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Improved LMI Conditions for Local Quadratic Stabilization of
Constrained Takagi-Sugeno Fuzzy Systems

Anh-Tu Nguyen · Raymundo Márquez · Thierry-Marie Guerra · Antoine Dequidt

Abstract This paper is devoted to the control synthesis of
constrained Takagi-Sugeno (T-S) fuzzy systems. These sys-
tems are subject to multiple constraints, namely actuator sat-
uration, system state constraints and also L2−disturbances.
Using descriptor redundancy approach, new design condi-
tions guaranteeing the existence of an input-saturated par-
allel distributed state feedback compensator are formulated
as an LMI optimization problem with extra matrix decision
variables. Differently from most of results dealing with the
same local control context of constrained T-S systems, a
generalized sector condition is used to handle effectively the
nonlinearity of the control input. The use of a descriptor re-
dundancy representation in conjunction with a sector condi-
tion for actuator saturation allows to reduce significantly the
design conservatism while keeping a simple control struc-
ture. The effectiveness of the proposed method compared to
many recent works is clearly demonstrated by means of nu-
merical examples.

Keywords Takagi-Sugeno fuzzy systems · Local quadratic
stabilization · Actuator saturation · State constraints ·
Descriptor redundancy representation · Linear matrix
inequality (LMI)

1 Introduction

Over the past two decades, model-based fuzzy control has
been an issue of great interest in control theory and its ap-
plications [1–6]. In particular, control technique based on

A.-T. Nguyen
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Takagi-Sugeno (T-S) fuzzy models [7] has become one of
the most popular and promising approaches for dealing with
complex nonlinear systems, see for instance [1, 8–11] and
references therein. Indeed, thanks to the polytopic structure
of T-S models, T-S fuzzy model-based approaches provide
a systematic framework for the studies of stability and sta-
bilization of nonlinear systems [1]. Moreover, the concept
of parallel distributed compensation (PDC) offers an effec-
tive control design tool. Direct Lyapunov method has been
widely applied in the control context of T-S fuzzy systems,
leading to the conditions for checking the stability and con-
trol design which are usually expressed in terms of linear
matrix inequalities (LMIs) [12]. Without a doubt, quadratic
approaches based on a common Lyapunov function still re-
main the most employed in fuzzy control framework and
also in practical situations. This comes from the fact that
they can provide a stabilizing controller with simple struc-
ture in many cases with reasonable computational cost [13].
Sufficient quadratic conditions proving the existence of PDC
controllers can be found in [1,14–16]. Recent results dealing
with the non-quadratic stabilization can be also mentioned
such as [10, 17–21] for continuous-time T-S fuzzy systems
and [22, 23] for discrete-time cases.

The present work is motivated by practical control is-
sues. Concretely, for real-time applications, control signals
and closed-loop system trajectories are usually limited in
given ranges due to physical and/or safety reasons. Notice
also that state constraints appear ubiquitously when the non-
linear sector-decomposition approach is used to obtain the
T-S fuzzy representation of nonlinear systems [15]. Consid-
ering explicitly these limitations allows preventing destabi-
lizing initial conditions [24]. In particular, this considera-
tion becomes crucial in the case where disturbance signals
are involved in the system dynamics. However, state con-
straints are often neglected in T-S fuzzy model-based con-
trol design [15]. Control design of input-saturated systems
is another challenging task in control theory and its applica-
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tions. It is worth noting that actuator saturation is unavoid-
able for most of physical systems, especially high perfor-
mance applications. Neglecting this phenomenon in the con-
trol design procedure may lead to the degradation of closed-
loop performance, or even unstable behaviors [15, 24, 25].
Over the years, the control synthesis of input-saturated sys-
tems has been subject to extensive investigation, see for in-
stance [9, 25–27] and references therein. In T-S fuzzy con-
trol framework, notable works can be mentioned as follows.
Norm-bounded approach was proposed in [27, 28] to deal
with control input constraints. This method may lead to con-
servative results [25, 29]. Moreover, the resulting unsatu-
rated PDC controllers generally offer poor closed-loop per-
formance. Polytopic representation of the saturation nonlin-
earity [29] has been exploited in [30] for time-delay T-S sys-
tems, in [31] for discrete-time T-S systems, and in [15] for
a class of switching T-S systems. In [26], the authors pro-
posed a polynomial fuzzy controller for a class of polyno-
mial fuzzy systems subject to both state delay and actua-
tor saturation using polytopic model of the input saturation.
In particular, it has been shown in [15] that this polytopic
representation approach leads to much less conservative re-
sults than those of the input-unsaturated approaches. Very
recently, descriptor redundancy approach [32, 33] has been
proposed to deal with input-saturated T-S systems in [34].
It is important to stress that the results in [34] can be only
applied to a restrictive class of T-S fuzzy systems with all
linear subsystems that are open-loop stable. Moreover, this
method cannot guarantee the asymptotic stability even ex-
ogenous disturbances are not involved in the dynamics of
the closed-loop systems. Notice also that state constraints
were not considered in most of these above works (except
for [15]).

