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LMI-based Stability Analysis for Piecewise
Multi-Affine Systems

Anh-Tu Nguyen, Michio Sugeno, Victor Campos, Michel Dambrine

Abstract—This paper provides a computational method to
study the asymptotic stability of piecewise multi-affine systems.
Such systems stem from a class of fuzzy systems with singleton
consequents and can be used to approximate any smooth non-
linear system with arbitrary accuracy. Based on the choice of
piecewise Lyapunov functions, stability conditions are expressed
as a feasibility test of a convex optimization with linear matrix
inequality constraints. The basic idea behind these conditions is
to exploit the parametric expressions of piecewise multi-affine
systems by means of Finsler’s lemma. Numerical examples are
given to point out the effectiveness of the proposed method.

Index Terms—Piecewise multi-affine systems, fuzzy systems,
singleton consequents, piecewise Lyapunov functions, stability
analysis, linear matrix inequalities (LMIs).

I. INTRODUCTION

Fuzzy logic is a powerful tool for the control of complex
systems [1], [2]. The success of fuzzy control systems comes
from their linguistic knowledge representation and their pow-
erful ability to cope with very general nonlinearities [1]. More-
over, experimental results have illustrated their remarkable
robustness properties [3]. Since Mamdani’s pioneering works
[4], various fuzzy systems have been proposed in the literature
which are categorized into three following types according to
the consequent parts of IF-THEN rules [1].
• Mamdani fuzzy systems are with fuzzy variables in

both premises and consequences so that they can be
linguistically understandable [4].

• Mamdani-like fuzzy systems [1] are with singletons in
consequent parts. Here, these fuzzy systems are called
piecewise multi-affine (PMA) systems as explained later.

• For Takagi-Sugeno (T-S) fuzzy systems, the conse-
quences are functions (linear/affine in most cases) of
premise variables. T-S fuzzy modeling has been well
discussed in [5], [6].

Although Mamdani-type systems are the first fuzzy models
used for control purposes and the most meaningful to human
beings, they have still received serious criticisms from the
control community. This fact is mainly due to the lack of
a systematic and rigorous method for studying their stability
issues [1]. Indeed, establishing such a method is expected to
be very hard because of the novelty of the fuzzy mathematics
involved, and the fuzzy language [3]. The situation has been
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greatly improved with T-S fuzzy systems whose key feature
consists in their polytopic structure with linear systems [6],
[7] or affine systems [8], [9] in consequent parts. This feature
allows to extend some linear control concepts to deal with
nonlinear systems [7]. Indeed, tremendous investigations have
been devoted to the studies of T-S systems such that T-S
model-based stability analysis and control design have become
the most popular research platform in model-based fuzzy
control [2]. However, T-S fuzzy systems are not meaningful
to human beings and do not allow for an incorporation of
the qualitative expertise of human operators into the con-
trol design procedure [10]. Notice that until now most of
engineering applications are still based on Mamdani fuzzy
models. In [1], [11], several outstanding features of PMA
systems have been highlighted. First, PMA models can be
straightforwardly obtained from mathematical expression of
a given nonlinear system. They are also easily obtained from
input/output data using the identification method developed in
[12]. Second, these systems can be naturally implemented with
look-up tables which are intensively employed in industry as a
powerful tool for dynamic model approximation and controller
implementation. Third, PMA systems have universal approxi-
mation capability for any smooth nonlinear function. Recently,
this outstanding feature has been effectively exploited in [13]
(respectively in [14]) to identify unknown nonlinear functions
for the design of an adaptive fuzzy backstepping output-
feedback tracking controller of nonlinear systems (respectively
stochastic nonlinear systems). Finally, both state rate vector
and state vector itself of PMA systems can be expressed
in a specific form, called parametric expressions [1]. This
representation of PMA systems allows a simple and efficient
mathematical analysis. Up to now, the simplicity and the
efficiency of analysis are less obvious; however this paper aims
to demonstrate this fact. These advantages make PMA systems
particularly interesting when dealing with nonlinear systems.

