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Abstract LDPC code shows a good performance with long-block codes. However, certain chan-

nels are constrained to use short-block codes due to latency. Therefore, concatenated LDPC codes

with iterative decoding is a good choice to get a good performance. Concatenated binary LDPC

codes were introduced as a class of concatenated codes in which the LDPC codes are irregular codes

having different parameters. Although irregular LDPC codes are more efficient than regular codes,

irregular LDPC codes have an error floor and a higher encoding complexity than regular code. In

this paper, in order to get a good performance/complexity trade-off with a short-block code, we

investigate a parallel concatenation of two identical regular binary LDPC codes, using an inter-

leaver. Simulation results show that the proposed code outperforms a single LDPC code. The pro-

posed code needs less time decoding delay than a single LDPC code with the same iteration number.

Also, the proposed code needs a less number of iterations to achieve the same performance of a sin-

gle LDPC code that leads to less decoding complexity and decoding delay. A simplified algorithm,

the min-sum algorithm, that is used to decode the component codes shows a small performance loss

with respect to the sum-product algorithm.
� 2018 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In 1948, Shannon [1] proves that there is a limit spectral effi-
ciency that we cannot overcome if we want a transmission

without errors. Shannon was able to give a limit, without giv-
ing the code that allows the correction of errors.

In 1993, a publication of Claude Berrou et al. presented an
invention of a new error correcting code called turbo-code [2].
This code provides communications substantially without
errors and obtains a better coding gain of all other existing
codes. The turbo-code consists of two or several codes con-
catenated in serial, parallel or hybrid with short-block codes,

separated by interleavers. Their decoding is done iteratively
between the component codes which based on the Soft-Input
Soft-Output decoding.

After the invention of the turbo-codes and grace to iterative
technique used in their decoding. The binary LDPC codes,
which were ignored during long year since their introduction

by Gallager [3] in 1962, were rediscovered by Mackay [4] in
1995 to approach Shannon capacity.
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http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:l.mostari@univ-chlef.dz
https://doi.org/10.1016/j.aej.2017.09.016
http://www.sciencedirect.com/science/journal/11100168
https://doi.org/10.1016/j.aej.2017.09.016
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1 Tanner Graph corresponds to the matrix H of the Eq. (2).
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LDPC codes are block codes with parity-check matrices H
that contain only a very small number of non-zero entries. This
sparseness of H is essential for an iterative decoding complex-

ity that increases only linearly with the code length. LDPC
codes are decoded iteratively using a graphical representation
of their parity-check matrix and so are much longer, less struc-

tured, and designed with the properties of H as a focus [5]. A
significant contribution was introduced by Luby et al. [6], in
1997, on irregular LDPC codes, where the non-zero elements

of the parity check matrix are distributed irregularly.
Although LDPC codes are good errors correcting codes,

code concatenation of theses codes with iterative decoding is
still attractive to construct powerful error correction codes

with reasonable complexity. Concatenated binary LDPC codes
were introduced as a class of concatenated codes in which the
LDPC codes are irregular codes having different parameters

interact in parallel [7,8] or in serial [9,10] with or without
interleavers.

Although irregular LDPC codes are more efficient than reg-

ular codes, irregular LDPC codes have an error floor and a
higher encoding complexity than regular code. In this work,
we study a concatenation of two identical regular LDPC codes

arranged in parallel, using an interleaver between the two
LDPC codes that compose it. We restrict our description of
proposed code to rate 1/3 codes constructed by combining
two rate 1/2 binary LDPC codes. The two component codes

are the same, decoded by Sum-Product Algorithm (SPA) and
its simplified algorithm: Min-Sum Algorithm (MSA). An inter-
leaver was used between the two codes to spread out any burst

errors.
This paper is organized as follows: in Section 2, we define

the LDPC codes. Sections 3 and 4 present respectively LDPC

encoding and LDPC decoding algorithms such as: SPA and
MSA. In Section 5, the parallel concatenated LDPC encoding
and decoding are investigated. Section 6 presents simulation

results of a rate 1/3 parallel concatenated binary LDPC code
compared with a single LDPC code of the same rate and
block-length. Finally, in Section 7 we conclude our findings.
2. LDPC codes

LDPC codes are linear block codes, based on low-density par-
ity check matrices H, i.e the number of non-zero elements in

the matrix is much less than the number of zeros. The code rate
R of an LDPC code is given by:

R ¼ N�M

N
ð1Þ

where N and M are respectively the number of columns and

rows of H. The number of columns N defines the code length.
The number of rows M determines the number of parity check
equations.

