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This paper proposes an LMI-based method to guarantee the closed-loop regional stability and performance for Takagi-Sugeno systems that are subject to input saturation, state constraints and also amplitude-bounded disturbance.

Based on Lyapunov stability tool, the proposed method provides conditions to simultaneously design the dynamic output feedback controller and its anti-windup compensator. By solving a convex optimization problem, these conditions are derived such that a tradeoff between the upper bound on the nominal ℒ2 gain for exogenous disturbance and the minimal size of the domain of attraction can be found. This method is simple and systematic, allowing dealing with a very large class of constrained nonlinear systems. The effectiveness of the proposed method is illustrated with numerical examples.

Introduction

Over the past two decades, Takagi-Sugeno (T-S) fuzzy models [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF] have been intensively studied in the control community [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. It is motivated by the fact that these models have general approximation capability for complex dynamical system [START_REF] Cao | Analysis and design for a class of complex control systems, Parts I and II[END_REF]. Moreover, under weak conditions, a nonlinear model can be, globally or more often regionally, rewritten on a fuzzy T-S form. Stability analysis or controller synthesis is then facilitated due to their polytopic structure [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. As a consequence, this approach has become now a very attractive research topic in control theory [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF]. Stability analysis of a given T-S system is investigated in most cases via the direct Lyapunov method through the use of a quadratic Lyapunov function; the derived stability conditions being expressed as linear matrix inequalities (LMIs) [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] for which efficient solvers are available. For the controller design, the choice of a parallel distributed compensation (PDC) control law is usually done for T-S models [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]). An abundant literature is available on this nonlinear state feedback control law; see e.g. [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF] for a quick overview.

For technological or economic reasons, the state variables are not all measured in most of real-world applications. In order to deal with this practical problem, output feedback control must be used. In general, observer-based control scheme is proposed for unconstrained T-S systems [START_REF] Liu | New approaches to controller designs based on fuzzy observers for T-S fuzzy systems via LMI[END_REF][START_REF] Guerra | Conditions of Output Stabilization for Nonlinear Models in the Takagi-Sugeno's Form[END_REF]. However, the design problem becomes much more complicated when state and/or input constraints have to be explicitly considered. As highlighted in [START_REF] Ding | Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi-Sugeno's form[END_REF], this control issue is not well addressed in the literature.

Due to physical/technical limitations and/or safety constraints, actuator saturation is unavoidable in almost all real applications. This phenomenon can severely degrade the closed-loop system performance and, in some cases, may lead to system instability. Motivated by this practical control aspect, a great deal of effort has been focused on saturated systems [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]. In the literature, several methods now exist to handle saturation effects, but the most popular and effective one remains the anti-windup (AW) approach (see for instance [START_REF] Kothare | A unified framework for the study of anti-windup designs[END_REF]). LMI-based synthesis of anti-windup compensators has been proposed recently to synthesize either static (Gomes da Silva [START_REF] Gomes Da Silva | Anti-windup design with guaranteed regions of stability: an LMI-based approach[END_REF][START_REF] Mulder | Simultaneous linear and anti-windup controller synthesis using multiobjective convex optimization[END_REF] or dynamic anti-windup compensators [START_REF] Cao | An anti-windup approach to enlarging domain of attraction for linear systems subject to actuator saturation[END_REF][START_REF] Grimm | Antiwindup for stable linear systems with input saturation: an LMI-based synthesis[END_REF][START_REF] Hu | Anti-windup synthesis for linear control systems with input saturation: achieving regional, nonlinear performance[END_REF] , an overview of these results can be found in the survey [START_REF] Tarbouriech | Anti-windup design: an overview of some recent advances and open problems[END_REF]. Most of these works deal with a twostep method in which the controller and the AW strategy are designed separately. This method often proves to be satisfactory but it has however some drawbacks. First, only sub-optimal solution can be achieved since the controller and its AW compensator are designed separately [START_REF] Sawada | Generalized Sector Synthesis of Output Feedback Control with Antiwindup Structure[END_REF]. Second, the effect of the nominal controller on the closed-loop performance under saturation is completely ignored [START_REF] Mulder | Simultaneous linear and anti-windup controller synthesis using multiobjective convex optimization[END_REF]. To overcome these drawbacks, an alternative solution called one-step method, which designs simultaneously the controller and the AW compensator, has been proposed. Among few works existing in the literature, we can notably cite [START_REF] Mulder | Simultaneous linear and anti-windup controller synthesis using multiobjective convex optimization[END_REF] in which an LMI solution ensuring global stability and performance is proposed for systems that are stable in open loop; [START_REF] Sawada | Generalized Sector Synthesis of Output Feedback Control with Antiwindup Structure[END_REF]) proposes a regional approach based on a change of variable; whereas [START_REF] Dai | Output feedback design for saturated linear plants using deadzone loops[END_REF] relies on the parameter elimination approach of [START_REF] Skelton | A Unified Algebraic Approach to Linear Control Design[END_REF]. Both latter approaches are based on some preliminary results proposed in [START_REF] Hu | Stability and performance for saturated systems via quadratic and non-quadratic Lyapunov functions[END_REF].

