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Abstract

This paper addresses the static output feedback (SOF) control problem of Takagi-
Sugeno fuzzy systems subject to both control input and state constraints. A new
parameter-dependent sector condition is proposed to deal with the input saturation
in SOF control context. Based on a judicious use of Finsler’s lemma in fuzzy Lya-
punov control framework, new design conditions guaranteeing the existence of a
stabilizing controller are recast as an LMI-based optimization with additional slack
variables. These extra variables offer more flexibility to reduce the design conser-
vatism. In particular, the proposed method requires neither special constraints on
the state-space system matrices nor linear matrix equalities, which are hard to be
satisfied. Several numerical examples are given to demonstrate the interests of the
new control method.

Keywords: Takagi-Sugeno fuzzy systems, static output feedback control, actuator
saturation, delayed fuzzy Lyapunov functions, domain of attraction, linear matrix
inequality (LMI).

1. Introduction

Over the past two decades, nonlinear control based on Takagi-Sugeno (T-S)
fuzzy systems [1] has been extensively studied [2]. The success of T-S fuzzy
models comes from their outstanding capacity to approximate any smooth non-
linear system with any preciseness [3]. Especially, if the system nonlinearities are
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bounded in a compact set, the sector nonlinearity approach [3] provides a system-
atic way to derive an equivalent T-S fuzzy representation of the original nonlinear
system. As a consequence, a great number of results on stability analysis and con-
trol design of T-S fuzzy systems have been reported in the literature [4–8]. In ad-
dition, T-S fuzzy-model-based control techniques have been successfully applied
to various engineering applications [2, 3, 9]. It is noteworthy that most of T-S
fuzzy control methods are based on state feedback control schemes [2]. However,
for numerous real-time applications, output feedback control must be used since
only partial state information is accessible for control design and implementation
[10, 11]. Note also that state-feedback based methods are not easily adapted to out-
put control designs which are more difficult and involved [12]. For these reasons,
output feedback control has recently received intensive research efforts [11, 13].

Among all output feedback schemes, static output feedback (SOF) represents
the simplest control structure. Note that the design of dynamic controllers can be
reformulated as a SOF control problem involving augmented plants in many cases
[14]. Despite its practical and theoretical importance, SOF control is still one of
the most challenging control topics due to its inherent non-convex characterization
[11, 15–17]. Moreover, existing convex SOF design methods are often too restric-
tive [15, 18]. Up to now, various approaches dealing with SOF control have been
proposed which can be classified into two research directions. The first one fo-
cuses on developing numerical algorithms to solve non-convex design conditions
[19–21]. The second direction consists in getting new sufficient convex conditions
as less conservative/restrictive as possible that can be effectively solved with cur-
rent numerical solvers [15–17, 22]. In this case, some notable works dealing with
linear systems can be cited as follows. A state coordinate transformation approach
has been proposed in [17] for linear polytopic uncertain systems. Parameter inde-
pendent slack variables with a lower-triangular structure have been introduced in
[18, 23] while a linear parameter dependent Lyapunov function has been employed
in [22]. In T-S fuzzy control framework, a special structure of the quadratic Lya-
punov matrix together with a coordinate transformation have been used in [24].
Based on the P-problem and W-problem given in [25], quadratic design conditions
involving linear matrix equalities are presented in [10, 16, 26]. Recently, to re-
duce the design conservatism, piecewise quadratic conditions have been proposed
in [11] and [27] for T-S fuzzy affine systems and networked T-S fuzzy systems,
respectively. Fuzzy Lyapunov functions in conjunction with some convexification
techniques have been also exploited in [15].

Actuator saturation is another important control issue [4, 28–30]. This topic
is motivated by the facts that control input saturation is ubiquitous in practice, es-
pecially for applications requiring a high performance level. The effects of input
saturation on the system dynamics may be critical since it can seriously degrade
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the control performance, and in some cases may lead to system instability [28]. Al-
though numerous methods are now available to handle saturation effects, most of
them have only dealt with linear systems [28]. It should be stressed that this practi-
cal control issue has not been completely addressed for T-S fuzzy systems [29, 30];
especially in output feedback control framework [12]. Note that besides the control
input limitations, the system states are also usually bounded in engineering appli-
cations due to physical and/or safety reasons. Specifically, the validity domain of
T-S fuzzy models obtained with the sector nonlinearity approach can be described
by state constraints [29]. Hence, an explicit consideration of state constraints in the
control design is crucial to guarantee the closed-loop stability [4, 29].