According to the regular or irregular distribution of the

non-zero elements in the matrix, the LDPC codes can be reg-
ular [11,12] or irregular. The parity check matrix of a regular
LDPC code has constant column and row weights. Irregularity

of an irregular LDPC code results in the non-uniform distribu-
tion of non-zero elements on columns and/or rows.

An example of a parity check matrix H of size 4 � 6 of a

regular LDPC code is given by:
H ¼

1 1 1 0 0 0

0 1 0 1 1 0

1 0 0 1 0 1

0 0 1 0 1 1

2
6664

3
7775 ð2Þ

An example of a parity check matrix H of size 4 � 8 of an
irregular LDPC code is given by:

H ¼

1 0 0 0 1 0 0 0

0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 0

0 0 0 1 0 0 1 1

2
6664

3
7775 ð3Þ

The LDPC codes can be described by a graphical represen-
tation, called Tanner graph [13], corresponds to the matrix H.

Tanner graph is a bipartite graph composed of two types of

nodes: the variable nodes representing the symbols of the code-
word and the parity nodes representing the parity control
equations. These two types of nodes are connected by branches

according to the non-zero elements in the parity check matrix.
The number of the variable nodes Nm m 2 1; � � � ;Nf gð Þ and

the parity nodes Mn n 2 1; � � � ;Mf gð Þ correspond respectively

to the number of columns N and the number of rows M of
the matrix H.

Fig. 1 shows an example of a Tanner graph corresponding

to the matrix H of the Eq. (2).
The parity check matrixH allowed us to determine the Tan-

ner graph which is used as a support for the decoder. Also, this
matrix is used for the LDPC encoder.

3. LDPC encoding

The encoding is doing by several methods. In this work, we use

the encoding methods by decomposition LU. This coding type
is systematic. This means that the codeword is in the form of a
concatenation of an information word CI, of size N-M sym-

bols, and of a redundancy block CR:

C ¼ CR CI½ � ð4Þ
Codewords should verify the following equation:

C:H0 ¼ 0 ð5Þ
The encoding operation uses this equation. One decompose

H into two sub-matrices H1 and H2 such that H is the concate-
nation of H1 and H2.
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H ¼ H1 H2½ � ð6Þ
where H1 is a square matrix of size M�M and occupies the
first M columns of H. H2 is a matrix of size M� N�Mð Þ
and occupies the last N-M columns.

Applying Eqs. (4) and (5) in relation (6), one obtain:

CR:H1
0 þ CI:H2

0 ¼ 0 ð7Þ
CI is already known, it is the information block. Remain to

calculate CR by the following operation:

CR
0 ¼ inv H1ð Þ:CI:H2

0 ð8Þ
With inv H1

0ð Þ is the inverse of H1
0. To avoid the computa-

tional complexity of inv H1
0ð Þ, we write H1 in the form:

H1 ¼ L:U ð9Þ
With L and U are respectively lower triangular matrix and

upper triangular matrix. This is the LU decomposition. There-
fore, Eq. (9) becomes:

CR:L
0:U0 þ CI:H

0
2 ¼ 0 ) CR:L

0:U0 ¼ CI:H
0
2

) L0 CR:U
0ð Þ|fflfflfflffl{zfflfflfflffl}

Y

¼ CI:H
0
2|fflffl{zfflffl}

Z

) L0:Y ¼ Z

) Y ¼ Z=L0

ð10Þ

Therefore, the redundancy block is:

CR ¼ Y=U0 ð11Þ

Example 1. The LDPC encoder encodes the information block
of length N-M = 5, CI ¼ 1 0 1 0 1½ �, as follows:

Let us take the following parity check matrix:

H ¼

1 1 1 0 0 1 1 0 0 1

1 0 1 0 1 1 0 1 1 0

0 0 1 1 1 0 1 0 1 1

0 1 0 1 1 1 0 1 0 1

1 1 0 1 0 0 1 1 1 0

0
BBBBBB@

1
CCCCCCA ð12Þ

The decomposition of H gives us:

H1 ¼

1 1 1 0 0

1 0 1 0 1

0 0 1 1 1

0 1 0 1 1

1 1 0 1 0

0
BBBBBB@

1
CCCCCCA; H2 ¼

1 1 0 0 1

1 0 1 1 0

0 1 0 1 1

1 0 1 0 1

1 1 1 0

0
BBBBBB@

1
CCCCCCA ð13Þ

The factorization LU of H1 gives us:

L ¼

1 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 1 0 1 0

1 0 1 0 1

0
BBBBBB@

1
CCCCCCA; U ¼

1 1 1 0 0

0 1 0 0 1

0 0 1 1 1

0 0 0 1 0

0 0 0 0 1

0
BBBBBB@

1
CCCCCCA ð14Þ

Using the Eqs. (10) and (11), the redundancy block CR is

calculated as follows:
Z ¼ CI:H
0
2 ¼ 0 0 1 1 1½ �; Y ¼ Z=L0

¼ 0 0 1 1 1½ �; CR ¼ Y=U0 ¼ 0 0 0 1 0½ � ð15Þ
Therefore, the codeword is:

C ¼ CR CI½ � ¼ 0 0 0 1 0 1 0 1½ � ð16Þ
4. LDPC decoding

LDPC decoders uses the Tanner graph as a support and their
operations can be explained by the passage of messages along
the branches of a Tanner graph. The decoding of the LDPC

code is an iterative decoding. LDPC decoders performs as
follows:

a. Initialization of the variable nodes by the input messages
of the decoder.

b. At each iteration the following steps are repeated:

1. Each parity node receives messages arriving from the
variable nodes connected to it by branches and then
calculates and sends the resultant message that is
related to all messages arriving from the variable nodes

except the message where the output message will be sent;
2. Each variable node receives messages arriving from the

parity nodes connected to it by the branches and then

calculates and sends the resultant message that is linked
to all messages arriving from the parity nodes except
the message where the output message will be sent;

3. Then, the a posteriori information associated with each
variable node is calculated before the decision is taken.

Finally, after a certain number of iterations or in the case
where the syndrome is zero (i:e: estimated codeword:H0 ¼ 0),
the algorithm stops.

The first iterative decoding algorithm of the LDPC codes is
the Sum-Product Algorithm (SPA), also known as the belief
propagation algorithm, is an optimal iterative decoding algo-

rithm, but with high computational complexity. Several algo-
rithms have been proposed to reduce the complexity of the
SPA. In the following, the SPA and its simplified algorithm,

Min-Sum algorithm (MSA), are described.

4.1. Sum-product algorithm

The SPA performs the following operations [14]:

& Initialization of variable nodes
cn xð Þ¼ log
Pr vn¼1 c

0
n

��� �
Pr vn¼0 c0n

��� � ; m� 1; � � � ;Mf g; n� 1; � � � ;Nf g ð17Þ

lmn xð Þ ¼ cn xð Þ ð18Þ

– Iteration

& Calculation of parity nodes
bmn ¼ 2� tanh�1
Y

n02Nm=n

tanh lmn0=2ð Þ
 !

ð19Þ
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& Calculation of variable nodes
lmn ¼ cn þ
X

m02Mn=m

bm0n ð20Þ

& A posteriori information
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Fig. 2 Structure of a rate 1/3 parallel concatenation LDPC

encoder.
c
� ¼ cþ

X
m2Mn

bmn ð21Þ

& Decision
ĉn ¼ argmax
x

c
�
n

� �
ð22Þ
Finally, the algorithm stops if the maximum number of iter-
ations is reached or if the syndrome is zero.

The SPA achieves the best performance for LDPC codes.

But the operations of tanh�1 and tanh are very complex to real-
ize. Otherwise, the MSA makes approximations to simplify

parity node calculations.

4.2. Min-Sum algorithm

The MSA performs the following operations [15]:

& Initialization of variable nodes

0��� �

cn xð Þ ¼ log

Pr vn ¼ 1 cn
Pr vn ¼ 0 c0n

��� � ; m� 1; � � � ;Mf g; n� 1; � � � ;Nf g

ð23Þ

lmn xð Þ ¼ cn ð24Þ

lmn ¼ l�
mn � l��

mn; where l�
mn ¼ sign cnð Þ; l��

mn ¼ cnj j ð25Þ

– Itération

& Calculation of parity nodes
bmn ¼
Y

n02Nm=n

l�
mn0 � min

n02Nm=n
l��
mn0

� � ð26Þ

& Calculation of varialble nodes
lmn ¼ cn þ
X

m02Mn=m

bm0n ð27Þ

& A posteriori information
c
� ¼ cþ

X
m2Mn

bmn ð28Þ

& Decision
ĉn ¼ argmax
x

c
�
n

� �
ð29Þ
Finally, the algorithm stops if the maximum number of iter-
ations is reached or if the syndrome is zero.

5. Parallel concatenation of LDPC codes

5.1. Encoding

Fig. 2 represents the block diagram of a rate 1/3 parallel con-
catenation encoder. It is built using a parallel concatenation of
two systematic encoders separated by an interleaver noted p.
The two systematic encoders are often referred to as

component encoders. The global encoder rate is 1/3; that is,
for every input block, the encoder produces three code blocks.
One is the interleaved information block, and the other two are

the parity blocks generated by the two systematic binary
LDPC encoders.