This paper presents a new LMI-based control method for
continuous-time T-S fuzzy systems subject to both state and
control input constraints and in presence of energy-bounded
disturbances. The novelty and contributions of the proposed
method can be summarized as follows.

(i) The closed-loop T-S fuzzy systems will be rewritten in
an equivalent descriptor redundancy form which is com-
patible with the use of a new parameter-dependent Lya-
punov function. This latter allows to avoid the unknown
time-derivatives of the membership functions involved
in the theoretical developments. In particular, a special
matrix transformation is judiciously exploited to intro-
duce slack variable matrices for the purpose of conser-
vatism reduction.

(ii) Differently from existing works in the control context of
constrained T-S fuzzy systems, an extended parameter-
dependent version of the generalized sector condition [9]
is applied to deal with the actuator saturation. As a con-
sequence, we can derive conveniently LMI-based design
conditions with less design conservatism. The proposed

control method is able to deal with open-loop unstable
T-S fuzzy systems which is not the case of [34]. There-
fore, it can be applied to a larger class of nonlinear con-
strained systems.

(iii) By means of numerical experiments, it is demonstrated
that in many cases the new method may lead to much
less conservative results than recent works in quadratic
[15, 29] and non-quadratic [10, 20, 21] control frame-
works dealing with similar local control issue. It is also
worth noting that for the proposed method, the control
structure is very simple and the computational complex-
ity remains reasonable for real-world applications.

The paper is organized as follows. Section 2 defines the con-
sidered control problem, and then some useful lemmas for
the theoretical developments are also presented. Section 3
discusses on the derivation procedure of the proposed LMI-
based design conditions. Numerical examples are given in
Section 4 to demonstrate the effectiveness of the new method.
Finally, Section 5 provides some concluding remarks.

Notation. For an integer number r, Ωr denotes the set of
integer numbers {1, 2, . . . , r}. I denotes the identity ma-
trix of appropriate dimensions. For any square matrix X ,
He (X) = X + X>. X > 0 means that the matrix X is
symmetric and positive definite. The ith element of a vec-
tor u is denoted u(i) and X(i) denotes the ith row of ma-
trix X . (∗) stands for matrix blocks that can be deduced
by symmetry. For a matrix P > 0 and a positive scalar
ρ, we denote E (P, ρ) =

{
x : x>Px ≤ ρ

}
and for brevity

E (P ) ≡ E (P, 1). The scalar functions η1, . . . , ηr are said to
verify the convex sum property if ηi (θ) ≥ 0,

∑r
i=1 ηi = 1,

∀i ∈ Ωr. For such functions with any argument θ, and for
matrices Yi and Zij of appropriate dimensions, the follow-
ing notation will be used for brevity:

Yθ =

r∑
i=1

ηi (θ)Yi, Y −1θ =

(
r∑
i=1

ηi (θ)Yi

)−1
,

Zθθ =

r∑
i=1

r∑
j=1

ηi (θ) ηj (θ)Zij .

(1)

2 Problem Formulation

2.1 System description

Consider the following continuous-time T-S system [1]:
ẋ =

r∑
i=1

ηi (θ) (Aix+Bui v +Bwi w)

z =

r∑
i=1

ηi (θ) (Cix+Dw
i w)

(2)
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where x ∈ Rnx is the state, v ∈ Rnu is the control in-
put, w ∈ Rnw is the system disturbance, and z ∈ Rnz
is the performance output. All components of the premise
variable vector θ ∈ Rnp are supposed to be measured. The
real constant matrices Ai, Bui , Bwi , Ci, Dw

i , i ∈ Ωr are of
adequate dimensions, and the scalar membership functions
(MFs) ηi (θ) satisfy the convex sum property. In this paper,
the input vector v is bounded in amplitude:

−umax(l) ≤ v(l) ≤ umax(l), l ∈ Ωnu , (3)

where the control bounds umax(l) > 0, l ∈ Ωnu are given.
Moreover, we assume that the disturbance signal w in (2) is
bounded in energy, i.e.

w ∈ Wδ =

{
w : R+ → Rnw ,

∫ ∞
0

w(τ)>w(τ)dτ ≤ δ
}
,

where the bound δ > 0 is given.
In order to respect the control input limitations (3), the

following saturated PDC control law is considered:

v = sat (u) , u =

r∑
i=1

ηi (θ)Kix = Kθx, (4)

where sat (u) ∈ Rnu and

sat (u)(l) = sign
(
u(l)
)
min

(∣∣u(l)∣∣ , umax(l)

)
,

for l ∈ Ωnu . Let us denote

x̃> =
[
x> ẋ>

]
, ψ (u) = u− sat (u) . (5)

From (2) and (4), the closed-loop system can be equivalently
represented in the following descriptor form:

E ˙̃x = Aθθx̃− Bψθ ψ (u) + Bwθ w, (6)

where

E =

[
I 0

0 0

]
, Aθθ = Aθ + BuθKθ, Kθ =

[
Kθ 0

]
,

Aθ =
[
0 I

Aθ −I

]
, Buθ = Bψθ =

[
0

Buθ

]
, Bwθ =

[
0

Bwθ

]
.