Motivated by the practical and theoretical significance of both SOF scheme and
constrained T-S fuzzy systems, this paper aims to develop a new input-saturated
SOF formulation using LMI framework [31]. The contributions of the proposed
method can be summarized as follows.

1. The new method requires neither special structure of Lyapunov matrices as
in [24] nor additional linear matrix equalities, which are hard to be satisfied,
as in [10, 16, 25, 26]. In particular, this method can handle T-S fuzzy systems
with multiple output matrices of subsystems. Moreover, these matrices are
not explicitly required to be of full row rank as in most of existing works
[10, 20–22, 24, 26]. Hence, the proposed method can not only lead to less
conservative results but also be applied to a larger class of T-S fuzzy systems.

2. A new parameter-dependent sector condition is proposed to deal with the
input nonlinearity. This sector condition is especially appropriate for the
considered SOF scheme. Together with a judicious use of Finsler’s lemma,
this allows for an LMI-based formulation.

3. A delayed fuzzy Lyapunov function (FLF) is exploited to derive the design
conditions. This type of FLFs offers more flexibility to decrease the conser-
vatism of the results via slack variables [32].

To the best of our knowledge, the proposed results on SOF design for con-
strained T-S fuzzy systems using fuzzy Lyapunov control framework have been
not observed in any previous work. Furthermore, it will be shown through sev-
eral examples that the new method provides less conservative results compared to
recent related works dealing with unconstrained T-S fuzzy systems, i.e. systems
without control input and/or state constraints. The paper is organized as follows.
The control problem and preliminary results are presented in Section 2. The main
results are stated in Section 3. The interests of the proposed method are illustrated
via numerical examples in Section 4. Finally, Section 5 concludes the paper.

Notations. Ωr denotes the set {1, 2, . . . , r}. For a vector x, xi denotes its ith el-
ement. For a matrix X , X > 0 means X is positive definite, X(i) (respectively
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X(i,j)) denotes its ith row (respectively its element in the ith row and jth column)
and He (X) = X + X>. I denotes the identity matrix of appropriate dimension.
Denote Ξ = {ξ ∈ Rr :

∑r
i=1 ξi = 1, ξi ≥ 0}. For a function η : R 7→ Ξ and ma-

trices Xi, Yij , Zijk of appropriate dimensions, we denote Xη =
∑r

i=1 ηi(t)Xi,
Xηd =

∑r
i=1 ηi(t− 1)Xi, Yηdη =

∑r
k=1

∑r
j=1 ηk(t − 1)ηj(t)Ykj , Zηdηη =∑r

k=1

∑r
j=1

∑r
i=1 ηk(t − 1)ηj(t)ηi(t)Zkji. We assume that z (−1) = z (0) for

any variable of interest z (t). Arguments will be omitted when their meaning is
straightforward.

2. Problem Formulation and Preliminaries

2.1. System Description

Consider the following T-S fuzzy system with control input saturation:

x(t+ 1) =
r∑
i=1

ηi(t)(Aix(t) +Bi sat(u(t)))

y(t) =
r∑
i=1

ηi(t)Cix(t)
(1)

where x(t) ∈ Px ⊂ Rnx is the state, u(t) ∈ Rnu is the control input, y(t) ∈ Rny

is the measured output. The real matrices of adequate dimensions Ai, Bi, Ci are
constant. The following assumptions are considered in this paper.

Assumption 1. The domain of validity Px of system (1) is described by the poly-
hedral set

Px =
{
x ∈ Rnx : M(m)x ≤ 1, m ∈ Ωq

}
(2)

where the matrix M ∈ Rq×nx is given.

Assumption 2. The scalar membership functions (MFs) ηi(t) in (1), for i ∈ Ωr,
are functions of measurable signals of interest such as system output, measured
external disturbances and/or time. It is also assumed that the sector nonlinearity
approach [3] is used to derive an exact T-S fuzzy representation (1) of a given
nonlinear system, then η ∈ Ξ as long as x ∈ Px.