The first component encoder ENC1 encodes the informa-

tion block
CI of size N-M, CI ¼ C1C2 � � �CN�M½ �, using a parity check

matrix H of size M�N, and generates the coded information

block of size N:

C1
RC

1
I

� 	 ¼ C1
R1C

1
R2 � � �C1

RMC
1
1C

1
2 � � �C1

N�M

� 	 ð30Þ

where C1
I is a systematic block C1

I ¼ CI, and C1
R is a parity

block.
The second encoder ENC2 uses only the interleaved system-

atic block C1
I:interleaved, and generates the coded block of size N:

C2
RC

2
I

� 	 ¼ C2
R1C

2
R2 � � �C2

RMC
2
1C

2
2 � � �C2

N�M

� 	 ð31Þ

where C2
I is an interleaved systematic block C2

I ¼ C1
I:interleaved ¼

CI:interleaved, and C2
R is a parity block.

Thus, the global encoder encodes the information block CI

of size N-M, CI ¼ C1C2 � � �CN�M½ �, and generates the coded

information block of size N:

C1
RC

2
RC

2
I

� 	 ¼ C1
R1C

1
R2 � � �C1

RMC
2
R1C

2
R2 � � �C2

RMC
2
1C

2
2 � � �C2

N�M

� 	
ð32Þ

The interleaver in the global encoder plays an important
role. It permutes the data block sent to the second component

encoder so as to generate a second parity that is independent
from the parity generated by the first component encoder. It
is important for the interleaver in turbo coding to have a ran-

dom property and make the interleaver block as independent
as possible from the original block [16].

Example 2. Let us take the same parity check matrix H and
the information block CI ¼ 1 0 1 0 1½ � given in the example

1. The global encoder, illustrated in Fig. 2, encodes CI as
follows:

The encoder ENC1 encodes the information block
CI ¼ 1 0 1 0 1½ � and generates the following coded informa-
tion block:

C1 ¼ C1
R C1

I

� 	 ¼ 0 0 0 1 0 1 0 1 0 1½ � ð33Þ
The second encoder ENC2 uses the interleaved block, and

generates the coded block. If the interleaver permutes the

information block to 0 0 1 1 1½ �, the encoder ENC2 generates
the following coded block



Fig. 3 Concatenated decoders.
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C2 ¼ C2
R C2

I

� 	 ¼ 1 0 0 1 1 0 0 1 1 1½ � ð34Þ

Thus, the global encoder encodes the information block
CI ¼ 1 0 1 0 1½ �, and generates the follonwing coded infor-
mation block:

C ¼ C1
R C2

R C2
I

� 	 ¼ 0 0 0 1 0 1 0 0 1 1 0 0 1 1 1½ � ð35Þ
Fig. 4 Performance of LDPC codes with block length N= 256,

for a BPSK modulation and under a gaussian channel.

Fig. 5 Performance of LDPC codes with block length

N= 2000, for a BPSK modulation and under a gaussian channel.
5.2. Decoding

Concatenated decoders [17] presented at Fig. 3, consists of two
decoders DEC1 and DEC2 associated respectively to the enco-
ders ENC1 and ENC2, of two interleavers and a deinterleaver

noted p�1.
Each component code is decoded by using soft-input soft-

output decoding algorithm. The component LDPC decoders

estimate the message, as described in Section 4.

The global decoder receives the soft observations C20
R , C

10
R

and C20
I and estimates the message transmitted. Where C20

I

denotes the received block corresponding to the interleaved

systematic information block, while C10
R and C20

R denotes the

received blocks corresponding to the parity block of the first
and second decoders respectively.

In the first iteration, the first decoder DEC2 generates the

soft information block I2 ¼ I21I
2
2 � � � I2N�M

� 	
, using the following

received block:

C20
RC

20
I

h i
¼ C20

R1C
20
R2 � � �C20

RMC
20
1 C

20
2 � � �C20

N�M

h i
ð36Þ

The second decoder DEC1 generates the soft information

block I1, using the received block C10
R and the soft information

I2 generated by the first decoder DEC2:

C10
RI

d
h i

¼ C10
R1C

10
R2 � � �C1

RMI
d
1I

d
2 � � � IdN�M

h i
ð37Þ

where Id ¼ I2deinterleaved
For next iterations, the first decoder DEC2 uses the soft

information I1 generated by the second decoder DEC1 to do
the decoding, the decoder input becomes:

y2
0
I

� 	 ¼ y2
0
1 y

20
2 � � � y20MI1I2 � � � IN�M

� 	 ð38Þ

where I ¼ x2
0 þ I1interleaved

The presence of the interleaver p and deinterleaver p�1

respectively at the output of decoder DEC1 and DEC2 are used
to decorrelate the soft decisions at the output of each decoder.