(7)

2.2 Problem definition

In this paper, we search for a PDC control law (4) for the
constrained T-S fuzzy system (2) such that the following
closed-loop properties are satisfied:

(i) State constraints: Given vectors hk ∈ Rnx , k ∈ Ωq ,
there exist a matrix P > 0 and a positive scalar ρ such
that, for any x (0) ∈ E (P, ρ) and for any w ∈ Wδ , the
closed-loop trajectory of (2) remains inside the follow-
ing polyhedral set which defines the state constraints of
the T-S fuzzy system (2):

Px =
{
x ∈ Rnx : h>k x ≤ 1, k ∈ Ωq

}
.

(ii) Regional quadratic stability and L2−gain performance:
In the absence of disturbances, i.e. when w = 0, any
closed-loop trajectory initialized inside the set E (P ) con-
verges exponentially to the origin. When w 6= 0 and for
∀w ∈ Wδ , if x (0) ∈ E (P, ρ), then there exists a pos-
itive scalar γ such that the performance output z of the
closed-loop system (2) is in L2 and its norm satisfies the
following condition:∫ ∞
0

z(τ)>z(τ)dτ ≤ γ
∫ ∞
0

w(τ)>w(τ)dτ + ρ.

2.3 Useful lemmas

In what follows, some useful preliminaries needed for the
control design in Section 3 are presented.

Lemma 1 Given matricesKi ∈ Rnu×nx andGi ∈ Rnu×nx ,
i ∈ Ωr. Let us define the following set:

Pu =

{
x ∈ Rnx :

∣∣∣∣∣
r∑
i=1

ηi
(
Ki(l) −Gi(l)

)
x

∣∣∣∣∣ ≤ umax(l)

}

for l ∈ Ωnu . Consider the PDC control law u of the form
(4). If x ∈ Pu, then the following inequality on the dead-
zone nonlinearity ψ (u):

ψ (u)
>

(
r∑
i=1

ηiSi

)−1 [
ψ (u)−

r∑
i=1

ηiGix

]
≤ 0,

holds for any positive diagonal matrices Si ∈ Rnu×nu , and
for any scalar functions ηi, i ∈ Ωr, satisfying the convex
sum property.

Lemma 1 presents an extension of the generalized sector
condition for control input nonlinearity proposed in [9]. No-
tice that for this extended version, all involved matrices are
parameter-dependent which helps to reduce the conservatism
of the results.

Lemma 2 [35] LetA,R, L,P andQ be matrices of appro-
priate dimensions. The following statements are equivalent:

a) A>P + P>A+Q < 0,

b) ∃R,L :

[
A>L+ L>A+Q P> − L> +A>R
P − L+R>A −R−R>

]
< 0.

Lemma 3 [14] Let Υij , i, j ∈ Ωr be symmetric matrices of
appropriate dimensions and η1, . . . , ηr be a family of scalar
functions satisfying the convex sum property. The following
condition:
r∑
i=1

r∑
j=1

ηiηjΥij < 0 (8)
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is verified if
Υii < 0, i ∈ Ωr
2

r − 1
Υii + Υij + Υji < 0, i, j ∈ Ωr, i 6= j

(9)

Notice that more efficient relaxation results than (9) can be
found in [36] at the expense of high computational cost. At
last, the results presented in this paper are independent to
the relaxation methods in the sense that different relaxations
can be straightforwardly applied to convert the parameter-
dependent condition (8) to a finite set of LMIs.

3 Main Results

The following theorem provides LMI conditions that allow
the design of a PDC controller (4) solving the control prob-
lem defined in Section 2.

Theorem 1 Given a T-S fuzzy system (2) and a scalar δ > 0

where w ∈ Wδ . Assume there exist positive definite matrix
X ∈ Rnx×nx , positive diagonal matrices Si ∈ Rnu×nu ,
regular matrices Xij

22 ∈ Rnx×nx , matrices Xij
21 ∈ Rnx×nx ,

Hj
11 ∈ Rnx×nx , Hj

12 ∈ Rnx×nx , Hij
21 ∈ Rnx×nx , Hij

22 ∈
Rnx×nx , Rj11 ∈ Rnx×nx , Rj12 ∈ Rnx×nx , Rij21 ∈ Rnx×nx ,
Rij22 ∈ Rnx×nx , Vi ∈ Rnu×nx , Wi ∈ Rnu×nx for i, j ∈ Ωr,
and positive scalars ρ, γ such that

ρ+ γδ ≤ 1, (10)[
X ∗

Vi(l) −Wi(l) u
2
max(l)

]
≥ 0, i ∈ Ωr, l ∈ Ωnu , (11)[

X Xhk
∗ 1

]
≥ 0, k ∈ Ωq, (12)

Ψii < 0, i ∈ Ωr, (13)
2

r − 1
Ψii + Ψij + Ψji < 0, i, j ∈ Ωr and i 6= j, (14)

where the quantities Ψij are defined in (15). Then, the PDC
controller (4) with the feedback gains given by

Ki = ViX
−1, i ∈ Ωr,

solves the control design problem stated in Section 2.

Proof Let us introduce the following parameter-dependent
matrix:

Xθθ =
r∑
i=1

r∑
i=1

ηi (θ) ηj (θ)

[
X 0

Xij
21 X

ij
22

]
.