Despite these great advantages, only very few theoretical
works regarding PMA systems are available in the literature.
Using the knowledge on the membership functions (MFs),
quadratic approaches for stability analysis of PMA systems
were first presented in [1] with only sufficient conditions and
then improved in [11] with necessary and sufficient conditions.
Sufficient stability conditions regardless of the knowledge
on the MFs were suggested in [10] (respectively [15]) with
quadratic (respectively piecewise quadratic) Lyapunov func-
tions. Although these works offer some guidelines to study
rigorously the stability of PMA systems, it should be stressed
that they suffer two serious drawbacks. First, the proposed
stability conditions are expressed in terms of bilinear matrix
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inequalities which are hardly tractable with available numeri-
cal solvers. Second and more importantly, these conditions are
only applicable to second-order systems. We note that state-
space representation has been exclusively employed to study
the stability of PMA systems in all previous works. However,
such a representation is hard to be obtained for higher order
PMA systems and not convenient for theoretical developments
[1]. Therefore, extensions to high dimensional systems of
existing approaches are not obvious. These drawbacks make
the use of PMA modeling for studying nonlinear systems too
restrictive and, without a doubt, have prevented PMA systems
to be commonly used in control theory. This paper aims
at developing a novel stability framework for PMA systems
which can overcome the aforementioned drawbacks. The main
contributions can be summarized as follows.

1) For the first time in the open literature, the specific
parametric expressions of PMA systems [1] will be
judiciously exploited via Finsler’s lemma [16] to de-
rive the stability conditions. We note that differently
from the state-space representation, these expressions
are straightforwardly obtained for high-order systems.
Therefore, the proposed results can be applied to PMA
systems of any order which is not the case of all previous
works [1], [10], [11], [15].

2) The proposed method relies on the use of a piecewise
Lyapunov function and the S−procedure [17] to take
fully advantage of the information on piecewise state-
space partition associated to PMA systems. This allows
to effectively reduce the conservatism of the results.

3) The proposed stability conditions are strictly expressed
in terms of linear matrix inequalities (LMIs) [17]. Then,
stability analysis of PMA systems amounts to solving
a set of LMIs which can be easily done with available
numerical solvers.

We wish that these outstanding contributions of the proposed
results will contribute to promote the research on PMA sys-
tems to the control community.

Notice that general nonlinear systems can be also approx-
imated by piecewise linear (PL) models [18] with any given
accuracy. However, there are significant differences between
PL and PMA systems. For each piecewise region, PMA
models can be equivalently expressed as a polytope of affine
systems [1] whereas PL model is defined by an affine sys-
tem. Especially, by construction PMA systems are inherently
continuous over piecewise regions and they are structurally
simpler because all piecewise regions are partitioned in the
same fashion, i.e. hyper-rectangle. Therefore, PMA modeling
is more attractive for approximating nonlinear systems since
rectangular grids are easier to work with, especially for large
dimensional systems. Actually, PL modeling has been mostly
used as a powerful tool for a class of hybrid systems [18].
Notice also that piecewise linear differential inclusions have
been used to model an important class of affine Takagi-Sugeno
fuzzy systems in [8], [9], [18].

The paper is organized as follows. The description of PMA
systems and useful preliminaries are presented in Section
II. Section III is devoted to the theoretical developments of

the new stability conditions for PMA systems. Numerical
examples are given in Section IV to illustrate the effectiveness
of the proposed method. Finally, Section V provides some
concluding remarks.
Notation. For an integer number n, Ωn represents the subset
{1, 2, . . . , n}. For a vector x ∈ Rn and i ∈ Ωn, x(i) denotes
the ith entry of x. For a square matrix X , X> denotes its
transpose, and He (X) = X + X>. For a symmetric matrix
X , X > 0 means it is positive definite, and X � 0 denotes
the matrix with all nonnegative entries. We denote In as the
identity matrix of dimension n and 0n×m as the n×m zero
matrix. Throughout the paper, the explicit time-dependence of
the variables is omitted when convenient.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

In this section, the procedure to derive the parametric
expressions of a PMA model from a given dynamical system
is reviewed, see [1] for more details. Then, some useful pre-
liminaries for the theoretical developments are also presented.