Assumption 3. The control input u(t) is subject to a componentwise saturation
map whose lth component is defined as sat(ul) = sign(ul) min(|ul|, ūl), l ∈ Ωnu ,
where ūl > 0 denotes the amplitude bound of the lth control input.
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In order to motivate the above assumptions, we consider the following example.
Motivating Example. Consider the nonlinear system borrowed from [15]:

x1(t+ 1) = −x2(t)x3(t)− x3(t) + u1(t)
x2(t+ 1) = x1(t)
x3(t+ 1) = x2(t) + u2(t)

y(t) =
[
(2 + x3(t))x2(t) x3(t)

]> (3)

where −1 ≤ x3 ≤ 1. From (3), x3 can be naturally chosen as the premise variable
which is a component of the measured output y. Using the sector nonlinearity
approach [3], the nonlinear system (3) can be exactly represented in the form (1)
for x ∈ Px =

{
x ∈ R3 : |x3| ≤ 1

}
. It should be stressed that, although |x3| ≤ 1

is the primary condition to obtain such a T-S fuzzy representation, this was not
explicitly taken into account in [15] and other related works. Moreover, we also
consider the limitations of the control inputs, i.e. |u1| ≤ 0.5 and |u2| ≤ 0.5. As
will be shown in Section 4, an explicit consideration of these system constraints
in the control design can increase significantly the performance of the closed-loop
system, for instance in terms of the size of the guaranteed domain of attraction.

2.2. Control Problem
Let us consider a static output feedback controller of the form

u(t) = H−1ηdηKηdηy(t) (4)

where the matrices Hkj ∈ Rnu×nu and Kkj ∈ Rnu×ny , for k, j ∈ Ωr, have to
be designed. For initializing the controller, we consider that ηd(0) = η(0). Note
that at each time instant, the computation of the current control input requires the
inversion of the matrix Hηdη. From (1) and (4), the closed-loop T-S fuzzy system
can be rewritten as follows:

x(t+ 1) =
(
Aη +BηH

−1
ηdη
KηdηCη

)
x(t)−Bηψ(u(t))

y(t) = Cηx(t) (5)

where the dead-zone nonlinearity is defined as ψ(u) = u− sat(u).
This paper aims to propose a constructive LMI-based control method to design

a SOF control law (4) such that the closed-loop system (5) satisfies the following
properties.

• Property 1. Given a matrix M ∈ Rq×nx , see (2). There exist positive defi-
nite matrices Pi ∈ Rnx×nx , i ∈ Ωr, such that, for any initial state x0 taken in
a set E0 depending on those matrices and specified later, the corresponding
closed-loop trajectory of (5) remains inside the set Px.
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• Property 2. The set E0 is included in the domain of attraction of the closed-
loop system (5), namely any closed-loop trajectory starting from E0 con-
verges to the origin.

2.3. Preliminary Results
We present hereafter some useful lemmas for the design procedure.

Lemma 1. Given diagonal positive definite matrices Sijk ∈ Rnu×nu , matrices
Uijk ∈ Rnu×nx for i, j, k ∈ Ωr, two vectors ξ, η ∈ Ξ, and a vector x ∈ Rnx . If x
satisfies ∣∣∣∣(S−1ξηηUξηη)(l) x

∣∣∣∣ ≤ ūl, ∀l ∈ Ωnu , (6)

then

ψ(u)>Sξηη

[
u− ψ(u)− S−1ξηηUξηηx

]
≥ 0, (7)

for any u ∈ Rnu .

Proof. Note that the left-hand term of (7) is equal to
nu∑
l=1

Sξη η(l,l)

[(
ul − sat(ul)

)(
sat(ul)− (S−1ξηηUξηη)(l)x

)]
.

Since Sξη η(l,l) > 0, then it suffices to show that(
ul − sat(ul)

)(
sat(ul)− (S−1ξηηUξηη)(l)x

)
≥ 0. (8)

This is obvious if |ul| ≤ ūl since then ul − sat(ul) = 0. Inequality (8) holds also
if ul > ūl, since then ul − sat(ul) > 0, and from (6)

sat(ul)−
(
S−1ξηηUξηη

)
(l)
x = ūl −

(
S−1ξηηUξηη

)
(l)
x ≥ 0.