Up to now, a large amount of works on AW-based design are available for linear systems [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], but very few works deal with nonlinear cases, especially when exogenous disturbance signals are actively present [START_REF] Gomes Da | Dynamic output feedback stabilization for systems with sector-bounded nonlinearities and saturating actuators[END_REF]. In the T-S control framework, there are a couple of works devoted to the analysis or control design of saturated systems, for instance [START_REF] Cao | Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation[END_REF][START_REF] Tseng | H∞ fuzzy control design for nonlinear systems subject to actuator saturation[END_REF][START_REF] Du | Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint[END_REF][START_REF] Bezzaoucha | Stabilization of nonlinear systems subject to actuator saturation[END_REF][START_REF] Ariño | Guaranteed cost control analysis and iterative design for constrained Takagi-Sugeno systems[END_REF]. However, very few papers are dedicated to AW synthesis for T-S systems: in [START_REF] Ting | Robust anti-windup controller design of time-delay fuzzy systems with actuator saturations[END_REF], the authors addressed a two-step approach to deal with a continuous time-delay T-S systems; in [START_REF] Zhang | Piecewise fuzzy anti-windup dynamic output feedback control of nonlinear processes with amplitude and rate actuator saturations[END_REF], an interesting one-step approach based on piecewise fuzzy AW dynamic output feedback controller (DOFC) for discrete-time T-S systems has been proposed, note that these results seems to be valid only for systems that are stable in open-loop since no admissible sets of initial conditions are defined; and, at last, [START_REF] Song | Robust stabilization of state delayed TS fuzzy systems with input saturation via dynamic antiwindup fuzzy design[END_REF] which extends the approach proposed in (Gomes da [START_REF] Gomes Da Silva | Anti-windup design with guaranteed regions of stability: an LMI-based approach[END_REF] to the case of T-S systems. It is noteworthy that an important point is neglected in all these results: besides control input saturation, the T-S model is only valid on a given subset of the state space. This is of course true for any model of real-world systems, but is fundamental in the writing of a T-S model using the nonlinear sector decomposition approach [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. This validity domain can be represented by some constraints on the state variables (see Example 2 for illustration of this fact). It is particularly important to consider explicitly these state constraints in the control design to ensure a good behavior of the closed-loop system in response of disturbances. This fact has been very recently emphasized in [START_REF] Nguyen | Advanced control design tools for automotive applications[END_REF][START_REF] Nguyen | Lyapunov-based robust control design for a class of switching nonlinear systems subject to input saturation: application to engine control[END_REF][START_REF] Klug | Fuzzy dynamic output feedback control through nonlinear Takagi-Sugeno models[END_REF]. The two first cited references concern stabilization of nonlinear switching systems under saturation.

The latter one deals with the design of a dynamic output feedback control for nonlinear systems represented in Takagi-Sugeno form. Apart from the fact that we consider the effect of bounded disturbances on the design, a fundamental difference with the work in [START_REF] Klug | Fuzzy dynamic output feedback control through nonlinear Takagi-Sugeno models[END_REF] is that they considered discrete-time systems, whereas this paper concerns continuous-time systems. This allows them to use elegantly non-quadratic Lyapunov functions for the control law design.

