
HAL Id: hal-03429363
https://uphf.hal.science/hal-03429363v1

Submitted on 18 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pollux: a dynamic hybrid control architecture for
flexible job shop systems

José-Fernando Jimenez Gordillo, Abdelghani Bekrar, Gabriel Zambrano Rey,
Damien Trentesaux, Paulo Leitão

To cite this version:
José-Fernando Jimenez Gordillo, Abdelghani Bekrar, Gabriel Zambrano Rey, Damien Trentesaux,
Paulo Leitão. Pollux: a dynamic hybrid control architecture for flexible job shop systems. Interna-
tional Journal of Production Research, 2017, 55 (15), pp.4229-4247. �10.1080/00207543.2016.1218087�.
�hal-03429363�

https://uphf.hal.science/hal-03429363v1
https://hal.archives-ouvertes.fr


Jose-Fernando Jimeneza,b* , Abdelghani Bekrara, Gabriel Zambrano-Reyb, Damien Trentesauxa and Paulo Leitãoc,d

aLAMIH, UMR CNRS 8201, University of Valenciennes and Hainaut-Cambrésis, UVHC, Valenciennes, France; bIndustrial
Engineering Department Pontificia, Universidad Javeriana, Bogotá, Colombia; cDepartment of Electrical Engineering, Polytechnic

Institute of Bragança, Campus Santa Apolónia, Bragança, Portugal; dLIACC – Artificial Intelligence and Computer Science

Laboratory, Porto, Portugal

1. Introduction

Industries expect to deploy manufacturing control systems that provide optimal and reactive solutions to meet exigent

market demands (Gunasekaran and Ngai 2012). For this, it is fundamental to define a good control system architecture

that responds to the optimality and reactivity required. In this paper, control system architectures refer to the characteri-

sation of a control system that defines the constituent elements, structural composition and operational behaviour and

manage the functioning of a control system. In practice, in manufacturing systems, this corresponds to the arrangement

of manufacturing execution systems (MES) that, interacting with an enterprise resource system (ERP), governs manufac-

turing operations such as planning, manufacturing management, scheduling, storage and transportation. Originally and

currently in some cases, control system architectures are implemented over hierarchical architectures. This approach

divides the control of manufacturing operations into organised master/slave decisional entities according to dependent

sub-problems. The advantage is that manufacturing operations can be globally optimised. Normally, it has a centralised

control that enables the deployment of optimal decision-making to cascade through the entire hierarchical dependencies.

The disadvantages are mostly related to the computational limitations of the lower dependencies, delayed communica-

tions due to the increased number of middle dependencies, lack of the adapting the control strategy, and lack of reactiv-

ity capabilities (Dilts, Boyd, and Whorms 1991; Saharidis, Dallery, and Karaesmen 2006). However, more recently,

control system architectures have migrated to heterarchical structures, where the control problem is solved through the

emergent behaviour of cooperative decisional entities. The advantage is that they respond promptly to perturbations and

mitigate the risk of system breakdowns. Nevertheless, difficulties in predicting global performance, the inability to pro-

vide global optimality and the need for robust communication protocols are the main disadvantages of this approach

(Lee, Lv, and Hong 2013; Borangiu et al. 2015). In short, both approaches satisfy part of industries requirements. Still,

neither hierarchical nor heterarchical architectures simultaneously fulfil optimality and reactivity requirements.

To resolve this issue, researchers have introduced a new type of arrangements for controls systems architectures,

named Hybrid Control Architectures (HCA). These coupled arrangements aim to benefit from the advantages of hierar-

chical and heterarchical architectures, avoiding the associated limitations. The main feature is that they contain simulta-

neously hierarchical and heterarchical relationships (Trentesaux 2009). In this sense, decisional entities can still react

autonomously to unexpected events while they are coordinated for optimal performance. However, between hierarchical

*Corresponding author. Email: j-jimenez@javeriana.edu.co

DOI : 10.1080/00207543.2016.1218087 1



and heterarchical relationships, it is difficult to synchronise the level of autonomy for each entity (Bongaerts et al. 2000;

Cardin et al. 2016). Nonetheless, although some contributions have been made to solve this challenge (Pach et al. 2014;

Zambrano Rey 2014) further exploration in this direction is required.

According to the literature, HCA can be classified into two categories: static-HCA (S-HCA) and dynamic-HCA

(D-HCA). For S-HCA, the control system architecture starts with an initial operating mode that maintains the same

hierarchical/heterarchical coupling throughout production execution. An operating mode is a specific parameterisation

(definitions of all parameters) that defines a specific setting of the control system architecture (Jimenez et al. 2015).

For D-HCA, the control system architecture also starts with an initial operating mode, but it contains a mechanism

that switches from one operating mode to another (i.e. periodical and/or event-based) during execution. Switching

occurs, changing the operating mode of an HCA, either to respond to an unexpected event or to improve system

performance.

In this paper, we explore the potential benefits of D-HCA with regard to the two needs introduced: optimality and

reactivity. These benefits are interesting and bring a level of novelty to manufacturing control architectures. For this rea-

son, Pollux as a D-HCA that contains a switching mechanism to steer the operating modes of a control system architec-

ture and to ensure an adequate configuration according to real-time needs is proposed. The application in this paper

concerns production scheduling in a real flexible job shop system (type of manufacturing system). Flexible job shop sys-

tems, where an operation of a job (also named products) can be processed by a subset of machines from a manufactur-

ing system, feature several types of flexibility such as machine, process, routing, material handling and operation

flexibility. These systems are interesting as they permit the reconfiguration of the scheduling settings to respond to unex-

pected events (Zambrano Rey et al. 2014). This problem is also known as dynamic scheduling in the flexible job shop

problem (FJSP) in other domains such as the operational research, manufacturing engineering and operational manage-

ment community.

The paper is organised as follows: Section 2 provides a literature review of D-HCA used for dynamic scheduling of

flexible job shop problems. Section 3 details the structure, behaviour and dynamic characteristics of the proposed control

system. Section 4 introduces the case study in a flexible job shop and describes the implementation of the proposed

D-HCA. In Section 5, the experiments and results obtained in a real environment are presented. Finally, Section 6

summarises the conclusions and highlights future prospects.