The last possible case ul < −ūl can be treated similarly.

Remark 1. Lemma 1 presents a powerful tool to deal with the dead-zone non-
linearity ψ (u). It is motivated by the results on the generalized sector condition
in [33]. However, since the feedback gain matrices Hkji, Kkji are not explicitly
involved in (6) and (7), this new version is especially appropriate for the SOF con-
trol context. Indeed, it seems hard to obtain an LMI formulation by applying the
sector condition in [33] to the considered SOF control problem. As will be seen,
this aims for a direct computation of the control gains without using any change of
variable. Hence, all feedback gains are parameter-dependent (i.e. Hηdη and Kηdη)
to improve the closed-loop performance and to reduce the design conservatism.
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Lemma 2 (Finsler’s Lemma [34]). For two matrices Q = Q> ∈ Rn×n and R ∈
Rm×n such that rank (R) < n, the following statements are equivalent:

i) x>Qx < 0, ∀x ∈ {ξ ∈ Rn : ξ 6= 0, Rξ = 0m×1} ,
ii) ∃F ∈ Rn×m such that Q+ FR+R>F> < 0.

Lemma 3. Let Υkji, for i, j, k ∈ Ωr, be symmetric matrices of appropriate dimen-

sions. The condition
r∑

k=1

r∑
j=1

r∑
i=1

ξkηjηiΥkji < 0 holds for ξ, η ∈ Ξ if


Υkii < 0, i, k ∈ Ωr

2

r − 1
Υkii + Υkij + Υkji < 0, i, j, k ∈ Ωr and j > i

This result is directly extended from [35]. The relaxation techniques in [10, 36]
are also applicable to obtain less conservative results at the price of an increasing
computational complexity.

3. Static Output Control of Constrained T-S Fuzzy Systems

A new LMI-based method to design a SOF controller for the T-S fuzzy system
(1) is presented. To obtain less conservative results, a delayed fuzzy Lyapunov
function is exploited for theoretical developments.

Theorem 1. Given a T-S fuzzy system (1) with its domain of validity Px described
by (2). If there exist a scalar α, positive definite matrices Pi ∈ Rnx×nx , positive
diagonal matrices Skij ∈ Rnu×nu , and matrices Hkj ∈ Rnu×nu , Ukij ∈ Rnu×nx ,
Kkj ∈ Rnu×ny , G1kj ∈ Rnx×nx , G2kj ∈ Rnx×nx , G3kj ∈ Rnu×nx , G4kj ∈
Rnu×nx , for i, j, k ∈ Ωr, such that[

Pk U>kji(l)
Ukji(l) αū2l (2Skji(l,l) − α)

]
≥ 0, i, j, k ∈ Ωr, l ∈ Ωnu (9)[

Pi M>(m)

M(m) 1

]
≥ 0, i ∈ Ωr, m ∈ Ωq (10)

Hkj +H>kj > 0, k, j ∈ Ωr (11)
Ψkii < 0, i, k ∈ Ωr

2

r − 1
Ψkii + Ψkij + Ψkji < 0, i, j, k ∈ Ωr with j > i

(12)

7



where the quantity Ψkji is defined as follows:

Ψkji = He


Ψkji(1,1) −G1kj Ψkji(3,1) −G1kjBi
Ψkji(1,2) Pj/2−G2kj Ψkji(3,2) −G2kjBi
Ψkji(1,3) −G3kj Ψkji(3,3) Skji −G3kjBi
Ψkji(1,4) −G4kj Ψkji(3,4) −Skji −G4kjBi

 (13)

with Ψkji(1,1) = G1kjAi − Pk/2, Ψkji(1,2) = G2kjAi + JiKkjCi, Ψkji(1,3) =
G3kjAi +αKkjCi, Ψkji(1,4) = −Ukji +G4kjAi, Ψkji(3,1) = G1kjBi, Ψkji(3,2) =
G2kjBi − JiHkj , Ψkji(3,3) = G3kjBi − αHkj , Ψkji(3,4) = G4kjBi and

Ji =

{
Bi, Bi is column non-full rank
Bi
(
B>i Bi

)−1
, Bi is column full rank

Then, the SOF controller (4) solves the control problem defined in Section 2.