Multiple or non-quadratic Lyapunov functions are also developed in the continuous-time case allowing to obtain less conservative conditions for stability analysis [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF][START_REF] Mozelli | Reducing conservativeness in recent stability conditions of T-S fuzzy systems[END_REF]. Concerning synthesis of control laws, the situation becomes much more complex and remains open due to the presence of the time-derivative of the membership functions in the stability conditions. Results so far developed lead to very complex design conditions or to controllers requiring the inversion in real time of a parameter-dependent matrix (see for instances [START_REF] Guelton | Robust dynamic otput feedback fuzzy Lyapunov stabilization of Takagi-Sugeno systems -A descriptor redundancy approach[END_REF][START_REF] Guerra | Non-quadratic local stabilization for continuous-time Takagi-Sugeno models[END_REF][START_REF] Bouarar | Robust non-quadratic static output feedback controller design for Takagi-Sugeno systems using descriptor redundancy[END_REF]. The goal of this paper is to obtain a controller that may be easily implemented in practice. For this reason, the obtained results rely on the quadratic stabilization approach. However, as will be shown in Section 5 through numerical example, in the context of input-saturated T-S systems, the proposed results may be competitive in some sense with respect to those presented in [START_REF] Guerra | Non-quadratic local stabilization for continuous-time Takagi-Sugeno models[END_REF] which actually provides the less conservative results among all non-quadratic approaches found in the open literature.

In this paper, we address a novel one-step method to design simultaneously a DOFC and an AW compensator for a disturbed T-S system subject to control input and system state constraints. The proposed approach has some special features deserving particular attention: quadratic boundedness of the trajectories (see [START_REF] Ding | Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] and references therein) is ensured for any admissible initial condition and disturbance signal, as well as a maximal 2 gain for the unsaturated system. Note that this 2 performance may be ensured regionally for the saturated case as in [START_REF] Dai | Output feedback design for saturated linear plants using deadzone loops[END_REF], however this decoupling allows reducing the conservatism of the results. Moreover, it will be shown that the control design can be formulated as a multi-objective LMI optimization problem. In such a way, the obtained controller can solve the tradeoff between some predefined closed-loop requirements.

The paper is organized as follows. Section 2 describes the design problem and recalls some preliminaries results. The main result is stated in Section 3. In Section 4, a constructive control design is presented as a multi-objective LMI optimization problem. The results of the paper are effectively illustrated through an example in Section 5. Finally, Section 6 gives some concluding remarks.

The notations and terminology used in this paper are standard. For an integer number r, r  denotes the set

 

1, 2, , r .

 

0,   is the set of non-negative real numbers.

 

2 n e denotes the extended 2 -space composed of measurable functions 

  0 :, n ft  such that   0 2 0 ,; T t f t dt T t      and     0 1/ 2 2 2, . T T t f f t dt     i x
     and 1 1 r i i    
. The following notations are occasionally used: 

        1 1 1 1 1 1 ;; r r r r i i i i i j ij i i i j Y Y Y Y Z Z                           ( 

Problem Definition and Preliminaries Results

Control Problem Definition

Closed-loop system description

Consider the following fuzzy T-S model described by [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] valid on a polyhedral domain x : Assumption 2. The input vector u is subject to symmetric magnitude limitations:
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Assumption 3. The disturbance signal w is assumed to belong to the set W  defined by:
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where the matrix 0 R  and the bound 0   are known.

Assumption 4. The validity domain x of (2) is a polyhedral set defined by:
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where the q vectors 1

x n k h  are given.

Consider now the unconstrained dynamic output feedback controller (DOFC) in the form of [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]:
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where

x n c x  , u n c u 
are respectively the state and the output vectors of the controller. The additional term v is introduced to minimize the undesirable degradation of closed-loop performance caused by input saturation. The controller (6) has to be designed to guarantee the local stability and some performance requirements for the closed-loop system.