2. Literature review

This section provides a review of the literature with regard to D-HCA that features a switching mechanism responsible

for reconfiguring the control system architecture in response to an unexpected event, specifically for the flexible job

shop systems. It focuses on understanding the contribution of each approach in relation to the dynamic characteristics

and the degree of optimisation achieved by the switching mechanism.

2.1 Definitions

This subsection details some of the main definitions of a D-HCA relating to the inherent characteristics and switching

process in the control system architecture. These definitions are organised into three categories, related to their structural

characteristics, behavioural characteristics and the dynamic characteristics of the studied control system architecture.

2.1.1 Structural characteristics

Constituent elements of the D-HCA refer to the virtual components used in the architecture that define the characteristics

and attributes of each decisional entity. These entities, generally agents or holons, are included in the control system to

solve an assigned problem in production operations. In practice, these are created to mirror, in a virtual environment,

the physical components of the flexible job shop system (e.g. tools, machines, conveyors, automated guided vehicle), as

well as to encapsulate information about the component (perceptions, actions, monitoring, etc.).

The interaction refers to the communication protocol and agreements between the constituent elements. These inter-

actions determine the type of control system architecture as they characterise the relationship between the elements. For

example, if the interaction is a master–slave relationship, it is said that both elements hold a hierarchical relationship.

On the contrary, if two elements interact to organise a coordinated behaviour, it holds a heterarchical structure. In a nut-

shell, it is assumed that the entire set of interactions between all decisional entities leads to a specific architecture (i.e.

hierarchical, heterarchical or hybrid architecture).

DOI : 10.1080/00207543.2016.1218087 2



2.1.2 Behavioural characteristics

Predictive schedule generation, which is performed before operation execution (offline), is the process that controls the

global actions of a particular problem. Specifically, it refers to any predictive decision-making technique used by entities

to create the production schedule. Predictive techniques can be based on operational research methods that manage the

actions to optimise global performance (e.g. MILP, Genetic algorithms, Grasp).

Reactive control policy is the functioning rules that the constituent elements follow throughout the execution of oper-

ations (online). Specifically, it refers to the actions or behaviour of constituent elements, which is guided by a reactive

decision-making technique during normal or disruptive events. Reactive techniques can be based on heuristics methods

to guide the elements’ behaviour (e.g. priority rules, dispatching rules, distributed arrival time control).

2.1.3 Dynamic characteristics

Switching mechanism in D-HCA is defined as a mechanism that evaluates the system performance, activating a change

in the system configuration, balancing the operation functioning and finding a custom-built operating mode for the con-

trol system architecture.

Switching points are the moments in time when the control system makes the switches between operating modes in

a D-HCA.

Switching type refers to the kind of changes that occur in the architecture at a switching point. These changes can

be structural (i.e. hierarchical, hybrid or heterarchical arrangements), behavioural (i.e. predictive or reactive decision-

making methods) or both structural and behavioural.

Switching purpose is the goal or objective pursued by the D-HCA when it triggers the switching process in the con-

trol system architecture.

Operating mode is a specific parameterisation (definitions of all parameters), which defines a specific setting of

control system architecture. It defines the structural composition and operational behaviour level of the control system

architecture.

Degree of optimality is the intended level of optimisation in the switching mechanism process. Based on the degree

of optimality defined by Baker (1998) for scheduling algorithms, we defined the degree of optimality of a switching

mechanism can be: optimal (e.g. mathematical programming, combinatory optimisation), near-optimal (e.g. approxima-

tion algorithms, probabilistic algorithms), towards-optimal (e.g. neural networks, evolutionary algorithms, swarm algo-

rithms) and heuristic (e.g. artificial intelligence, priority rules, iterative simulation). An additional degree of optimality,

named reaction transition, is included in order to classify the approaches with no specific optimality process (lack of

optimality).

2.2 Switching mechanism in D-HCA

In this subsection, the papers reviewed are examined and positioned according to their general D-HCA characteristics

(structure, behaviour and dynamism). They focus on solving the dynamic schedule of a flexible job shop system and

present a well-defined hybrid control architecture for managing the execution of manufacturing operations. Still, these

approaches differ in many aspects, such as the type of switching, the switching purpose, the functioning of the

switching mechanism and the degree of optimality expected with the switching mechanism (refer to definitions in

subsection 2.1). Table 1 presents the reviewed papers and characterises each D-HCA according to the structural,

behavioural and dynamic characteristics.

From the literature review, three main aspects were identified concerning the switching of the D-HCA studied.

Regarding the first aspect, switching is either structural or behavioural characteristics. At structural characteristics, these

approaches switch the structure formation between decisional entities (i.e. hierarchical, heterarchical) to modify the con-

trol scope in the interconnected graph. A typical example of such architectures is ADACOR (Leitão and Restivo 2006).

This architecture changes the structure by propagating pheromones that activate or deactivate the connection and

interaction of a supervisor holon. At behavioural characteristics, these approaches switch functions, objectives or deci-

sion-making processes of decisional entities (i.e. priority rules or first available machine method) to react and/or to

evolve to new, better configurations. As an example of behavioural-based switching, Holvoet, Weyns, and Valckenaers

(2009) propose D-MAS where, according to an ant exploration technique that anticipates the future production

conditions, it adjusts holon behaviour to reach the expected result. In spite of these contributions, few approaches

have addressed switching at structural and behavioural characteristic at the same time (Barbosa et al. 2015). The

switching mechanism in this approach, named ADACOR2, performs a micro (behavioural) and/or a macro (structural)

self-configuration according to the level of degradation caused by the perturbation. While a structural switch is triggered

DOI : 10.1080/00207543.2016.1218087 3



Table 1. Dynamic hybrid control architectures with a switching mechanism.