Proof. Consider the following delayed fuzzy Lyapunov function:

V(t, x) = x>

(
r∑
i=1

ηi(t− 1)Pi

)
x = x>Pηdx, (14)

and let Ex be the set defined as

Ex =

{
x ∈ Rnx :

r∑
i=1

ηix
>Pix ≤ 1 for some η ∈ Ξ

}
.

Step 1). We show that the SOF control law (4) is well defined. Indeed, for any ξ,

η ∈ Ξ, it follows from (11) that
r∑

k=1

r∑
j=1

ξkηj(Hkj +H>kj) > 0. This guarantees the

nonsingularity of Hηdη at any time t.

Step 2). The set Ex is contained in the set Px described by (2).
By convexity and applying Schur complement lemma [31] to (10), it follows that

Pξ −M>(m)M(m) ≥ 0, ∀ξ ∈ Ξ, ∀m ∈ Ωq.

This guarantees the inclusion Ex ⊆ Px.

Step 3). Given any t > 0 and any x ∈ Rnx . If V(t, x) ≤ 1, then
i) x is in Px, and
ii) the following inequality holds:∣∣∣(S−1ηdηηUηdηη)(l) x∣∣∣ ≤ ūl, l ∈ Ωnu . (15)
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For point i), as x>Pηdx ≤ 1, then x ∈ Ex. Thus, x ∈ Px according to Step 2.
For point ii), since (β−α)2 ≥ 0, it follows that β2 ≥ α(2β−α) for any α, β ∈ R.
Using this inequality with β = Skji(l,l), it can be deduced from (9) that[

Pk U>kji(l)
Ukji(l) ū2l S

2
kji(l,l)

]
≥ 0, ∀i, j, k ∈ Ωr, ∀l ∈ Ωnu . (16)

By convexity and Schur complement lemma, (16) implies that

ū2l Pηd − 1/S2
ηdηη(l,l)

U>ηdηη(l)Uηdηη(l) ≥ 0, ∀l ∈ Ωnu . (17)

Since x ∈ Ex, it follows from (17) that

ū2l ≥ ū2l x>Pηdx ≥ 1/S2
ηdηη(l,l)

x>U>ηdηη(l)Uηdηη(l)x, ∀l ∈ Ωnu ,

from which (15) can be easily derived.

Step 4). We prove that, for any given t > 0 and x ∈ Rnx such that V(t, x) ≤ 1
and x 6= 0, the variation ∆V of the Lyapunov function (14) along the solution of
(5) is negative, that is

∆V = V(t+ 1, x(t+ 1))− V(t, x)

= x(t+ 1)>Pηx(t+ 1)− x>Pηdx < 0.

To this end, we remark that the matrix Ψηdηη based on the matrices Ψkji defined
in (13) can be rewritten in the form

Ψηdηη = Qηdηη + FηdηηR(ηd, η) +R(ηd, η)>F>ηdηη,

where

Qηdηη =


−Pηd 0 0 −U>ηdηη

0 Pη 0 0
0 0 0 Sηdηη

−Uηdηη 0 Sηdηη −2Sηdηη

 , Fηdηη =


G1ηdη 0
G2ηdη JηHηdη

G3ηdη αHηdη

G4ηdη 0

 ,
R(ηd, η) =

[
Aη −I Bη −Bη

H−1ηdηKηdηCη 0 −I 0

]
.

From (12) and Lemma 3, it follows that

Ψηdηη < 0. (18)
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Denoting ξ(t) =
[
x> x(t+ 1)> u> ψ(u)>

]>, it is easy to show that

∆V + He
(
ψ(u)>Sηdηη

[
u− ψ(u)− S−1ηdηηUηdηηx

])
= ξ(t)>Qηdηηξ(t).(19)

Moreover, ξ(t) satisfies the equalityR(ηd, η)ξ(t) = 0, which is simply a reformu-
lation of the closed-loop system equations (4) and (5). Applying Lemma 2, we can
prove that (18) implies

ξ(t)>Qηdηηξ(t) < 0. (20)

Finally, since x satisfies (15) as shown in Step 3, applying Lemma 1 leads to

ψ(u)>Sηdηη
[
u− ψ(u)− S−1ηdηηUηdηηx

]
≥ 0. (21)

The conclusion ∆V < 0 is then deduced from (19), (20) and (21).