A. Description of Piecewise Multi-Affine Systems

Let us consider a system described by the following state-
space representation

ẋ = f (x) (1)

where x ∈ Rn is the state vector and the vector field
f (·) is sufficiently smooth. As common in practice, the state
variables of (1) are assumed to be limited in amplitude for
physical and/or safety reasons, i.e. xi,min ≤ x(i) ≤ xi,max,
i ∈ Ωn, where xi,min and xi,max denote respectively the
minimal and maximal bounds of the ith entry of vector x.
As a consequence, the state vector x belongs to the set
R = [x1,min, x1,max] × . . . × [xn,min, xn,max]. In order to
approximate system (1) by means of PMA modeling, its state
space is partitioned as follows

xj,min = χj,1 < χj,2 < . . . < χj,Nj+1 = xj,max (2)

for j ∈ Ωn. Multi-index notations are used to represent
both elementary regions and vertices of each partition. Let
Kv = ΩN1+1 × . . . × ΩNn+1 be the set of multi-indexes
corresponding to all the vertices induced by the partition
(2) and Kr = ΩN1

× . . . × ΩNn
the set of multi-indexes

corresponding to the regions. For i = (i1, . . . , in) ∈ Kr, the
region [χ1,i1 , χ1,i1+1]× . . .×

[
χn,in , χn,in+1

]
is denoted by

Ri and Ki = {i1, i1 + 1} × . . . × {in, in + 1} is the set of
multi-indexes corresponding to all vertices of Ri. For k ∈ Ki,
χk is the vertex of Ri whose jth component is defined by
χk(j) = χj,kj for j ∈ Ωn. Finally, we denote fk = f (χk).
Using these notations, the PMA model derived from system
(1) valid on R can be expressed as follows

ẋ =
∑
k∈Kv

ηk (x) fk

x =
∑
k∈Kv

ηk (x)χk
(3)
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where ηk (x) =
n∏
j=1

ηj,kj
(
x(j)

)
and the membership functions

ηj,kj
(
x(j)

)
, j ∈ Ωn, kj ∈ ΩNj+1, are defined by

ηj,kj
(
x(j)

)
=


x(j)−χj,kj−1

χj,kj
−χj,kj−1

,
if x(j) ∈

[
χj,kj−1, χj,kj

]
and j ≥ 2

χj,kj+1−x(j)

χj,kj+1−χj,kj
,

if x(j) ∈
[
χj,kj , χj,kj+1

]
and j ≤ Nj

0, otherwise
(4)

On a region Ri, the expressions in (3) can be simplified to
ẋ =

∑
k∈Ki

ηk (x) fk

x =
∑
k∈Ki

ηk (x)χk
(5)

and the membership functions (4) satisfy the following prop-
erties [1]:

ηj,kj
(
x(j)

)
≥ 0,

ij+1∑
kj=ij

ηj,kj
(
x(j)

)
= 1, j ∈ Ωn∑

k∈Ki

ηk (x) = 1
(6)

Note that system (1) can be approximated by PMA model
(3) with arbitrary accuracy on R by increasing the number of
partition points in (2). In this paper, we exclusively focus on
the stability analysis of PMA system (3) for a given state-space
partition. For engineering applications, such a partition is often
carried out with experiments, for example in automotive and
aerospace industries [19].

Remark 1. When n = 2, PMA model (3) with membership
functions (4) corresponds to the parametric expressions pre-
sented in [1]. This model is associated to a class of fuzzy
systems whose rules are defined by singleton consequents.
Here, the term piecewise multi-affine system is originated from
the fact that both x and ẋ in each region Ri can be expressed
on the multi-affine form (5).

Remark 2. The choice of triangular membership functions (4)
for PMA systems seems restrictive since several other types
of MFs are available in the literature. However, this type of
MFs allows conveniently deriving canonical forms, namely
parametric expression and also state-space representation, of
PMA systems [1]. In addition, this is the most employed in
fuzzy control systems and also in practice. The advantages of
triangular MFs are discussed in detail in [20].