Since X = X> > 0, it follows that

X>θθE> = EXθθ ≥ 0. (16)

Since X > 0 and the matrices Xij
22 are regular, for i, j ∈

Ωr, then the parameter-dependent matrix Xθθ is also regular.
Denoting P(θ) = X−1θθ , it follows from (16) that

E>P(θ) = P>(θ)E ≥ 0, (17)

where the matrix P(θ) is of the following form:

P(θ) =

(
r∑
i=1

r∑
i=1

ηi (θ) ηj (θ)

[
X 0

Xij
21 X

ij
22

])−1
. (18)

Considering the Lyapunov function

V (x̃) = x̃>E>P(θ)x̃.

From the definitions of x̃ in (5), E in (7), and P(θ) in (18), it
can be easily observed that

V (x̃) = x>Px,

where P = X−1. It follows from Lemma 1 that the follow-
ing inequality:

Ξ =V̇ (x̃) + z>z − γw>w − 2ψ (u)
>
S−1θ [ψ (u)−Gθx]

=He
(
˙̃x>E>P(θ)x̃− ψ (u)

>
S−1θ [ψ (u)−Gθx]

)
+ z>z − γw>w < 0,

(19)

implies clearly that

V̇ (x̃) + z>z − γw>w < 0, ∀x ∈ Pu. (20)

Moreover, with the expression of E ˙̃x defined in (6), using
the property (17) and the notations in (1), the quantity Ξ in
(19) can be rewritten in the following form:

Ξ =

 x̃

ψ (u)

w

> Φ
 x̃

ψ (u)

w

 < 0, (21)

Ψij = He





Hij21 Hij22 0 0 0 X +Rij21 Rij22
AiH

j
11 +Bui Vj −H

ij
21 AiH

j
12 −H

ij
22 −Bui Sj Bwi 0 AiR

j
11 −R

ij
21 AiR

j
12 −R

ij
22

Wj 0 −Sj 0 0 0 0
0 0 0 −γI/2 0 0 0

CiX 0 0 Dwi −I/2 0 0

−Hj11 −Hj12 0 0 0 −Rj11 −Rj12
Xij21 −H

ij
21 Xij22 −H

ij
22 0 0 0 −Rij21 −Rij22




(15)
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where

Φ =

A>θθP(θ) + P>(θ)Aθθ −P
>
(θ)B

ψ
θ +G>θ S

−1
θ P>(θ)B

w
θ

∗ −2S−1θ 0

∗ ∗ −γI


+

 C>θ
0

Dw>
θ

 [Cθ 0 Dw
θ

]
,

and

Cθ =
[
Cθ 0

]
, Gθ =

[
Gθ 0

]
, Aθθ = Aθ + BuθKθ.

It can be observed that the condition (21) holds if Φ < 0. By
the well-known Schur complement lemma [12], this latter
can be proved to be equivalent to the following inequality:
He
(
A>θθP(θ)

)
−P>(θ)B

ψ
θ +G>θ S

−1
θ P>(θ)B

w
θ C>θ

∗ −2S−1θ 0 0

∗ ∗ −γI Dw>
θ

∗ ∗ ∗ −I

 < 0(22)

Pre- and post-multiplying (22) with diag
(
X>θθ, Sθ, I, I

)
and

its transpose, this inequality is found to be equivalent to

Υ =


Υ11 −Bψθ Sθ + X>θθG>θ Sθ Bwθ X>θθC>θ
∗ −2Sθ 0 0

∗ ∗ −γI Dw>
θ

∗ ∗ ∗ −I

 < 0, (23)

where Υ11 = He (AθXθθ + BuθKθXθθ). Applying Lemma 2
with P = Xθθ, A = A>θ , L = Hθθ, R = Rθθ and Q =

He (BuθKθXθθ), to the block-matrix entry Υ11 of Υ defined
in (23), we can show that this inequality is equivalent to the
condition (24). Now, let us denote

Hθθ =
[
Hθ

11 H
θ
12

Hθθ
21 H

θθ
22

]
, Rθθ =

[
Rθ11 R

θ
12

Rθθ21 R
θθ
22

]
, Wi = GiX.

(25)

Then, the inequality (24) becomes (26) after some algebraic
manipulations. Notice that the use of full parameter depen-
dent matrix Hθθ defined in (25) with extra degrees of free-

dom instead of
[
X 0

Xθθ
21 X

θθ
22

]
explains the relaxation idea un-

der this new control scheme.
By the relaxation result of Lemma 3, we can prove that

if x ∈ Pu, then the satisfaction of the conditions (13)-(14)

with Ψij , i, j ∈ Ωr, defined in (15) implies clearly the con-
dition (20). Moreover, by Schur complement lemma, (11) is
found to be equivalent to

X −
(
Vi(l) −Wi(l)

)> (
Vi(l) −Wi(l)

)
u2max(l)

≥ 0, (27)

for i ∈ Ωr, l ∈ Ωnu . Pre- and post- multiplying (27) with
the matrix P yields

P −
(
Ki(l) −Gi(l)

)> (
Ki(l) −Gi(l)

)
u2max(l)

≥ 0, (28)

for i ∈ Ωr and l ∈ Ωnu . Since the positive scalar func-
tions ηi, i ∈ Ωr, satisfy the convex sum property, it is then
deduced that the satisfaction of (28) implies the inclusion
E (P ) ⊆ Pu. Similarly, the inequality (12) implies the in-
clusion E (P ) ⊆ Px.