Step 5). Conclusion. Let E0 be the set defined by

E0 = {x ∈ Rnx : V(0, x) ≤ 1}. (22)

Note that E0 ⊂ Ex ⊂ Px. It follows from previous steps that the solution x(t) of
(5) for any initial condition x0 ∈ E0 is such that V(t, x(t)) ≤ 1, and so, x(t) ∈ Px
for any t ≥ 0. Thus, Property 1 holds. Since it has been proved in Step 4 that
V(t, x) is a Lyapunov function for the closed-loop system (5) on the set Ex, then
Property 2 holds also.

Remark 2. It has been shown that the set E0 mentioned in Properties 1 and 2 can
be defined as in (22). Since it may be difficult to characterize E0 for the general
case, we consider here the following set of initial conditions (instead of E0):

EV = {x ∈ Rnx : x>Pix ≤ 1, ∀i ∈ Ωr}. (23)

Obviously, Properties 1 and 2 still hold in this case since EV ⊂ E0.

Remark 3. The use of the delayed fuzzy Lyapunov function (14) can lead to less
conservative results without increasing the number of LMIs compared to the clas-
sical one V (t, x) = x>Pηx intensively studied in the literature [32]. This is due to
the possibility of this new type of FLFs to introduce some slack variables, namely
Kηdη, Hηdη, Giηdη, i ∈ Ω4, and especially Sηdηη and Uηdηη (for the SOF control
context of input-saturated T-S fuzzy systems) instead of Kη, Hη, Giη, i ∈ Ω4,
Sη and Uη. Note also that the proposed method can be extended by using more
complex FLF forms such as double-sum Lyapunov function [37], FLFs incorpo-
rating the MFs over several past samples [38]; or the control approaches based on
κ−sample variation of FLFs [32] to obtain less conservative results at the expense
of high computational cost.
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Remark 4. By Finsler’s lemma, all complex couplings between Lyapunov ma-
trices, feedback gain matrices and system matrices are avoided. This key point
allows an LMI formulation for SOF control without requiring any linear matrix
equality constraint on Lyapunov matrices [10, 16, 26] and/or rank conditions on
system matrices as in most of existing works. Moreover, due to the elimination
of these coupling terms, additional performance specifications can be naturally in-
corporated into the design conditions of Theorem 1, e.g. robustness with respect
to norm-bounded uncertainties affecting all matrices (Ai, Bi, Ci), decay rate, finite
L2−induced gain. Note that the control approaches based on the cone complemen-
tarity linearization algorithm [19] cannot have these interesting features [17].

Remark 5. Due to the products of α with other decision variables, the conditions
in Theorem 1 are a set of LMIs with a line search over α. Since α is a scalar,
the design conditions can be effectively solved with some constructive numerical
procedures [17]. Here, a line search for α is done with 100 points linearly gridded
over a logarithmic scale in

[
10−4, 104

]
.

Remark 6. Since Theorem 1 is developed in local control context, it is thus desir-
able to achieve the largest domain of attraction. Note that the domain of attraction
is here non-convex due to its associate FLF (14). The following optimization is
proposed to achieve the control goal:

min µ (24)

subject to µ > 0, trace (Pi) ≤ µ, i ∈ Ωr, LMIs (9)-(12) of Theorem 1.
The optimization (24) aims to minimize the largest trace (Pi), i ∈ Ωr, and can

be effectively solved with standard LMI numerical solvers.

4. Numerical Examples

This section presents three examples to demonstrate the effectiveness of the
new control method. Note that existing works used for comparison purposes can
be only applied to unconstrained T-S fuzzy systems. All LMI optimizations are
conducted in Matlab R2011b with YALMIP toolbox and SeDuMi solver.