The following notations are introduced for convenience:

x̄ =

[
x
1

]
, ˙̄x =

[
ẋ
0

]
, f̄k =

[
fk
0

]
, χ̄k =

[
χk
1

]
Xi =

∑
k∈Ki

ηk (x)χk, X̄i =
∑
k∈Ki

ηk (x) χ̄k

Fi =
∑
k∈Ki

ηk (x) fk, F̄i =
∑
k∈Ki

ηk (x) f̄k

(7)

With the notations defined in (7), system (3) on Ri can be
rewritten on the following compact form:

˙̄x =
∑
k∈Ki

ηk (x) f̄k = F̄i

x̄ =
∑
k∈Ki

ηk (x) χ̄k = X̄i
(8)

For stability analysis, without loss of generality we assume
that the origin x = 0 is the equilibrium of system (3) which
corresponds to the vertex χk0 of the state-space partition, for
a given k0 ∈ Kv . Let KZ be the set of multi-indexes for
regions containing the origin which will be called zero-regions,
and KNZ = Kr\KZ (called non-zero regions). In each zero-
region, every point can be computed by interpolating its 2n−1
vertices (except for the origin). Denoting K∗i = Ki\ {k0}, the
interpolation procedure for zero-regions can be expressed by

ẋ =
∑
k∈K∗

i

ηk (x) fk = F0
i

x =
∑
k∈K∗

i

ηk (x)χk = X0
i

(9)

B. Preliminaries

Since the state space of PMA systems is partitioned into
hyper-rectangle regions, it is natural to consider piecewise
quadratic Lyapunov functions [8] and the S−procedure [17]
for their stability analysis. In this way, the information on
the region structure of PMA systems can be fully exploited
to reduce the conservatism of the results. To this end, let us
construct the following matrices:

L̄i =
[
Li li

]
, M̄i =

[
Mi mi

]
(10)

such that

L̄ix̄ ≥ 0, x ∈ Ri, i ∈ Kr (11)
M̄ix̄ = M̄j x̄, x ∈ Ri ∩Rj , i, j ∈ Kr (12)

where li = 0, and mi = 0, for i ∈ KZ .

Remark 3. Systematic methods to compute L̄i and M̄i are
available in [8], [18]. It is worth remarking that the state-
space partition (2) of PMA systems is structurally simple
with n−rectangular regions, therefore in contrast to [18], the
dimensions of all constraint matrices in (11)-(12) are exactly
known, i.e. Li ∈ R2n×n, L̄i ∈ R2n×(n+1), Mi ∈ RN×n and
M̄i ∈ RN×(n+1) with N =

n∑
i=1

Ni.

We will consider a piecewise quadratic Lyapunov function
parameterized as follows

V (x) =

{
x>Pix, for x ∈ Ri, i ∈ KZ
x̄>P̄ix̄, for x ∈ Ri, i ∈ KNZ

(13)

where {
Pi = M>i TMi, for i ∈ KZ
P̄i = M̄>i TM̄i, for i ∈ KNZ

(14)

Remark 4. All free parameters of the Lyapunov function
V (x) are collected in the symmetric matrix T and the ex-
pression of Pi is linear in T . This allows an LMI formulation
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for the stability analysis of PMA systems. Moreover, since
the piecewise quadratic Lyapunov function (13) combines the
power of quadratic functions near an equilibrium point with
the flexibility of piecewise functions in the large, it can lead
to less conservative results compared to those based on a
common quadratic Lyapunov function. Indeed, the latter can
be regarded as a special case of piecewise quadratic Lyapunov
function (13) by taking Mi = I and Li = 0.

The following lemma will be useful for the theoretical
developments in next section.

Lemma 1 (Finsler’s Lemma [16]). For a vector ξ ∈ Rn
and two matrices Q = Q> ∈ Rn×n, R ∈ Rm×n such that
rank (R) < n, the following statements are equivalent

i) ξ>Qξ < 0, ∀ξ ∈ {ξ ∈ Rn : ξ 6= 0, Rξ = 0m×1}
ii) ∃F ∈ Rn×m such that Q+ FR+R>F> < 0

Lemma 1 can be used to convert checking the sign of a
quadratic form over a subspace into solving an LMI problem.
By this lemma, the parametric expressions in (5) will be
effectively exploited for the stability study.