Now, we distinguish two following cases:

(i) If w = 0, it follows from (20) that

V̇ (x̃) < 0, x ∈ E (P ) ,

which guarantees the regional quadratic internal stability of
the closed-loop system (2).
(ii) If w 6= 0 and w ∈ Wδ , integrating both sides of (20)
from 0 to any time T > 0 yields

V (x (T )) < V (x (0)) + γ

∫ T

0

w(τ)>w(τ)dτ (29)

−
∫ T

0

z(τ)>z(τ)dτ.

Then, it follows from (10) and (29) that

V (x (T )) ≤ ρ+ γδ ≤ 1, ∀x (0) ∈ E (P, ρ) ,

which means that the corresponding closed-loop trajectory
remains inside the set E (P ) ⊆ Px. This fact proves that
state constraints are satisfied. Furthermore, from (29) and
considering the limit case T →∞, we obtain∫ ∞
0

z(τ)>z(τ)dτ ≤ γ
∫ ∞
0

w(τ)>w(τ)dτ + V (x (0)) ,

which implies the L2−gain performance of the closed-loop
system. Thus, the proof can be now concluded.


He (AθHθθ + BuθKθXθθ) −B

ψ
θ Sθ + X>

θθG>
θ Sθ Bwθ X>

θθC>
θ X>

θθ − H>
θθ + AθRθθ

∗ −2Sθ 0 0 0
∗ ∗ −γI Dw>

θ 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −Rθθ − R>

θθ

 < 0. (24)



6 Submitted to International Journal of Fuzzy Systems

He





Hθθ21 Hθθ22 0 0 0 X +Rθθ21 Rθθ22
AθHθ11 +Buθ Vθ −Hθθ21 AθHθ12 −Hθθ22 −Buθ Sθ Bwθ 0 AθRθ11 −Rθθ21 AθRθ12 −Rθθ22

Wj 0 −Sθ 0 0 0 0
0 0 0 −γI/2 0 0 0

CθX 0 0 Dwθ −I/2 0 0
−Hθ11 −Hθ12 0 0 0 −Rθ11 −Rθ12

Xθθ21 −Hθθ21 Xθθ22 −Hθθ22 0 0 0 −Rθθ21 −Rθθ22




< 0. (26)

Remark 1 From the results of Theorem 1, it is easily to for-
mulate the LMI optimization that can search for a PDC con-
troller solving the control problem defined in Section 2 while
minimizing the estimated bound of the system L2−gain.
Such an LMI optimization can be stated as follows:

min γ,

subject to: γ > 0 and the LMI conditions in Theorem 1.

Remark 2 Since local control context is considered here, in
many cases it is desirable to achieve the largest estimate of
the domain of attraction of the closed-loop system. Notice
that the ellipsoid E (P ) represents the domain of attraction
of (2) in the absence of system disturbances, i.e. w = 0.
Note also that the size of E (P ) can be characterized by
trace (P ) [12]. Then, the maximization of E (P ) can be for-
mulated as follows:

min trace (R) , (30)

subject to LMI conditions in Theorem 1 and[
R I

I X

]
> 0, (31)

where R > 0 is a slack variable. By Schur complement
lemma, it follows from (31) that R > P = X−1, thus
trace(R) > trace(P ). Then, the minimization of trace(R)
implies clearly the minimization of trace(P ).

Remark 3 Notice that all matrices Xθθ, Hθθ, Rθθ, used in
the theoretical development of Theorem 1 depend on the
MFs ηi (θ), i ∈ Ωr, in a polynomial form. These matri-
ces can be chosen in the following general forms defined
in (32). In the expressions (32), N can be viewed as the
degree of the polynomials in function of MFs of the each
parameter-dependent matrix. Then, less conservative results
can be achieved by increasing N . For a trade-off between
relaxation and computational cost, the design conditions of
Theorem 1 are obtained with N = 1. However the results
for N ≥ 2 can be easily generalized. Notice also that in the
case of high-dimensional parameter-dependent summations
(i.e. with a large value of N ), the relaxation result in [36]
would be more interesting than that of Lemma 3.

Remark 4 The conservatism of the proposed method comes
mainly from the fact that matrix X in (32) is not param-
eter dependent. This is done on purpose to avoid the un-
known time-derivatives of the MFs η̇i (θ), i ∈ Ωr, involved
in the theoretical developments. Up two now, this inherent
control issue is still very challenging in the framework of
continuous-time T-S fuzzy systems, see [17, 18, 20, 37] and
references therein. In [20], local design conditions based on
fuzzy Lyapunov functions for continuous-time T-S systems
have been proposed. An interesting feature of this method
consists in the fact that implicit bounds on η̇i (θ), i ∈ Ωr,
are not required for the design conditions as in many other
works, for instance [17, 37]. It is noteworthy that although
this requirement is understandable for stability results, it is
more questionable for stabilization due to the explicit pres-
ence of the to-be-designed control actions u in the expres-
sions of η̇i = ∂ηi

∂x ẋ and ẋ. As a consequence, the validity re-
gion of the obtained controller must be checked a posteriori.
In this context, the method in [20] requires the knowledge
on the control bounds to obtain LMI formulation. There-
fore, even the goals pursued in the present work and the
one in [20] are definitively different, they can be however
compared objectively which is not the case for other non-
quadratic methods previously cited. Note also that the con-
trol method in [20] already allows outperforming many well-
known results existing in the literature of T-S control sys-
tems, see for instance [17, 18].