Example 1. We revisit the motivating example given in (3), which is rewritten as

x(t+ 1) = A(x)x(t) +B sat(u(t))
y(t) = C(x)x(t)

(25)

where x> =
[
x1 x2 x3

]
, u> =

[
u1 u2

]
and

A(x) =

0 −x3 −1
1 0 0
0 1 0

 , B =

1 0
0 0
0 1

 , C(x) =

[
0 2 + x3 0
0 0 1

]
.

11



Note that this nonlinear system is open-loop unstable and subject to the following
constraints:

Px =
{
x ∈ R3 : |x3| ≤ 1

}
, umax =

[
0.5 0.5

]
. (26)

Using the sector nonlinearity approach [3] with the premise variable x3, the non-
linear system (25) can be exactly represented by (1) for x ∈ Px with

A1 =

0 1 −1
1 0 0
0 1 0

 , B1 =

1 0
0 0
0 1

 , A2 =

0 −1 −1
1 0 0
0 1 0

 ,
B2 =

1 0
0 0
0 1

 , C1 =

[
0 1 0
0 0 1

]
, C2 =

[
0 3 0
0 0 1

]
,

η1(x3) = (1− x3)/2, η2(x3) = 1− η1(x3).

(27)

The condition |x3| ≤ 1 is crucial to guarantee that η =
[
η1 η2

]
∈ Ξ. However,

this state constraint is usually neglected in T-S fuzzy control framework. Note
also that for this example, SOF design methods proposed in [20, 21, 24] are not
applicable since C1 6= C2 whereas all design conditions in [10, 18] are infeasible.
Applying Theorem 1 to (27) leads to the following results:

P1 =

10.854 −0.032 −1.048
−0.032 10.469 −0.031
−1.048 −0.031 12.479

 , P2 =

10.903 −0.004 0.619
−0.004 10.452 −0.069
0.619 −0.069 12.443

 ,
and

H11 =

[
4.73 −0.72
−0.94 6.23

]
, K11 =

[
−4.32 7.45
−6.33 −2.65

]
, K12 =

[
3.12 11.2
−2.66 2.51

]
,

H21 =

[
4.75 −0.71
−0.94 6.22

]
, H12 =

[
7.2 1.09
0.66 6.6

]
, K21 =

[
−4.28 7.54
−6.34 −2.69

]
,

H22 =

[
7.17 1.1
0.63 6.61

]
, K22 =

[
3.06 11.42
−2.66 2.32

]
,

with α = 0.298. Figure 1 shows the closed-loop trajectory corresponding to the
initial condition x>0 =

[
1 −1 1

]
. Note that the controller given in [15] in-

duces unstable behaviors under the same simulation condition. Remark that the
system constraints (26) have not been explicitly taken into account in [15]. Hence,
the resulting design conditions do not provide any guarantee on the domain of
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attraction of (27) in the presence of these constraints. To highlight this, by nu-
merical simulations, we have computed the closed-loop solutions for initial con-
ditions taken on a 20 × 20 × 20 hyper-rectangle grid in the initial condition set
[−5, 5] × [−5, 5] × [−1, 1]. Note that this latter set is included inside the validity
domain Px defined in (26). It can be verified that, for the proposed method, among
the total of 8000 tested trajectories, there are 7267 closed-loop trajectories behave
correctly. This is, these trajectories do not leave the validity domain Px and con-
verge towards the origin. For the method proposed in [15], only 2587 solutions
induce a correct behavior. This fact strongly confirms the interest of considering
the system constraints into the control design procedure.
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Figure 1: Closed-loop behaviors obtained with the proposed controller for x>0 = [1 − 1 1] in
Example 1.

Example 2. Consider a family of open-loop unstable T-S fuzzy systems (1) with
the following data:

A1 =

[
1 −δ
−1 −0.1

]
, B1 =

[
5 + δ

2δ

]
, A2 =

[
1 δ
−1 −0.1

]
, B2 =

[
5− δ
−2δ

]
C1 = C2 =

[
1 0

]
, η1(x1) = (x1 + δ)/(2δ), η2(x1) = 1− η1(x1)

(28)

where δ > 0. Note that the validity of both MFs η1(·) and η2(·) in (28) is only
guaranteed if |x1| ≤ δ. For simulation purposes, the following state and control
input limitations are considered:

Px =
{
x ∈ R2 : |x1| ≤ δ, |x2| ≤ 1

}
, ū = 2. (29)

This example is used as a benchmark to study the design conservatism. Note that
Theorem 1 and the methods in [10, 15, 18, 26] can be applied to (28). Table 1
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provides the maximal value of δ, denoted by δ∗, for which a stabilizing SOF con-
troller can be computed with each method. Observe that the new method provides
less conservative results even if none of the existing works has dealt with the sys-
tem constraints (29).