Because of the input limitation, the actual control signal injected into the system is subject to the saturation effect:
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where each component of the saturation function
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Then, the interactions between the system (2) and the constrained controller are given as:
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From ( 6) and ( 9), the DOFC combined with the anti-windup strategy can be expressed as: 
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and the controller output is given as:
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Using notations (1), the closed-loop system (12) is rewritten as:
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and the DOFC output ( 14) is rewritten as:
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Control problem definition

Local stability and performance specifications of the closed-loop system (12) will be presented in terms of Lyapunov analysis tools. Our goal is to propose a systematic method to design a DOFC together with its AW compensator of the form (10) such that the closed-loop system satisfies the following properties:

 Property 1 [Regional Quadratic Stability]. For 0,
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 along the trajectory of the closed-loop system for any initial augmented state in the ellipsoid   P . This fact means that, for any   0 ()
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, the corresponding trajectory of the closed-loop system will converge exponentially to the origin with a rate less than 1 /2  .

 Property 2 [State Constraints].

For any initial augmented state in   P and any disturbance signal in W  , the trajectory of the closed-loop system (12) remains in the polyhedral region described by linear inequalities: f Tt 
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Preliminaries

In this section, some important preliminaries results needed for design problem in Section 3 will be presented.

Generalized sector bound condition for input saturation

Given the matrices

2 ux nn i   and 2 12 ux nn ii i GG     , with 1 ux nn i G   , 2 ux nn i G  
, for r i  , we define the polyhedral set u as follows:
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The following lemma is an extended version of Lemma 1 of (Gomes da [START_REF] Gomes Da Silva | Anti-windup design with guaranteed regions of stability: an LMI-based approach[END_REF]. x  , then the following condition is verified:
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are any positive diagonal matrix and 1 ,, r  are scalar functions satisfying the convex sum propriety.

Proof. The proof of this result can be done in the same fashion as the one given in [START_REF] Nguyen | Advanced control design tools for automotive applications[END_REF].

Other preliminary results

Some other results that will be useful in the proof of our main result are recalled below.

Lemma 2. [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF] 
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Remark 1. Note that more performing relaxation result exists in [START_REF] Liu | New approaches to controller designs based on fuzzy observers for T-S fuzzy systems via LMI[END_REF][START_REF] Ariño | Relaxed LMI conditions for closed-loop fuzzy systems with tensor-product structure[END_REF]. However, Lemma 2 constitutes a good tradeoff between complexity and conservatism since it does not require the introduction of auxiliary variables. Lemma 3. [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] The ellipsoid   P is included in the polyhedral set u defined in (18) if and only if:
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where   il ,   il are respectively the th l rows of the matrices i and i .

Lemma 4. [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] The ellipsoid   P is included in the polyhedral set 

Main Results

The theorem below provides LMI conditions to design the DOFC together with its anti-windup strategy of the form (10) which solves the control problem defined in Subsection 2.1.2. ;. 00 
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From ( 27) and ( 39), it follows that:
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Satisfaction of ( 40) ensures the ellipsoid   P is a robustly positively invariant set [START_REF] Blanchini | Set invariance in control[END_REF] with respect to the closed-loop system (15). In additional, since   , it can be found that (29) implies inequality (42). This fact shows that Property 3 holds which completes the proof.

Anti-Windup Based Dynamic Output Feedback Controller Synthesis

The feasibility problem stated in Theorem 1 provides the conditions to design the controller satisfying some predefined requirements in Subsection 2.1.2. In this section, the design method will be formulated as a multi-objective optimization problem. Two objectives are considered: maximization of the disturbance rejection and of the estimated domain of attraction.

In order to obtain a sufficiently large estimated domain of attraction, we can consider, for example, the reference ellipsoid set

2 x n R X  containing the origin:   2 0 : 1 , x n T R cl cl cl X x x P x    (43) 
where 0 0. P  Then, finding the largest ellipsoid   P can be formulated as the following optimization problem:

  ,0 max subject to: .