Reference

Structural characteristics Behavioural characteristics Dynamic characteristics

Constituent
element

Interaction of
elements

Predictive
schedule
generation

Reactive
control
policy

Switching
type

Switching
purpose

Operating
mode Switching mechanism

Degree of
optimality

Barbosa et al. (2015) Holon
driven
(ADACOR)

Cooperation
(agent UML
protocol)

Optimised
schedules
(not
specified)

Client–
server
intentions

Structure
Behaviour

Evolution via
Bio-inspired
dissemination

Multiple
modes
(evolvable
characteristics)

Reasoning modules
define how to evolve
according to pheromone
technique and learning

Towards
optimal

Borangui et al. (2015) Holon
driven
(PROSA)

Negotiation
(FIPA-ACL)

Production
rules and
constraint
programming

Heuristic
allocation

Structure Reaction to
improve
strategy

Three
different
modes

The predictive
commands are deleted
and allocation is
performed reactively
(negotiated or not)

Reaction
transition
(no
optimality)

Holvoet, Weyns, and
Valckenaers (2009)

Agent
driven
(PROSA)

Coordination
(direct
communication
protocol)

Not
considered

Virtual ant
agents
(explore
intention
feasibility)

Behaviour Evolution via
improving
ant objective

Multiple
modes (active
or inactive
state per local
entity)

Own behaviour change
module (forward and
backwards)

Towards
optimal

Jimenez et al. (2015) Decisional
entities

Cooperation
(direct
communication)

Genetic
algorithm

Product
guided by
potential
fields

Structure
Behaviour

Evolution to
improve
strategy

Multiple
modes
(evolvable
characteristics)

Evaluation of expected
operating modes for
improvement through an
iterative process

Towards
optimal

Leitao and Restivo (2006) Holon
driven
(ADACOR)

Cooperation
(Agent UML)

Optimised
schedules
(not
specified)

Guided by
decision-
making
comportment

Structure Reaction via
Bio-inspired
pheromone
dissemination

Two different
modes:
Stationary and
transitory state

Holons increase the
autonomy factor and
reject proposed
allocation

Towards
optimal

Novas et al. (2013) Agent
driven
(PROSA)

Collaboration
(XML
communication
protocol)

Constraint
programming
model

Virtual ant
agents
(explorative
and
intention)

Behaviour Evolution via
bio-inspired
exploration
ants

Multiple
modes (two
objectives per
local entity)

Each agent adapts its
behaviour comparing
schedule and exploratory
solutions

Towards
optimal

Pach et al. (2014) Entity
driven

Iterative
bidding
(potential
fields)

Integer linear
programming

Product
guided by
potential
fields

Structure Reaction to
accomplish
entity
objective

Multiple
modes (two
behaviours
per local
entity)

Intelligent products
change to reactive
potential fields causing
behaviour and posterior
structure switch

Reaction
transition
(no
optimality)

Raileanu et al. (2012) Holon
driven
(PROSA)

Negotiation
(FIPA-ACL)

Offline
planner (not
specified)

Active holon
entity
schedules
product
trajectory

Structure Reaction to
improve
strategy

Three
different
modes

The predictive
commands are deleted
and the allocation is
performed reactively
(negotiated or not)

Reaction
transition
(no
optimality)

DOI : 10.1080/00207543.2016.1218087 4



Valckenaers et al. (2007) Agent
driven
(PROSA)

Coordination
(direct
communication)

Offline
schedule (not
specified)

Virtual ant
agents
(explorative
and
intention)

Behaviour Evolution via
bio-inspired
exploration
ants

Multiple
modes
(evolvable
characteristics)

Holons constantly
change the intention
according to the
exploration ants

Towards
optimal

Zambrano Rey et al.
(2014)

Part-driven
entities

Cooperation
(direct
communication)

Genetic
algorithm

Local
distributed
arrival time
schedules

Behaviour Reaction to
improve with
post-optimal
heuristic

Multiple
modes (local
schedules per
entity)

Parts recalculate local
schedules to improve
behaviour

Heuristic

DOI : 10.1080/00207543.2016.1218087 5



when the predictive schedule deviates, a behavioural switch is triggered when a decisional entity cannot accomplish its

own objective or it discovers an opportunity to evolve.

Regarding the second aspect, the review shows two reasons for switching: to react and to evolve. On one side, in

the react approach, the switching mechanism is triggered by an event-based method to adapt the execution to an unpre-

dicted event. Generally, it seeks to provide continuity in the execution, and to mitigate possible breakdowns. It is there-

fore necessary to constantly monitor the system to detect perturbations. Once a perturbation is detected, the system

evaluates the level of degradation to activate the switch (most suitable operating mode). As an example of a react

approach, Borangiu et al. (2015) propose a control system that detects a perturbation which, depending on the type and

frequency of the perturbation, switches from a hierarchised to a negotiated or non-negotiated heterarchical architecture.

On the other side, in the evolvable approach, the switching mechanism is activated by a periodic (or mixed periodic/

event-driven) technique responsible for reacting and constantly improving the architecture. The switching mechanism

constantly monitors the system, but also performs a predictive/prescriptive analysis of the system dynamics towards an

efficiency improvement. For this purpose, it might contain a technique that anticipates system behaviour or a perfor-

mance evaluator that identifies forthcoming out-of-control situations. As an example of an evolvable approach, Jimenez

et al. (2015) examine the inclusion of a control performance indicator to evaluate system efficiency over time, and con-

sequently have a criterion for featuring continuous evolvable switching.

Finally, a switching technique with an associated degree of optimality was identified in the literature review. While

some studies discuss the use of bio-inspired mechanisms to perform switching, others present proactive mechanisms to

improve the current operating mode. For the bio-inspired mechanism, two examples are ADACOR and ADACOR 2

architectures (Leitão and Restivo 2006; Barbosa et al. 2015). The authors use pheromone dissemination of stigmergy

technology to guide an adequate elements formation after switching. Other examples of bio-inspired mechanisms,

namely PROSA and D-MAS, use virtual ants to explore the intentions of future behaviour and guide decisional entities

through the decision-making process (Valckenaers et al. 2007; Holvoet, Weyns, and Valckenaers 2009; Novas et al.