Remark 5 We note that non-quadratic Lyapunov based meth-
ods in the local control framework of continuous-time T-
S systems usually involve complex design conditions [20].
The computational complexity of LMI-based optimization
problems is related to the number of scalar decision vari-
ables Nvar and the number of rows Nrow of all considered
LMIs. These numbers corresponding to the LMIs of differ-
ent results are respectively given as follows.

(i) For the design conditions of Theorem 3 in [20]:


Nvar = 1 + r (nx (nx + 1) /2 + nunx + npnunx)

+ npn
2
xr

2 (nx + nu) (nx + nu + 1 + (nx + 1) r)

Nrow = 1 + rnx + r3
(
nx + nz + nw + npn

2
xnu

)
+ r2

(
nunx + (nx + nu)npn

2
x

)
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X(θ) =

[
X 0

X21 (θ) X22 (θ)

]
=

r∑
i0=1

r∑
i1=1

· · ·
r∑

iN=1

 N∏
j=0

ηij (θ)

[ X 0

Xi0i1...iN21 Xi0i1...iN22

]
,

H(θ) =

[
H11 (θ) H12 (θ)
H21 (θ) H22 (θ)

]
=

r∑
i0=1

r∑
i1=1

· · ·
r∑

iN=1

 N∏
j=0

ηij (θ)

[ Hi1...iN11 Hi1...iN12

Hi0i1...iN21 Hi0i1...iN22

]
,

R(θ) =

[
R11 (θ) R12 (θ)
R21 (θ) R22 (θ)

]
=

r∑
i0=1

r∑
i1=1

· · ·
r∑

iN=1

 N∏
j=0

ηij (θ)

[ Ri1...iN11 Ri1...iN12

Ri0i1...iN21 Ri0i1...iN22

]
.

(32)

(ii) For the design conditions in [15, 29]:
Nvar = 3 + nx (nx + 1) /2 + 2rsnunx

Nrow = 4 + q (nx + 1) + 3nx + rsnu (nx + 1)

+ 2nur2s (nx + nz + nw)

with s = 1 (i.e. one switching region).
(iii) For the design conditions of Theorem 1 in this work:

Nvar = nx (nx + 1) /2 + r
(
nu + 4n2x + 2nunx

)
+ 6r2n2x + 2

Nrow = 1 + q (nx + 1) + rnu (nx + 1)

+ r2 (4nx + nu + nz + nw)

In order to illustrate the computational burden of different
control methods, the numbers of decision variables and LMI
rows corresponding to the design conditions of Theorem 1

in [15], Theorem 3 in [20], and Theorem 1 in this work for
different values of system dimensions are given in Table 1.
We can observe that the numerical complexity of the new
control method is reasonable compared to available results
in the literature. Notice also that the number of LMI rows
of conditions in [15] depends strongly on the numbers of
control inputs (nu) and switching regions (s).

Another advantage of the proposed method with respect
to the non-quadratic one in [20] is that the controller struc-
ture (4) is very simple compared to the non-PDC control law
in [20] since it does not require online parameter-dependent
matrix inversion for real-time implementation. Therefore,
the new control method seems to be more appropriate for
real-world applications, especially for T-S fuzzy systems of
high dimension and/or with an important number of subsys-
tems. At last, from the viewpoint of input-saturated control
systems, in many cases the proposed method can lead to less

conservative results than those of [20]. These facts will be
clearly illustrated in Section 4.

4 Numerical Examples

In this section, the effectiveness of the proposed method will
be demonstrated by means of two numerical examples. The
first one deals with a physically motivated nonlinear system.
The second example aims for a study on the conservatism of
the proposed method compared to several related works in
the literature. All LMI problems are solved with the help of
Matlab R2013b using YALMIP toolbox [38].

Example 1 Consider the well-known chaotic Lorenz system
described by
ẋ1 = −µ1x1 + µ1x2

ẋ2 = µ2x1 − x2 − x1x3
ẋ3 = x1x2 − µ3x3

(33)

The T-S fuzzy representation of (33) is given as follows [39]:

Plant rules:

Rule 1: If x1 is about η1, then x = A1x

Rule 2: If x1 is about η2, then x = A2x

(34)

where

A1 =

−µ1 µ1 0

µ2 −1 20

0 −20 −µ3

 , A2 =

−µ1 µ1 0

µ2 −1 −30
0 30 −µ3

 ,
η1 (x1) = (30− x1) /50, η2 (x1) = 1− η1 (x1) .