III. STABILITY ANALYSIS OF PIECEWISE MULTI-AFFINE
SYSTEMS

Hereafter, a novel LMI-based method for studying the
stability of PMA systems is presented. This method relies on
the choice of the piecewise quadratic Lyapunov function (13).
Moreover, the S−procedure [17] is also introduced to take
advantage of the piecewise-region feature of PMA systems via
constraint matrices (11). These facts contribute to reduce the
conservatism inherent to this type of Lyapunov-based method.

Theorem 1 (Piecewise Quadratic Stability for PMA Systems).
Given PMA system (3), assume there exist a symmetric matrix
T ∈ RN×N , symmetric matrices with nonnegative entries
Ui ∈ R2n×2n and Wi ∈ R2n×2n (for i ∈ Kr), matrices
Y1i ∈ Rn×n, Y2i ∈ R1×n (for i ∈ KZ), Ȳ1i ∈ R(n+1)×(n+1)

and Ȳ2i ∈ R1×(n+1) (for i ∈ KNZ) satisfying the following
linear matrix inequalities:

Pi − L>i UiLi > 0, i ∈ KZ (15)

He

([
Y1i + L>i WiLi/2 −Y1iχk + Pifk

Y2i −Y2iχk

])
< 0,

i ∈ KZ , k ∈ K∗i
(16)

P̄i − L̄>i UiL̄i > 0, i ∈ KNZ (17)

He

([
Ȳ1i + L̄>i WiL̄i/2 −Ȳ1iχ̄k + P̄if̄k

Ȳ2i −Ȳ2iχ̄k

])
< 0,

i ∈ KNZ , k ∈ Ki
(18)

where Pi and P̄i are defined in (14). Then, the equilibrium
x = 0 of PMA system (3) is asymptotically stable. In addition,
the piecewise-quadratic function (13) is a Lyapunov function
of this system.

Proof. Consider the piecewise function (13) which can be
rewritten in a more compact form

V (x) = x̄>P̄ix̄, x ∈ Ri, i ∈ Kr (19)

The construction of the constraint matrices L̄i in (11) and the
satisfaction of conditions (15) and (17) imply that there exist
positive real numbers α and β such that [8]

α|x|2 ≤ V (x) ≤ β|x|2, x ∈ R (20)

Now, we will first consider the non-zero regions, i.e. x ∈ Ri,
for i ∈ KNZ . To derive the stability conditions, the time-
derivative of V (x) along the solution of system (8) is required
to be negative definite, i.e.

V̇ (x) = ˙̄x>P̄ix̄+ x̄>P̄i ˙̄x < 0.

From the expression of ˙̄x in (8), this inequality can be rewritten
as follows

V̇ (x) =

[
x̄
1

]> [
0 P̄iF̄i
∗ 0

] [
x̄
1

]
< 0 (21)

Let Q̄i =

[
L̄>i WiL̄i P̄iF̄i
∗ 0

]
and F̄i =

[
In+1 −X̄i

]
. Since

Wi � 0 and by the construction of L̄i in (11), the condition[
x̄
1

]>
Q̄i
[
x̄
1

]
< 0, x ∈ Ri, i ∈ KNZ (22)

implies obviously (21). Moreover, from (8) it follows that

F̄i
[
x̄
1

]
= 0, x ∈ Ri, i ∈ KNZ (23)

By Finsler’s lemma, inequality (22) holds under condition (23)
if there exist matrices M̄i such that

Q̄i + M̄iF̄i + F̄>i M̄>i < 0, i ∈ KNZ (24)

Let us partition M̄i =

[
Ȳ1i
Ȳ2i

]
, then condition (24) can be

rewritten in the form

He

([
Ȳ1i + L̄>i WiL̄i/2 −Ȳ1iX̄i + P̄iF̄i

Ȳ2i −Ȳ2iX̄i

])
< 0, i ∈ KNZ

(25)

By the convexity property (6), if condition (18) is verified, then
(25) holds as well. In other words, condition (18) implies that
V̇ (x) < 0 for all x in non-zero regions.