2013). The degree of optimality of bio-inspired approaches is towards-optimal as, while they do not guarantee an opti-

mal solution, they attempt to obtain the best result in a specific metric. A different approach is the proactive mechanism,

where the architectures execute normally until an event occurs (perturbation or evolution opportunity). At this moment,

the architecture switches either to a predefined configuration according to the type of event (Raileanu et al. 2012; Pach

et al. 2014; Borangiu et al. 2015), or it executes a post-event process to adjust structure and/behaviour of the decisional

entities (Böhnlein, Schweiger, and Tuma 2011; Herrera, Thomas, and Parada 2014; Zambrano Rey et al. 2014). With

predefined configurations, the system has a pre-determined architecture with production strategies and control objectives

tailored for using according to a specific event. However, these approaches lack a degree of optimality because they

focus on reacting to ensure execution continuity according to a pre-determined catalogue. Conversely, some approaches

include post-event processes to respond to perturbations or opportunities for evolution. From the literature review, the

degree of optimality of these approaches reaches heuristic as it employs a method for immediate goals. Still, it is notable

that the degree of optimality is bounded by the reduced time available to respond to the event.

From our point of view, the approaches reviewed have certain characteristics that contribute to an efficient switching

mechanism. However, the papers reviewed do not fully exploit the benefits of reconfiguring a switching mechanism. In

fact, three main limitations for developing an efficient switching mechanism in D-HCA have been identified in the liter-

ature. Firstly, in relation to the interaction between the switching mechanism and the control system architecture, the

switching mechanism of these approaches is integrated into the control system architecture. This condition makes it dif-

ficult to compare different switching approaches as they are applied to different control system architectures. For this

reason, a reference architecture with dynamic possibilities that supports structural/behavioural flexibility, and serves as a

framework tool to implement and compare different switching approaches, is required. A second major limitation is that

the possible operating modes evaluated by the switching mechanisms are bound by changes to only a few alternative

configurations (pre-determined, pre-evaluated or adjustable). In this sense, a switching mechanism is unable to explore

diverse configurations with different outcomes to reach a satisfactory control solution. To improve this, a switching

mechanism might offer a broader scope of control solutions (from diverse operating modes) resulting in better manufac-

turing control systems. Finally, in relation to the optimisation attained by the switching mechanism, the contributions

have not explored different switching mechanism techniques. Efforts have been concentrated on stigmergy or proactive-

configuration mechanisms. However, these techniques have not explored the entire scope of optimisation of the switch-

ing mechanism. In fact, concerning the degree of optimality and the search for optimal switching, only towards-optimal,

heuristics and reaction transition techniques have been addressed. It suggests that the lack of use of better degrees of

optimality resides in the high computational cost associated with dynamic schedules. However, other techniques with

different degrees of optimality need to be explored for solve efficient and reactivity switching requirements.

DOI : 10.1080/00207543.2016.1218087 6



In these circumstances, a general architecture of the proposed approach is introduced in the next section. The

architecture of Pollux features different operating modes and includes a switching mechanism that efficiently manages

the changing of operating modes according to manufacturing needs. This approach is an extension of the work proposed

in Jimenez et al. (2015, 2016). Although this architecture is developed to be used in any control system (i.e. logistics,

robotics, health care), the architecture of Pollux will be applied in this paper to schedule dynamically a flexible job shop

system.

3. Pollux architecture

3.1 Structural and behavioural characteristics

The proposed architecture is an assemblage of decisional entities that, like atomic components, participate in a collective

process to accomplish their own and joint objectives (single or multiple). As in other architectures, a decisional entity in

Pollux is a virtual unit that features autonomous, sociable, cooperative, reactive and proactive behaviour with the capa-

bility of achieving the stated objective(s). From the literature review, the closest studies related to this paper are the

ORCA (Pach et al. 2014) and Borangiu et al. (2015) architectures. This section presents the proposed approach.

3.1.1 Constituent elements: decisional entity

The constituent element of the proposed approach is a decisional entity. A decisional entity is composed of an entity

objective (single or multiple), a decision-making technique, parameters, governance parameters, a communication com-

ponent, a data-storage component and an execution component (see Figure 1(a)). In this approach, the main characteris-

tic of the decisional entities is that the decisional process is ruled by the governance parameters. These are explicit sets

of parameters (defined at the beginning but with the possibility of being changed during execution) that define the

attributes and rules of conduct that dictate the decisional entity action. For example, they can define the objective(s),

the interrelation with other entities, the decision-making technique, the roles of the entities in the shared environment,

the priority of objectives in a multi-objective environment, the conveyor speed or machine capacity, amongst others.

The communication component acts as a data transmitter for the other entities. The data-storage component consolidates

relevant information during system operation. The execution component performs the action of the decisional entity.

The decisional process starts by sensing the current job shop state through the communication component. Then,

with the aim of executing the objective (minimise the makespan or minimise the route for the next operation), the deci-

sion-making technique is activated subject to the current control configuration (parameters and governance parameters).

Figure 1. (a) Internal composition of decisional entities and (b) structure of a general control system architecture.

DOI : 10.1080/00207543.2016.1218087 7



This technique evaluates action alternatives, chooses an action solution based on its own objective, and commands the

actions through the execution component. The configuration of the decisional entity is a key driver in the flexibility and

capability achieved in the proposed approach. For example, depending on the operations strategy, the objective or objec-

tives can meet criteria such as minimising the earliness/tardiness of delivery date, minimising cost, minimising energy

consumption, among many others. Furthermore, the operating modes, or possible executing alternatives, are derived

from the defined governance parameters and decision-making techniques. For instance, the job or resource can be con-

figured with governance parameters that define alternative process routines or the possibility of changing the machines.

Concisely, the configuration of decisional entities set the capabilities for inferring the manufacturing system.

3.1.2 Arrangements of the control system architecture

The control system architecture of this approach is organised in three layers: coordination layer, operation layer and

physical layer (see Figure 1(b)). While the coordination level hosts the decisional entities responsible for global produc-

tion optimisation, the operation level hosts the decisional entities responsible for the functioning and reactivity of the

jobs. The resources and jobs of the flexible job shop are located in the physical layer. This architecture is composed of

three main types of decisional entities: local decisional entities (LDE), resource decisional entities (RDE) and global

decisional entities (GDE). Each one is a virtual decisional entity capable of sensing, processing, storing and acting in

the production environment. This specific definition of the control system architecture and decisional entities used the

concept proposed by Zambrano Rey (2014)

The LDEs, located in the operation layer, are responsible for coordinating the online scheduling and guiding the jobs

located in the physical layer (raw materials, work-in-progress or finished products). The LDE has all the information

related to the manufacturing of the jobs such as the bill of materials, the production sequences and the constituent oper-

ations. The main objective is to support the reactivity requirement in the case of unexpected events. For this, it runs a

decision-making process based on a reactive decision-making technique to guide its behaviour on the flexible job shop

and to support its reactivity.

