 

 

by sampling until a stable draw is achieved, and the stability of the entire AR vector is affected by every coefficient. The

number of vectors that are rejected as unstable will increase as the AR model order increases [10] . 

6. Conclusion

In this work, a new speech enhancement method was proposed: the DFT-RBPF, which was based on the assumption

of independence between the real and imaginary parts of the noisy speech spectral components. The RBPF was used to

estimate the vector parameters and the states using a low-order TVAR model that allowed us to account for the inter-frame

correlation. The adopted low-order TVAR models and the used decimated frames significantly reduced the complexity of

the proposed algorithm, compared to the Time-RBPF speech enhancement algorithm. The proposed DFT-RBPF algorithm was

compared with the Time-RBPF and DCT-RBPF algorithms, under the same conditions, when the noise variance was assumed

to be known. Results in terms of speech intelligibility, speech quality, SNRseg, and overall SNR indicated that the proposed

DFT-RBPF method outperformed the reference methods based on the SMC, in the presence of AWGN and Babble noise. 

Subsequently, the proposed DFT-RBPF method was compared with the MAP, GSS, LSA, Wiener, and NC-LSA methods,

for the AWGN and additive Babble noise cases. The proposed method demonstrated more improvements in the adopted

objective measures, compared to the reference methods. The obtained results were also reinforced by using paired sample

t-tests, where the resulting p-values matched the obtained objective results. The proposed method can be improved by

using a model approach that takes into account the transitions between active speech and silent intervals, and when the

additive colored noise model is considered.
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