(35)

Table 1 Illustration of the computational complexity for different control methods (green-good, black-intermediate, red-worst)

System parameters Method in [15] Method in [20] Theorem 1
Nvar Nrow Nvar Nrow Nvar Nrow

r = nx = 2, q = 4, nu = nw = nz = s = np = 1 14 60 255 125 143 65
r = q = 4, nx = nu = np = 2, nw = nz = s = 1 22 162 1565 745 473 203
r = q = 4, nx = s = 2, nu = nw = nz = np = 1 22 302 1565 745 473 203
r = q = 4, nx = s = 2, nu = 3, nw = nz = np = 1 54 1118 2941 1449 513 259
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After introducing the control inputs, the system disturbance
and the performance outputs into (34)-(35), we obtain the
T-S system (2) with the following data:

Bu1 =

µ1

0

0

 , Bu2 =

 0

µ2

0

 , C1 =
[
1 0 0

]
,

Bw1 =

0.1µ1

0.1µ2

0.5

 , Bw2 =

−0.1µ1

0.1µ2

0.5

 , C2 =
[
1 0 0

]
,

Dw
1 = 0.1, Dw

2 = −0.1, µ1 = 10, µ2 = 28, µ3 = 2.67.

It should be stressed that in order to guarantee the validity
of the membership functions η1 (x1) and η2 (x1) in (35), the
state constraints Px =

{
x ∈ R2 : −20 ≤ x1 ≤ 30

}
must be

explicitly considered into the design procedure. Moreover,
it is assumed that the control input is limited in amplitude
with umax = 3 and the disturbance belongs to a class of
L2 functions, i.e. w ∈ Wδ with δ = 2.8. Notice that all
these system constraints have not been considered in previ-
ous works. Now, solving LMI conditions of Theorem 1 leads
to the following results:

P =

0.47 0.11 0.07

0.11 0.12 0.02

0.07 0.02 0.10

 , K1 =
[
−7.16 −2.65 −1.30

]
,

γ = 0.33, ρ = 0.04, K2 =
[
−4.08 −2.76 −0.19

]
.

(36)

Fig. 1 shows the closed-loop behaviors corresponding to the
initial condition x>0 =

[
−1 0 1

]
for the energy-bounded

disturbance defined as follows:

w (t) =

{
9, if 1 ≤ t ≤ 1.1

0, otherwise
(37)

The trajectory of the performance output z and the L2−gain

ratio
∞∫
0

z (t)
>
z (t) dt/

(∞∫
0

w (t)
>
w (t) dt+ ρ

)
correspond-

ing to the results given in Fig. 1 are depicted in Fig. 2. It
can be clearly observed that the effect of the disturbance
w is well attenuated with the proposed controller and the
L2−gain performance of the closed-loop T-S system is re-
spected under the considered simulation condition.

Fig. 3 shows the comparison between the closed-loop re-
sponses obtained with Theorem 1 and those obtained with
the design conditions in [1, Chapter 3]. We observe that
the explicit consideration of system constraints into the pro-
posed design procedure can help to improve significantly
the transient behaviors of the closed-loop T-S fuzzy sys-
tem. Moreover, note also that the control method in [1] can-
not provide any guarantee on the closed-loop stability in the
presence of system constraints.
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Fig. 1 Closed-loop behaviors corresponding to the initial condition
x>0 = [−1 0 1] and the energy-bounded disturbance in (37) with
respect to the feedback gains given in (36).
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Fig. 2 Trajectory of the performance output z and the ratio
∞∫
0

z (t)> z (t) dt/

(∞∫
0

w (t)> w (t) dt+ ρ

)
corresponding to the

results presented in Fig. 1.
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Fig. 3 Closed-loop behaviors corresponding to the initial condition
x>0 = [−17 7 30] and the energy-bounded disturbance in (37) ob-
tained with Theorem 1 and the control method proposed in [1].

Example 2 Consider a family of T-S systems (2) with the
following system data:

A1 =

[
1.59 −7.29
0.01 0

]
, A2 =

[
0.02 −4.64
0.35 0.21

]
,

A3 =

[
−a −4.33
0 0.05

]
, A4 =

[
0.89 −5.29
0.1 0

]
,

Bu1 = Bu4 =
[
1 0
]>
, Bu2 =

[
8 0
]>
,

Bu3 =
[
−b+ 6 −1

]>
, Bwi =

[
0.1 0.1

]>
,

C1 = C4 =
[
−0.1 −0.4

]
, C2 =

[
0.1 −0.1

]
,

Dw
i = 0.15, i ∈ Ω4, C3 =

[
0.2 0.1

]
,

(38)

where (a, b) ∈ [−4, 4]. The membership functions in (38)
are given by

η1 (x1) =
1− sin (x1)

2
, η2 (x1) =

1 + sin (x1)

2
.

The constraints of the T-S system (38) are characterized by
δ = 0.1, umax = 5 and

Px =
{
x ∈ R2 : |x1| ≤ 1, |x2| ≤ 1

}
.