The RDEs, located in the operation layer, are responsible for controlling the service-oriented resources located in the

physical layer (conveyors, robots, storage systems, AGV, etc.), and fulfilling the objective assigned to the flexible job

shop (i.e. product processing, energy management, machine productive/idle management, maintenance management).

These entities have all the information related to the resource such as processing times, layout information, storage

capacity and operation capacity. The main objective of the RDEs is to maintain resource-related goals whilst ensuring

jobs processing. For this, it processes the jobs and hosts a decision-making technique that optimises resources

behaviour/utilisation.

The GDEs, located in the coordination layer, are responsible for the offline scheduling and fulfilling the global

objectives (i.e. completion of production order, energy management). For this, they host a predictive decision-making

technique to guide the achievement of goals and support the optimality requirement of the control system.

3.1.3 Interactions between decisional entities

Pollux includes a novel contribution for characterising the control system architecture. This approach dynamically

changes the interaction of decisional entities to modify the arrangement of the control system architecture. The pairwise

relation between the governance parameters of two entities defines the interaction between these two decisional entities

and their level of interaction can range from a fully master/slave hierarchical interaction to a fully cooperative heterar-

chical relationship. In the end, the control architecture is characterised by the emergence of the entire set of interactions

within the existing decisional entities. As an example, a GDE might have a governance parameter to define the role in

the machine sequence decision. Specifically, the role refers to the function or part played in the negotiation regarding

machine sequence. The possible values of this role might be coercive, limitary or permissive. While coercive and limi-

tary roles are based on the interaction concept proposed by (Zambrano Rey 2014), the permissive role is created as a

complementary role from the two already defined. A coercive role corresponds to the direct command of actions

(impose an objective, behaviour or action) to be performed by the LDE or RDE. A limitary role concerns the case when

the GDE proposes a set of solutions for the LDE or RDE in a modified master/slave relation. This relation gives some

but not complete autonomy to slave entities. A permissive role is when the GDE delegates full decisional autonomy to

LDE and RDE entities. Figure 2(a) illustrates this concept as it shows a GDE with four governance parameters as an

interaction between each LDE in the control system architecture.

This approach also uses the governance parameters of the entire set of decisional entities (GDE, LDE and RDE) to

define the operating mode of the Pollux architecture. The operating mode gathers the governance parameters of the

DOI : 10.1080/00207543.2016.1218087 8



entire set of decisional entities in a vector, where it becomes an identification characteristic. The advantages of using

this representation are that this unique vector characterises the control system architecture, helps evaluate the benefits of

the architecture in advance, distinguishes a unique architecture capability, provides some insight into an expected result

and serves as a comparator between different operating modes. Figure 2(b) illustrates how the architecture is defined by

the operating modes, using an example with a single GDE, four LDEs and two RDEs. Although the operating mode

defines the interaction with all the LDEs and RDEs, in this example only the relation with the LDEs is illustrated.

Another characteristic of this approach is that the operating mode defines the structure and the influence (decisional

weight) of the entities over the control system architecture. For instance, in a control system architecture with only one

GDE and several LDEs and RDEs, if the GDE has a coercive role over the LDE and RDE in the machine sequence, a

fully hierarchical architecture emerges. This implies that the GDE has complete control over the flexible job shop sys-

tem. On the contrary, if the role of the GDE is defined as permissive, a fully heterarchical architecture emerges. As a

result, the LDE has complete control over the flexible job shop. Figure 2(c) illustrates this characteristic.

Figure 2. (a) Relation between GDE’s governance parameters and an operating mode, (b) operating modes defining the structure of
the control system architecture and (c) illustration of control of dynamic hybrid control architectures.

DOI : 10.1080/00207543.2016.1218087 9



3.2 Dynamic characteristics of the control system architecture

A switching mechanism is introduced in this approach to manage the dynamism of the control system architecture.

Indeed, it adjusts the operating mode to respond to flexible job shop requirements (typically, opportunities and perturba-

tion reactiveness). The goal of the switching is to pursue an optimal operating mode according to these events. In this

sense, a switching mechanism in Pollux is defined as an external or internal instrument of the D-HCA responsible for

changing the operating mode in the control system architecture. In general, the switching mechanism process has two

responsibilities. Initially, it is in charge of tuning the initial operating mode U1 according to the complexity of the jobs

to be processed and system availability. This is considered as the offline process. When execution begins, it is in charge

of monitoring the flexible job shop, triggering the switching, executing a switching technique that searches for the new

operating mode Uj and executing the changes to reconfigure the control system architecture from U1 to Uj whenever

necessary. Figure 3 illustrates and details the switching mechanism process after the occurrence of an unexpected event.

3.4 Implementing Pollux

In order to facilitate the implementation of Pollux, the following list presents different possibilities for setting up this

D-HCA.

• Structural characteristics

(a) Constituent elements: holons, agents, part-units or objects.

(b) Interaction of elements: UML (unified modelling language), agent-UML, contract nets, FIPA-ACL (agent

communication language for the FIPA standards organisation), XML (extensible mark-up language) or sockets

communication.

Figure 3. General process of Pollux’s switching mechanism.

DOI : 10.1080/00207543.2016.1218087 10



• Behavioural characteristics

(a) Predictive schedule generation: mathematical programming (linear programming, integer programming, mixed

integer and linear programming), non-linear programming or metaheuristics (genetic algorithms, grasp, tabu

search, bio-inspired).

(b) Reactive control policy: heuristics, dispatching rules, bidding processes, first available machine potential fields,

neural networks or genetic learning.

• Dynamic characteristics of control system architecture

(a) Switching type: structural and behavioural.