Decoding stops at the end of a fixed number of iterations,
and the final decision come from DEC1. One iteration corre-

sponds to one pass from DEC2 to DEC1.
6. Simulation results

In this section, by means of computer simulations, using Mat-
lab programming language, we evaluate the Bit Error Rate

(BER) performance of LDPC codes and concatenated codes,
as a function of signal to noise ratio (Eb=N0) in decibel (dB),
where Eb is the received energy per bit of transmitted informa-

tion and N0 is the power spectral density of the noise.
First, we evaluate in Figs. 4 and 5, for a BPSK modulation

and under a gaussian channel, the performance of a binary
LDPC code with code rate 1/2 as a function of the iteration

number and its block length N (N = 256 in Fig. 4 and
N= 2000 in Fig. 5).

Figs. 4 and 5 show that the performance of LDPC code can

achieved a good performance. We can see that the perfor-
mance of LDPC codes with N= 2000 (Fig. 5) is better than
that obtained with N = 256 (Fig. 4). Therefore, the perfor-

mance of LDPC code increases with block length, but the



Table 1 Time delay comparison between a single ldpc code

and parallel concatenated ldpc codes decoded by spa and msa.

Codes with 6 iterations

LDPC

code using

SPA

Parallel concatenated

LDPC Codes using

SPA

Parallel concatenated

LDPC Codes using

MSA

Time

delay

20 min:

25 s

6 min: 8 s 5 min: 45 s
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longue block length caused to coding and decoding
complexities.

Also, we can see that the performance can be increased

more and more by increasing the number of iteration as shown
in Figs. 4 and 5, but the large increase here leads to excessive
time delay and a computational complexity which make such

system unsuitable for real time applications.
The results presented in the literature [7,8,18–20] show that

the concatenation of irregular binary LDPC codes is more effi-

cient than a single binary LDPC code. Note that the main
characteristic of irregular LDPC codes is that they perform
better than regular codes [21]. However, irregular LDPC codes
have a higher error floor and coding complexity than regular

codes. Therefore, we propose the concatenation of regular
codes with an interleaver between them in order to introduce
diversity.

In Figs. 6 and 7, for a BPSK modulation, respectively on a
Gaussian channel and on a Rician channel, performances of
Fig. 6 Performance comparison of a rate 1/3 parallel concate-

nation LDPC codes employing MSA and SPA with a rate 1/3

LDPC code using SPA, under a Gaussian channel.

Fig. 7 Performance comparison of a rate 1/3 parallel concate-

nation LDPC codes employing MSA and SPA with a rate 1/3

LDPC code using SPA, under a Rician channel.
LDPC codes and concatenated codes are compared with the
same 256 input bits (N-M= 256) and code rate of 1/3. LDPC
codes are made by 512 � 768 parity check matrix. Concate-

nated codes are composed of two identical rate 1/2 LDPC code
with 256 � 512 parity check matrix, decoded by Sum-Product
Algorithm (SPA) and its simplified algorithm Min-Sum Algo-

rithm (MSA) [22]. The number of iterations in concatenated
codes is set to 6 using one iteration in each component code,
and the maximum number of a single LDPC code’s iterations

is set to 6.
The simulation result presented in Figs. 6 and 7 shows that

the concatenated codes outperform LDPC codes. As seen in

Figs. 6 and 7, there is a few performance degradation between
concatenation coded using SPA and that using MSA. As
results, since the performance increases with concatenated
codes, it can be use the MSA to more reduce the decoding

complexity.
Also, we can see that, with only 6 iterations, there is an

important gain between concatenated codes and a single code.

The concatenated codes need a less number of iterations to
achieve the same performance of a single LDPC code that
leads to low decoding complexity and less time delay.

Also, the concatenated codes need less time delay than the
single LDPC code, with the same iterations number, as shown
in Table 1. The simulation time presented in Table 1, is started

from the encoder input and finished at the decoder output.
In the table, one can see that the parallel concatenation

LDPC codes needs less time delay than single LDPC code with
same iteration numbers. It means that the proposed code not

only has higher decoding performance, but also lower time
delay than single LDPC code.

7. Conclusion

In this paper, we propose a code scheme that concatenates two
regular binary LDPC codes in parallel concatenation sepa-

rated by an interleaver, using the turbo principle. We
concluded that several benefits could be obtained from consid-
ering this approach, such as, less decoding delay, less complex-

ity and a good BER performance when compared to a single
LDPC code with the same block code.
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