We note that all T-S systems given in (38) are open-loop un-
stable. Now, let us check the existence of a stabilizing con-
troller of (38) for all the points of a 17-by-17 square grid
on the parameter space (a, b) by using different approaches
dealing with similar local control context. The feasibility
spaces obtained with conditions of Theorem 1 and those of
the quadratic approach using polytopic representation of the
saturation function in [15, 29] are depicted in Fig. 4. It can
be easily observed that the proposed method provides signif-
icantly less conservative results than those of [15, 29]. It is
important to note also that the following design conditions
based on:

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

a

b
Fig. 4 Feasibility spaces obtained with Theorem 1 (+) and control
methods proposed in [15, 29] (�).

(i) fuzzy Lyapunov functions using a non-parallel distributed
control law proposed in [10, 20, 21], and

(ii) a descriptor redundancy representation of the closed-loop
system using a polytopic representation of the saturation
function proposed in [34],

are all unfeasible for any point of the considered parame-
ter grid. We note that for an objective comparison, the sys-
tem constraints and the induced L2−gain performance have
been considered in the design procedure of [10, 21] as the
same way in [20]. Notice also that the results proposed in
[10, 20, 21] have already outperformed (in terms of con-
servatism reduction) many other outstanding results in non-
quadratic T-S control framework, for instance [17, 18]. For
this example, the numbers Nvar and Nrow characterizing
the computational complexity of LMI conditions (see Re-
mark 5) for different methods are shown in Table 2. We can
see that both Nvar and Nrow of the new control method are
more important than those of [15, 29]. This is due to the use
of Lemma 2 to introduce slack variables for the purpose of
conservatism reduction. However, the computational burden
of the proposed method is significantly lower than that of
the non-quadratic approach in [20] even though this latter
cannot provide any solution for the considered example.

Table 2 Comparison of numerical complexity between different con-
trol design methods

Complexity Theorem 1 Method in [20] Method in [15, 29]
Nrow 203 745 162
Nvar 473 1565 22
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At a first glance, it seems very surprising that the new
quadratic method could lead to much less conservative re-
sults than the fuzzy Lyapunov based methods proposed in
[10,20,21]. However, from the viewpoint of constrained T-S
fuzzy systems, the design conservatism comes not only from
the choice of Lyapunov functions but also the methods to
handle the system constraints. Indeed, the control method in
[20] made use of an unsaturated control law (due to its way
to deal with the time-derivative of the membership functions
involved in the theoretical developments) which can lead to
over-conservative results as shown in [15]. Moreover, that
method depends strongly on the value of control bound lim-
its, i.e. umax. Indeed, feasible solutions can be generally ob-
tained with [10, 20, 21] only if the limitations on the con-
trol input amplitude become arbitrarily large, for example
umax ≥ 24 for the LMIs of [20], umax ≥ 19.1 for the LMIs
of [10], and umax ≥ 15.5 (with ε = 5) for the LMIs of [21],
in the case of the constrained T-S system (38).

Now, let us consider the constrained T-S system (38)
with a = b = 0. It is noteworthy that none of the results of
existing works in [10, 15, 20, 21, 29, 34] can provide a stabi-
lizing controller for the corresponding T-S system. Solving
the LMI optimization problem in (30) leads to the following
results:

P =

[
1.43 3.19

3.19 24.00

]
, K1 =

[
−6.93 −6.60

]
,

γ = 10.0, K2 =
[
−3.97 −9.80

]
.

We can observe in Fig. 5 that the ellipsoid S1 ≡ E(P ) is
maximized along the polyhedral set S2 ≡ Pu ∩ Px which
is, in turn, included inside the following sector set:

S3 =

{
x ∈ Rnx :

∣∣∣∣∣
r∑
i=1

ηi
(
Ki(l) −Gi(l)

)
x

∣∣∣∣∣ ≤ umax(l)

}
,

for l ∈ Ωnu . Moreover, simulated trajectories of the closed-
loop T-S system starting from S1 always remain inside this
set. Therefore, the set inclusion property stated in Section 2
is clearly verified.

The results obtained with the above examples confirm
the strong interest of the proposed control method compared
to existing results in the local control framework of con-
strained T-S fuzzy systems.

5 Conclusions

In this paper, a new control method is proposed to improve
the quadratic design conditions of constrained T-S fuzzy sys-
tems. The controller design amounts to solving a set of LMIs
with some available numerical tools. By exploiting the de-
scriptor redundancy representation of the closed-loop sys-
tem as well as a special matrix transformation, slack deci-
sion variables are judiciously introduced to reduce effec-
tively the design conservatism. We also propose to use a
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Fig. 5 Set inclusion property and simulated system trajectories.

parameter-dependent version of generalized sector condi-
tion for dealing with control input nonlinearity. By means of
numerical experiments, it has been demonstrated that these
facts allows for an outperformance in terms of relaxation of
the proposed method compared to several recent works deal-
ing with similar local control issue in both quadratic and
non-quadratic T-S control frameworks. Moreover, the con-
trol structure of the PDC control law is simple and the com-
putational complexity of the proposed design conditions is
reasonable for real-time applications. Future works focus on
the application of the new method to intelligent vehicle sys-
tems [40]. Moreover, extensions of the proposed approach
to T-S output feedback control contexts [2, 8] would be also
interesting.
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