(b) Switching purpose: reacting to perturbations, evolving to better conditions or both.

(c) Operating mode: operating modes used in Pollux.

(d) Switching mechanism: mathematical programming, approximation algorithms, evolutionary algorithms, swarm

algorithms, artificial intelligence, heuristics or simulation-based optimisation.

(e) Degree of optimality: optimal, near-optimal, towards-optimal, heuristics or reaction transition.

4. Application of Pollux: case study

This section presents the application of Pollux on a real full-size academic flexible job shop system. In this study, Pollux

dynamically controls scheduling by determining job dispatch and machine order for each job to be processed, named

job dispatching and machine sequence, respectively, in this paper. Production is considered in a dynamic environment

and predefined perturbations are examined. This section is organised as follows. Firstly, it is described the flexible job

shop system used in this case study. Then, the structural and behavioural characteristics are presented. Afterwards, the

switching mechanism is presented. Finally, the technical implementation of the case study in the manufacturing system

is described.

4.1 System description

The case study presented in this paper is for the production in the AIP-PRIMECA flexible job shop located at the

University of Valenciennes. The flexible job shop system is composed of seven machines connected by a

MONTRACTEC monorail transport system with self-propelled shuttles. The transport system contains 22 transfer gates

(controlled by 18 PLC-Wago controllers 750-841) that move according to the route requested by the shuttles. The

machines are three KUKA assembly robots (M2, M3 and M4), an automated inspection unit composed of a COGNEX

camera (M5), a manual-inspection unit (M6), a redundant assembly robot (M7) and a FESTO handler for loading/unload-

ing jobs (M1). Machines M6 and M7 are not used in this paper. Seven types of jobs (B, E, L, T, A, I and P) can be pro-

duced. Each job has a predetermined sequence of operations to be processed. The jobs to be processed are defined in a

data-set which includes the number of jobs to be produced and the number of shuttles permitted in the flexible job shop

at the same time. During execution, each job is dispatched for processing when the load/unload machine (M1) positions

a plate on a shuttle. The shuttles are self-propelled devices that prepare and guide the jobs through the transport system.

For more information about the flexible job shop system at Valenciennes, the interested reader can consult Trente-

saux et al. (2013). Figure 4 illustrates the layout, the sequence of operations, the processing times, and the operation

processed in each machine from the AIP-PRIMECA facility (Valenciennes).

4.2 Structural and behavioural characteristics

The proposed approach is built over three layers: the operation, the coordination and the physical layer. The operation

layer contains n LDEs as jobs to be produced, and five RDEs as available machines in the flexible job shop system. A

GDE is created to hold the predictive schedule generation technique (offline) of the jobs to be processed. For this, it

solves the dispatching and machine sequence of each job according to the MILP model formulated in Trentesaux et al.

(2013). For this, it was used the IBM ILog Cplex optimisation studio (IBM ILOG CPLEX 2016) using concert technol-

ogy (C++). The LDE reactive control policy is guided by the potential fields approach. The potential fields approach is

a reactive control policy technique that guides the routeing of the jobs depending on the emission of the potential fields

of the RDEs (e.g. Machines). This field, which can be attracting or repelling fields, is dynamically calculated by the

DOI : 10.1080/00207543.2016.1218087 11



availability of the machines (RDEs) that process the requested operation and distance between machine and job (LDEs).

Further reading about potential fields in manufacturing, applications can be found in Pach et al. (2012).

The instantiation of the decisional entities (GDEs, LDEs and RDEs) is illustrated in Table 2. The GDE contains two

governance parameters for each LDE for defining the pairwise interaction. Whilst the first governance parameter defines

the role of the GDE regarding the dispatching of the job, the second governance parameter defines the machine

sequence of the LDE. This definition in the GDE governance parameters is extrapolated for each LDE in the control

system architecture. For instance, if there four LDEs, the GDE will have eight governance parameters. In this case

study, the values of the governance parameters are coercive (C), to impose GDE intentions on the LDEs or permissive

(P), to provide LDEs with local autonomy.

4.3 Dynamic characteristics and switching mechanism

The switching mechanism in the proposed D-HCA is based on the concept of evolutionary algorithms, specifically

genetic algorithms. A genetic algorithm (GA) is a population-based optimisation technique that simulates the evolution

process in order to reach an optimal or near-optimal solution according to a fitness function (Holland 1992). It has pow-

erful optimisation ability, fast calculation, simple principles and operations, robust generality, and global search space

ability (Pan et al. 2011). In this technique, an appropriate encoding, called chromosome, is defined to represent a feasi-

ble solution to the problem. It is used because GA chromosomes adjust perfectly to the operating modes and the repre-

sentation of the control system architecture. The switching mechanism aims to maintain a set of feasible operating

modes that evolve in parallel with execution and serves as a contingency plan in case of a disruptive event.

The process starts when the switching mechanism retrieves the data from the set of jobs to be processed. The

switching mechanism uses the GA technique in two separate instances, named GA-tuning and GA-contingency tech-

niques. Firstly, the GA-tuning technique is used to form a population of different operating modes of the control system

architecture. It aims to obtain alternative operating modes in terms of population efficiency and diversity. Then, when

execution starts, the GA-contingency technique periodically improves the same population based on its fitness function.

This technique runs repeatedly and in parallel with execution every Δt according to the corresponding manufacturing

Figure 4. Flexible job shop at the University of Valenciennes.

DOI : 10.1080/00207543.2016.1218087 12



conditions. When a perturbation occurs, the switching decision process changes the operating mode according to the

most suitable chromosome from the most recent GA-contingency solution. Finally, the system adopts the alignments of

the new operating mode to react to the new environmental conditions. The parameters of the genetic algorithms are pre-

sented in the next subsection. In addition, as an instance of the switching process in Section 3.2, Figure 5 illustrates the

corresponding process of the switching mechanism described above.

4.4 Design of GA-tuning and GA-contingency techniques

This subsection presents the settings of the GA-tuning and the GA-contingency techniques. Figure 6 illustrates the use

of the genetic algorithm in the Pollux switching mechanism process.

• Chromosomes: the chromosomes for the GA represent a control strategy in the control system. For this, both GA

techniques uses the operating modes of the control system architecture. The operating mode is described in Sec-

tion 3.2.