R P XP     (44) 
It is worth noting that R X defines the directions in which we want to maximize  

P . Condition   R XP   is equivalent to 2 0 PP  
. By Schur complement lemma, this condition is equivalent to, with  

1 2 1 11 , , , ˆˆˆ, , , ,, , , , , min 1 , 
i i i ij i i P X S U V W        (47) 
such that the following LMI conditions hold: 0   , 0   ; LMIs (24)-(29); LMI (46).

The positive weighting factor 01   is chosen according to desired trade-off between the closed-loop performance (characterized by  ) and the size of the domain of attraction   P of the closed-loop system (characterized by  ).

Remark 2. It is important to stress that equation ( 33) has an infinite number of solutions and the choice of matrices 12 P , 12 X is totally irrelevant for closed-loop performance [START_REF] El Ghaoui | Control of rational systems using linear-fractional representations and linear matrix inequalities[END_REF]. As remarked in [START_REF] Dai | Output feedback design for saturated linear plants using deadzone loops[END_REF], up to now this degree of freedom is not yet exploited for the selection of the most desirable controller. However, we have clearly pointed out in (46) that the matrix 12 P can be considered as a slack variable contributing to enlarge the domain of attraction. For matrix inversion property, the condition 12 12 0 T PP  should be added to guarantee that 12 P is nonsingular. Then 12

X is deduced from condition (33). Now, the DOFC with its AW strategy (10) can be computed from (34).

Remark 3. Note that the condition 0 X  is equivalent to x  . This projection is nothing but the ellipsoid   1 11 X  .

Illustrative Examples

In this section, numerical examples are given for illustrating the effectiveness of the proposed method. The implementations are done using the SeDuMi solver and the YALMIP toolbox [START_REF] Lofberg | YALMIP: a toolbox for modeling and optimization in MATLAB[END_REF] with option sdpsettings ('solver','sedumi','shift',1e-4) for the resolution of all LMI problems.

Example 1. Consider the T-S system (2) adapted from Example 1 in [START_REF] Guerra | Non-quadratic local stabilization for continuous-time Takagi-Sugeno models[END_REF] with, 

2 i    :             1 1 2 2 1 2 1 1 1 2
i i i i ab A B A B B B C C D D D x x x x                                                  (48)
The feasibility of ( 48) is checked using the proposed quadratic anti-windup based approach (QAWA) and the nonquadratic approach (NQA) (Theorem 3 in [START_REF] Guerra | Non-quadratic local stabilization for continuous-time Takagi-Sugeno models[END_REF]) for all the 806 points of a 31 by 26 rectangle grid on the

parameter space   , ab ,   20, 25 a  ,   0, 25 b 
. It is noteworthy that in [START_REF] Guerra | Non-quadratic local stabilization for continuous-time Takagi-Sugeno models[END_REF] static state-feedback controller is considered for undisturbed T-S systems and closed-loop performance was not taken into account for the control design. Thus, it is not objective to compare these two approaches since their control contexts are different.

However, checking the feasibility of their conditions provides us an idea about the conservatism of each approach. For this study, the following data are considered: Note also that all considered T-S systems are open-loop unstable. As can be observed in Figure 1, the feasibility space obtained with QAWA is larger than that of NQA for the considered grid. This interesting fact can be explained by the over-conservativeness of the unsaturated control approach in [START_REF] Guerra | Non-quadratic local stabilization for continuous-time Takagi-Sugeno models[END_REF] which is not the case when applying the parameter-dependent sector condition proposed in Lemma 1. Moreover, the degree of relaxation of the NQA depends strongly on the control bound of the system. These serious drawbacks of the NQA are inherently due to the handling of the time-derivative of membership functions involved in the derivation of the design conditions as stated in Section 1.

Note that if closed-loop performance is considered for NQA, the obtained results are expected to be much more conservative [START_REF] Guerra | Non-quadratic local stabilization for continuous-time Takagi-Sugeno models[END_REF] x , it is impossible to obtain a T-S model that is globally equivalent to (49). One solution consists in restricting the range of evolution of variable 2

x , for instance 2 1.5.

x  We also consider an additional constraint on the first state variable, leading to the validity domain

  2 12 : 1.5; 1.5 x x x x    
. The control saturation limit will be taken as: max 1 u  .