The proof for zero-regions will slightly differ to that of
non-zero regions since the parametric expressions given in (9)
do not correspond to convex combinations. This issue can be
addressed via some special changes of variables as follows.
Let x ∈ Ri\{0} for i ∈ KZ , and α (x) =

∑
k∈K∗

i

ηk (x). Since

x 6= 0 and α (x) = 1 − ηk0 (x), it follows that α (x) > 0.
Denoting

x∗ = x/α (x), x̄∗ =
[
x∗> 1

]>
, η∗k (x) = ηk (x)/α (x),

F∗i =
∑
k∈K∗

i

η∗k (x) fk, X∗i =
∑
k∈K∗

i

η∗k (x)χk.

By the convexity property (6), inequality (16) implies clearly
that

He

([
Y1i + L>i WiLi/2 −Y1iX∗i + PiF∗i

Y2i −Y2iX∗i

])
< 0, i ∈ KZ

(26)
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which can be also represented in the following form:

Qi +MiFi + F>i M>i < 0, i ∈ KZ (27)

with

Qi =

[
L>i WiLi PiF∗i
F∗>i Pi 0

]
, Fi =

[
In −X∗i

]
, Mi =

[
Y1i
Y2i

]
.

We note that Fix̄∗ = 0. From this latter and inequality (27),
applying again Finsler’s lemma it follows that

x̄∗>Qix̄∗ < 0, x ∈ Ri\{0}, i ∈ KZ (28)

Remarking that

α2 (x) x̄∗>Qix̄∗ = V̇ (x) + x>L>i WiLix (29)

for x ∈ Ri\{0}, i ∈ KZ . Since Wi � 0, it is easily deduced
from (28)-(29) that V̇ (x) < 0 for all x in zero-regions, x 6= 0.
This completes the proof of Theorem 1.

The stability conditions in Theorem 1 are expressed in strict
LMIs. The terms involving the matrices Ui, Wi, i ∈ Kr, are
related to the S−procedure to reduce the conservatism of those
inequalities.

Remark 5. It has been proved in [1] that the parametric
expression x =

∑
k∈Ki

ηk (x)χk in (3) is strictly equivalent to

the membership functions (4). For the results of Theorem 1,
we fully exploit this expression of x to derive the stability
conditions. This fact means that the knowledge on the MFs of
PMA systems is taken into account in the stability analysis to
reduce the conservatism of the proposed method.

Remark 6. A natural question arises is whether conditions
of Theorem 1 imply the stability of the original system (1).
In fact, if the approximation errors between the system (1)
and PMA model (3) can be characterized, then it could be
possible to take these errors into account in the analysis so
that the successful analysis of PMA model (3) guarantees the
stability of system (1). This error characterization is left for
future study. By now, it is worth noting that a fine repartition of
a PMA model decreases the approximation error and increases
the flexibility of the piecewise Lyapunov function (13), but
leads to additional LMI conditions to be solved. Thus, there
is a trade-off between computational effort and precision in
the stability analysis problem.

Remark 7. It is noteworthy that the computational cost of
an LMI optimization problem can be estimated as being
proportional to N 3

varNrow, where Nvar is the total number of
scalar decision variables and Nrow the total row size of the
LMIs [17]. In the case of Theorem 1, one has

Nrow = 2n[(2n+ 1)(2n − 1) + (2n+ 3)(Nr − 2n)]

Nvar = N(N + 1)/2 + (5n2 + 5n+ 2)Nr − (2n+ 2)2n

where N =

n∑
i=1

Ni and Nr =

n∏
i=1

Ni.

IV. NUMERICAL EXAMPLES

We will demonstrate the effectiveness of the proposed
method through three examples. All computations are done in
Matlab R2013b with YALMIP toolbox and MOSEK solver.