• Coding: the coding is these techniques is used to represent the governance parameters in each decisional entity.

Both techniques uses a binary value at each gene according to the role of the GDE in the production environment

(1 = Coercive role/0 = Permissive role). For example, if the gene of the chromosome is 1 for the first position, the

interaction of the GDE with the correspondent LDE (previously allocated) is coercive and the LDE will follow

the commands given by the GDE. Likewise, if the gene is 0, the correspondent LDE will act by its own decision-

making technique and will ignore the GDE commands.

• Population: subset of feasible operating modes in the control system architecture.

• Initial population: for the GA-tuning technique, 10 chromosomes were selected for the initial population. Since

the GA is only used for setting the control system architecture (and not for job scheduling, for example), a previ-

ous empirical study for this case study showed that this number of chromosomes was sufficient for our objective.

For the GA-contingency technique, the initial population was obtained from the last iteration population of the

GA-tuning technique.

Table 2. Composition of each element.

GDE LDE RDE

Number of
entities

1 n 5 (M1, M2 M3 M4

M5)
Responsibility Predictive scheduling of job to be

processed
Guide job execution and coordinate reactive
schedules if necessary

Process the jobs and
inform status of
completion

Decisional components
Objective Minimising total jobs makespan Minimise completion time of next operation Null (not used in case

study)
Decision-

making
technique

Mixed integer linear programming
(MILP) programmed in IBM Ilog Cplex

Rational decision: evaluation of available
alternatives and proximity to machine for next
operation with a heterarchical relation (or
following imposed decision with a hierarchical
relation)

Null (not used in case
study)

Governance
parameters

Two for LDE with role in dispatching
and machine sequence decisions,
Coercive or Permissive (14 in total)

No flexibility in behaviour Null (not used in case
study)

Communication components
GDE with … Not necessary (unique entity) Coercive imposes MILP intentions. Permissive

allows LDE autonomy
Not used

LDEs with
…

Information regarding current flexible
job shop status

Not used Request the potential
field when it reaches a
decisional point

RDEs with
…

Report availability Broadcasts machine availability using potential
fields

Not used

DOI : 10.1080/00207543.2016.1218087 13



• Evaluation chromosome: a simulation model of the same flexible job shop programmed in NetLogo agent-

programming software was evaluated (Wilensky 1999).

• Offspring selection: the GA-tuning technique used the restricted tournament method. The GA-contingency tech-

nique used the tournament method.

• Offspring crossover: both techniques have a uniform crossover with 50%/50% from parent genes.

• Offspring mutation: both techniques use the bit inversion mutation with a probability pm = 0.3.

• Stop criteria: the stopping criteria of the GA-tuning technique were three repetitions of the population average

after achieving an optimality gap of 10%. The GA-contingency technique had a limited execution time of Δt.

4.5 Technical implementation of the case study

Consistently with the architecture of Pollux, the application was implemented in three layers. The hardware from the

system was included in level 0 as it holds the physical layer of the flexible job shop (robots, inspection units, shuttles,

transfer gates, positioning units). Level 1 holds the operation layer with a network of laptop computers allocating the

LDEs (Asus Eee PC Intel (R) atom (TM) 1015PEM CPU@ 1.50 GHz with 1.00 GB of RAM memory) as jobs to be

processed. Level 2 holds the coordination layer and the GDE in a PC (Intel(R) Core(TM) i5-3317U CPU@ 1.70 GHz

with 4.00 GB of RAM memory). While each laptop computer runs a Java program for the LDEs behaviour, the PC runs

a Java scheduling program for the GDE. The agent-based software Netlogo is used in this paper to simulate beforehand

the comportment of the case study flexible job shop, specifically to evaluate the fitness of the GA chromosome. The

IBM Cplex Optimisation software is used to program the MILP model (Trentesaux et al. 2013) of the flexible job shop,

where it schedules offline the jobs. The three levels are connected via an Ethernet network and they communicate using

the TCP/IP protocol. A WLAN connects the laptop computers and is connected to the Ethernet network through a

Router. In the next section, the experiments conducted for the case study and the results to verify the contribution of

our approach are presented.

Figure 5. Sequence diagram of the switching mechanism for the case study.

DOI : 10.1080/00207543.2016.1218087 14



5. Experiments and results

This section presents the experiments conducted in the introduced flexible job shop to demonstrate the contribution of

Pollux in manufacturing control systems. The benchmark data-set C0 of Trentesaux et al. (2013) was tested in the

AIP-PRIMECA. The jobs to be processed are a data-set that includes one job of each type (B, E, L, T, A, I and P), lim-

ited to four shuttles at a time. The operating mode for this data-set is the 14 genes as the interaction of the GDE with

the LDEs. The perturbation considered is a breaking down of the machine (M3) at 100 s after the execution starts. For

this, the machine is disconnected from the system. To outline the advantages of Pollux in the experiments, four

scenarios were created. In scenarios A and B, Pollux was tested with different Δt parameters for the GA-contingency

technique (switching mechanism). Scenario C was considered as a reference scenario, presented in the ORCA approach

(Pach et al. 2014), to compare the performance. This scenario starts the production execution with a predictive schedul-

ing technique. It starts with an MILP model and changes to reactive technique (also potential fields) at the switching

point. Still, whilst this change is performed just for the affected jobs, the not affected jobs stay with the predictive solu-

tion. Finally, scenario O is a fully hierarchical architecture with no perturbations.

In the first part of the experiment, considering that the only difference between scenarios A and B is the parameter

of the GA-contingency technique, it is conducted the GA-tuning technique for these scenarios. Figure 7 presents the

evolution of the GA-tuning technique, which plots the total makespan of the jobs processed and the time taken for each

algorithm iteration.

In Figure 7, it can be seen the evolution of the chromosomes (operating modes) considered in the GA-tuning tech-

nique. This technique tunes the initial population of the GA-contingency technique in terms of optimality (average

makespan of 423.6) and diversity (standard deviation of 12.51 due to restricted tournament selection). The average time

to execute each chromosome in Netlogo was 0.286 s. The convergence of the GA-tuning technique in these experiments

Figure 6. Switching mechanism process applied to the case study.