On

x , functions f and g are such that: 

        1m 34 in 2 max min max min max min max ; f f f f g g g ff g g g                      ( 
                ( 
T u u w y z i i i u u yw zw ii f g f g A B A B B C C f g f g A B A B D D                                                                    1. zu i D  (53) 
In what follows, it will be shown that the proposed DOFC satisfies all predefined properties stated in Subsection 2.1.2. To that end, let us take 1 0.1   , the reference shape Figure 3 shows that the closed-loop system is stabilized and the disturbance is well attenuated. By means of simulation it can be also checked that the obtained controller provides stable behaviors for all closed-loop trajectories initialized in x and these trajectories remain inside this validity domain. Figure 4 shows the evolution of the performance variable for two designs of the controller. The first design (Case 1) corresponds to the minimization of 2e -gain performance whose solution is given in (55), while in Case 2 this performance is not taken into account in the control design: controller parameters are obtained solving the feasibility LMIs of Theorem 1 without condition (29). From this figure, the interest of the consideration of 2e -gain performance in the control design is clearly confirmed.

Concluding Remarks

In this paper, a novel LMI-based approach has been proposed to design simultaneously a dynamic output feedback controller together with an anti-windup compensator for nonlinear systems under input and state constraints and subject to bounded persistent disturbances. Based on Lyapunov stability theory, conditions for the stability in closed-loop are given, which allows formulating the design of the control as a multi-objective convex optimization problem. In this way, the controller and anti-windup compensator gains can be efficiently computed with semidefinite programming solvers.

By means of examples, the paper has pointed out a very interesting fact, namely, the combination of a generalized sector condition with quadratic Lyapunov approach for input-saturated T-S systems leads to simple and efficient conditions which may be competitive with respect to recent non-quadratic approaches. This is particularly true when the control bounds are not excessively large. It has been also shown that the resulting controller satisfies several predefined closedloop properties. The proposed approach can be applied to a large class of constrained nonlinear systems and the obtained controllers are without real difficulties in terms of implementation for real-time applications.
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  state, the control input, the disturbance, the measured output and the scheduling variable vectors of the system. The regulated output vector represent the set of r local linear subsystems and the nonlinear scalar functions   i  satisfy the convex sum property. For system (2), we consider the following assumptions: Assumption 1. The scheduling variable vector k   is assumed to be a function of all measured signals of interest (states, external disturbances …) with the exception of the control input value . u
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  1, the condition (38) implies that the following condition is verified along the trajectories of the closed-loop system (12):
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   amounts to minimize  . Pre-and post-multiplying condition (45) by on the result of Theorem 1, the following LMI optimization problem solves the control design problem stated in Subsection 2.1.2 while maximizing the disturbance rejection level and the estimated domain of attraction of the system (12):
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 4 Figure 4. Performance variable of Case 1 (solid line) and Case 2 (dashed line)

  Let ij

	 ,   , ij    be symmetric matrices of appropriate dimensions and 1 ,, r rr 
		rr		
	be a family of numbers satisfying the convex sum property. Condition	11 ij    i j ij 	0	is satisfied if:

  .

				Figure1. Feasibility spaces obtained with QAWA (+) and NQA (o)
	Example 2. Consider the following nonlinear open-loop unstable system:
	 0.1 0.1 0.12 0.1 w z x u 1 1 21 2 x x x x w             	  23 2 2 2 1.48 0.16 x x x u   		0.1 w	(49)
	2 y x   	0.2	w		
	Since the two nonlinearities   22 0.1 0.12 2 f xx 	and   22 1.48 0.16 3 x g x 	are unbounded functions of 2

Acknowledgements

This work was developed in the framework of the CERVIFER project and of the International Campus on Safety and Intermodality in Transportation. This project is supported in part by the European Community (through the FEDER European Funds for Regional Development) and the Nord Pas-de-Calais Region. The authors gratefully acknowledge the support of these institutions.