Example 1. Consider the following nonlinear pendulum sys-
tem with friction: {

ẋ1 = x2

ẋ2 = −g
l

sinx1 − bx2
(30)

where x1 is the pendulum angle, x2 is its angular velocity,
g = 9.87 is the gravity acceleration, l = 4 is the length of
the pendulum and b = 0.5 is the friction coefficient. Let us
construct the PMA model (3) of system (30) from 121 points
of a 11 by 11 rectangular grid on the state-space (x1, x2):R =
[−3.1, 3.1]× [−3.1, 3.1]. The stability conditions in Theorem
1 are feasible in this case and the corresponding Lyapunov
function is depicted in Figure 1 (a). Thus, the local asymptotic
stability of the considered PMA system can be proved. Some
simulated trajectories of system (30) and the estimated domain
of attraction of the equilibrium x = 0 of its PMA model are
plotted in Figure 1 (b). All decision matrices obtained from
Theorem 1 for this example are not shown here for brevity.

Example 2. Consider the following family of nonlinear sys-
tems taken from [21]:

ẋ =

2∑
i=1

2∑
j=1

η1i (x) η2j (x)Aijx (31)

where i = 1, 2 and

η1i (xi) =

 (1− sin (xi))/2, |xi| ≤ π/2
0, xi > π/2
1, xi < −π/2

η2i (xi) = 1− η1i (xi) .

The system matrices in (31) are given by

A11 =

[
−5 −4
−1 a

]
, A12 =

[
−4 −4

(3b− 2)/5 (3a− 4)/5

]
A21 =

[
−3 −4

(2b− 3)/5 (2a− 6)/5

]
, A22 =

[
−2 −4
b −2

]
for given constant parameters a and b. This example aims at
studying the conservatism of the proposed method. To this
end, the stability of system (31) for different parameter pairs
(a, b) will be studied via three approaches:

1) PMA approximation approach with the conditions in
Theorem 1,

2) Approximate T-S representation approach with the con-
ditions in [8],

3) Exact T-S representation approach with recent contribu-
tions in [21], [22].

Notice that at the present stage of progress, the feasibility
of the conditions in Theorem 1 does not directly imply the
stability of (31), see Remark 6. However, the comparison
carried out within this example provides an idea on the
conservatism of the proposed method. Moreover, the PMA
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Fig. 1. (a) Lyapunov function obtained with the PMA model of system (30); (b) Estimate of the domain of attraction for equilibrium x = 0 of PMA model
and simulated trajectories of nonlinear system (30).

models of (31) will be constructed with very high number of
piecewise regions such that they are tightly closed.

Now, the PMA approximation of (31) is constructed from
961 points of a 31 by 31 rectangular grid on the state-
space (x1, x2): R = [−1.5, 1.5] × [−1.5, 1.5] resulting in
900 piecewise regions. Therefore, for comparison purposes
the approximate T-S fuzzy model used with the stability
conditions in [8] has been constructed with 900 membership
functions, corresponding to the number of regions of the PMA
approximation.

Using Theorem 1, the asymptotic stability of PMA model is
checked for different parameter pairs (a, b). For illustration, in
Figure 2 circles correspond to pairs (a, b) for which stability
conditions of Theorem 1 are satisfied whereas the grey area
corresponds to feasibility space of parameters (a, b) obtained
through Theorem 1 in [22] assuming that

∣∣∣ḣij (x)
∣∣∣ ≤ 0.85,

with hij (x) = η1i (x) η2j (x), ∀ (i, j) ∈ Ω2. We note that
the method in [22] is based on multiple Lyapunov func-
tions and less conservative than those of Theorem 3 in [21]
(which is based on line-integral Lyapunov function). It is
observed from Figure 2 that the proposed method allows
proving (approximately) the stability of system (31) for a
larger parameter domain. Notice that the stability conditions
given in [8] provide the same (a, b) parameter stability domain
as those of Theorem 1. Therefore, in order to compare the
conservativeness of these results, we have searched for the
largest values of b, denoted by b∗, for which the stability
conditions are still feasible for two cases a = 0 and a = −2.
The obtained results are presented in Table I.