Table 1: Computed values of δ∗ for several methods.
Conditions Value of δ∗

Proposed method 0.79
Method in [18]: Conditions (18a) and (38a) 0.74
Method in [18]: Condition (18b) 0.78
Method in [18]: Condition (38b) 0.71
Methods in [10, 15, 26] Infeasible

Solving the optimization problem (24) for system (28) with δ = 0.7 leads to

P1 =

[
2.041 0.011
0.011 1.018

]
, P2 =

[
2.047 0.077
0.077 1.012

]
, µ = 3.059, α = 0.142. (30)

Figure 2 shows the guaranteed region of attraction EV of the closed-loop system
which is maximized inside Px. By means of simulations, it can be checked that the
corresponding SOF controller provides stable closed-loop behaviors for ∀x0 ∈ Px.
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Figure 2: Guaranteed region of attraction EV and domain of validity Px in Example 2.
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Remark 7. Note that the size of EV defined in (23) is maximized if the intersection
size of all the r ellipsoids E(Pi) = {x : x>Pix ≤ 1} is maximized. Hence, when
solving (24), the Lyapunov matrices Pi, i ∈ Ωr, tend to be close, i.e. we approach
the quadratic Lyapunov function, see (30) and Figure 2. However, the fuzzy Lya-
punov function (14) offers more flexibility to reduce the design conservatism since
the quadratic one is only a special case of (14) by imposing Pi = P , ∀i ∈ Ωr.

Example 3. Consider the following T-S fuzzy system (1) borrowed from [18]:

A1 =

[
1.3 + δ −1

0.2 0.6

]
, A2 =

[
0.8 −1.5
0.1 0.3

]
, B1 =

[
1

0.2

]
,

B2 =
[
1 0

]>
, C1 =

[
1 1.5

]
, C2 =

[
1 1

]
.

(31)

This example aims to study not only the design conservatism but also the appli-
cability of some notable methods dealing with SOF control. Since B1 6= B2 and
C1 6= C2, the methods in [20–24] cannot be applied to (31). However, Theorem 1
as well as the methods in [10, 15, 16, 18, 26] can be used for this example to design
SOF controllers. The stabilization interval of δ obtained with each control method
is given in Table 2.

Note that differently from all above methods, the following constraints are ex-
plicitly considered for (31) when applying Theorem 1:

Px =
{
x ∈ R3 : |xi| ≤ 5, ∀i ∈ Ω3

}
and ū = 3. (32)

The results in Table 2 reconfirm that despite the consideration of (32), the proposed
method provides less conservative results than existing ones. Note also that if the
state/input limitations are increased, then the stabilization interval of δ given by the
new method can be still enlarged.

Table 2: Stabilization interval of δ obtained for different results
Conditions Stabilization intervals of δ
Theorem 1 [−3.18, 0.92]
Condition (18a) in [18] [−2.08, 0.55]
Condition (18b) in [18] [−2.15, 0.87]
Condition (38a) in [18] [−2.08, 0.52]
Condition (38b) in [18] [−2.04, 0.48]
Methods in [10, 15, 16, 26] Infeasible
Methods in [20–24] Non-applicable
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5. Concluding Remarks

This paper presents a new SOF control method for T-S fuzzy systems subject
to both state and control input constraints. New design conditions are expressed
in terms of LMIs with a line search over a scalar variable. In contrast to most of
existing results, these conditions do not require any restriction on the system state-
space matrices. In addition, matrix equality constraints between system matrices
and Lyapunov matrices are also eliminated via Finsler’s lemma. It has been shown
that the proposed method can lead to less conservative results compared to existing
results. For the control design, the premise vector is assumed to be measured.
Further research to deal with unmeasured premise variables is under study.
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