Remark 8. Notice that one of the drawbacks of Takagi-
Sugeno fuzzy modeling is the lack of a systematic proce-
dure for selecting, among the infinite possibilities, a single
parametrization for f (x) in (1) (in the form of ẋ = A (θ (t))x
where θ (t) is premise vector) which achieves stability. The
use of PMA approximation approach allows overcoming this
major drawback.

−12 −10 −8 −6 −4 −2 0
0

50

100

150

200

250

300

350

400

a

b

Fig. 2. Parameter stability domain obtained with Theorem 1 (circles) and
Theorem 1 in [22] (grey area).

TABLE I
VALUES OF b∗ OBTAINED IN EXAMPLE 2 FOR DIFFERENT APPROACHES

Conditions a = 0 a = −2
Theorem 1 in [8] b∗ = 2681 b∗ = 4534

Theorem 1 b∗ > 20000 b∗ > 20000

Taking a = 0, b = 0 as a particular case, neither [21]
nor [22] are capable of proving the stability of system (31).
Figure 3 (a) depicts the phase plane of system (31) and the
level curves of the Lyapunov function obtained with Theorem
1. The corresponding estimate of the domain of attraction and
some simulated trajectories of are depicted in Figure 3 (b). It
is important to note that all simulations in Figure 3 are done
with the original system (31).
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Fig. 3. (a) Phase plane of system (31) for a = 0, b = 0 and level curves associated to the obtained Lyapunov function; (b) Estimate of the domain of
attraction of PMA model and some simulated trajectories of system (31).

Example 3. Consider an electric circuit represented by the
following Hopfield artificial neural network model [23]:

ẋi =
λ

Ci

1

1 + tan2
(
πxi

2Vm

)
 3∑
j=1

Tijxj −
2Vm
λπRi

tan

(
πxi
2Vm

)
(32)

where the state variables xi, i ∈ Ω3, are the voltages at the
amplifier outputs. These voltages can only take values in the
set S =

{
x ∈ R3 : −Vm < xi < Vm

}
. The system data are

given as follows C1 = 3.3µF, C2 = 1.5µF, C3 = 5.6µF,
R1 = 1.0kΩ, R2 = 3.3kΩ, R3 = 1.2kΩ, λ = 7.0 × 10−2,
Vm = 5V and

Tij = 10−3 ×

1 2 1
2 2 3
1 3 3

 .
The physically motivated system (32) is used to illustrate
the outstanding feature of the proposed method in terms of
dealing with complex nonlinearities. We note also that existing
results in [1], [10], [11], [15] can not be applied to this three-
dimensional system.

Let us construct the PMA model (3) of system (32) from
1331 points of a 11 × 11 × 11 hyper-rectangular grid on the
state-space (x1, x2, x3): R = [−4.99, 4.99]× [−4.99, 4.99]×
[−4.99, 4.99]. The stability conditions in Theorem 1 are
feasible in this case and we are able to find a piecewise
Lyapunov function proving the local asymptotic stability of
the considered PMA model. Some simulated trajectories of
system (32) are depicted in Figure 4 (a) and the time evolution
of the Lyapunov function for these same trajectories are given
in Figure 4 (b). All decision matrices obtained from Theorem
1 for this example are not shown here for brevity.

V. CONCLUDING REMARKS

Based on the use of piecewise quadratic Lyapunov func-
tions, a constructive method for stability analysis of PMA
systems has been proposed. By exploiting the parametric
expressions of PMA systems, stability conditions are derived
and expressed in terms of LMIs efficiently solvable with
numerical solvers. Moreover, the proposed method is able to
deal with PMA systems of any order. The effectiveness of the
method is clearly demonstrated via numerical examples.

Despite many outstanding contributions of the proposed
method, there still remain some challenging issues which
will be the focus of future works. The first topic consists
in considering, in the stability analysis, the modeling error
between the original system and its PMA model. To this end,
PMA model-based methods can be directly employed to study
general nonlinear systems. Second, Lyapunov-based control
design for PMA systems is another important research topic
for future investigation.
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