DOI : 10.1080/00207543.2016.1218087 15



was achieved in 35.72 s (15 iterations). The parameter Δt for the GA-contingency technique was defined as 30 and 40 s

for two cases before and after the algorithm convergence. Still, this definition assumes that GA-contingency technique

has a similar comportment to GA-tuning technique as it has the same population and its fitness function is evaluated

using the same simulation tool (NetLogo).

In the second part of the experiments, four scenarios were tested in the real flexible job shop. In scenario O, the jobs

were dispatched resulting a makespan of 404 s. In scenario A, the production of the jobs was conducted implementing

Pollux with a GA-contingency technique every 30 s. For this, the switching mechanism retrieved the data from the flexi-

ble job shop every 30 s to readjust the initial state of the Netlogo Model. After the perturbation, the makespan of sce-

nario A was 457 s (13.12% degradation). In scenario B, where the GA-contingency technique was executed every 40 s,

the makespan was 466 s (15.34% degradation). In scenario C, the makespan was 504 s (24.75% degradation). Figure 8

illustrates the results of the experiments and compares the results with an existing D-HCA approach (ORCA).

Figure 7. Process evolution in the GA-tuning technique.

Figure 8. Makespan comparison for three different execution strategies.

DOI : 10.1080/00207543.2016.1218087 16



The results outline that the proposed approach has a better performance than a reference approach (ORCA), but

complementary statistical studies must be led to confirm possible generalisation of these results. In scenario C, even though

it is observed that jobs unrelated to Machine 3 (perturbed resource) are not directly affected, the affected jobs have an indi-

rect impact as they employ the previously assigned and available resources. Consequently, no affected jobs start looping

through the flexible job shop searching for the predictive intention. On the contrary, in scenarios A and B, it was observed

that the new operating modes adjusted better to the flexible job shop conditions. Specifically, the new operating mode pre-

evaluated in a simulated tool (Netlogo), considered switching the behaviour of unaffected jobs if needed.

From the experiments led in the real manufacturing system, three different remarks can be deduced. Firstly, an

improvement in reactivity requirement was demonstrated in situations where the proposed D-HCA adjusted the control

solution to a better operating mode. In this sense, it is pertinent to continue research on the inclusion of a switching

mechanism to tailor production control. Secondly, the inclusion of a switching mechanism with an evolutionary tech-

nique represents a promising area of research for D-HCA. In our experiments, this mechanism executed in parallel pro-

vides a set of alternatives to apply in response to unexpected events. However, we are aware that this technique requires

further research, as many problems can occur such as the possibility of not finding a suitable operating mode from the

set of alternatives due to the nature of a perturbation. Nonetheless, a mechanism that searches a sufficiently diverse pop-

ulation motivates us to pursue our research in this direction. Finally, this research helps prove that the D-HCA features

dynamic autonomy shared between global and local control. In this sense, the inclusion of a switching mechanism is

appropriate, as it is needed to adjust this coupled autonomy throughout production execution.

As a synthesis, the main contributions of this paper are twofold. Firstly, this paper proposes a reference architecture

named Pollux, which contains a switching mechanism for dynamic hybrid control architectures. Pollux features a defini-

tion of operating modes that provides a configuration flexibility to the control system architecture. Secondly, this paper

proposes a methodology to include an optimisation method in the switching mechanism. This enables the most suitable

operating mode of the control system architecture to be sought during execution and fulfils optimality and reactivity

requirements. Pollux then proposes a custom-built configuration of the control system architecture according to online

production necessities.

6. Conclusions and future work

In this paper, Pollux, a D-HCA for the dynamic scheduling of a flexible job shop problem is presented. Pollux is pre-

sented as a reference control system that supports the switching process of control system architectures. A general pro-

cess of the switching mechanism and the implications to be considered to achieve optimal switching have been

described. An instantiation of Pollux is discussed and tested in a real flexible job shop. The results of the experiments

conducted in this research illustrate that our model helps support the optimality and reactivity requirements demanded in

production execution. Still, this approach needs complementary statistical studies in order to be generalised.

Several lines of research can be derived from this work. In the short term, considering the genetic algorithm

approach for switching in Pollux, it is necessary to study the threshold between the calculation of a contingency time

and the perturbation. In the medium term, it is necessary to develop different types of switching mechanisms with differ-

ent degrees of optimality to compare performance in dynamic scheduling. This research requires a balance between the

optimality required and the time of execution of the switching mechanism to provide an efficient dynamic solution. In

the long term, the applicability of this approach to other manufacturing control problems and the feasibility of using the

same approach in other domains (i.e. logistics or health care) may be studied.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Colombian scholarship programme of department of science – COLCIENCIAS under grant ‘Convo-
catoria 568 – Doctorados en el exterior’ and the Pontificia Universidad Javeriana under grant ‘Programa de Formacion de posgrados
del Profesor Javeriano’.

ORCID

Jose-Fernando Jimenez http://orcid.org/0000-0001-8336-6240

DOI : 10.1080/00207543.2016.1218087 17



References

Baker, A. D. 1998. “A survey of factory control algorithms that can be implemented in a multi-agent heterarchy: dispatching,

scheduling, and pull.” Journal of Manufacturing Systems 17 (4): 297–320.

Barbosa, J., P. Leitão, E. Adam, and D. Trentesaux. 2015. “Dynamic Self-organization in Holonic Multi-agent Manufacturing

Systems: The ADACOR Evolution.” Computers in Industry 66: 99–111. doi:10.1016/j.compind.2014.10.011.

Böhnlein, D., K. Schweiger, and A. Tuma. 2011. “Multi-agent-based Transport Planning in the Newspaper Industry.” International

Journal of Production Economics 131 (1): 146–157. doi:10.1016/j.ijpe.2010.04.006.

Bongaerts, L., L. Monostori, D. McFarlane, and B. Kádár. 2000. “Hierarchy in Distributed Shop Floor Control.” Computers in

Industry 43 (2): 123–137. doi:10.1016/S0166-3615(00)00062-2.

Borangiu, T., S. Răileanu, T. Berger, and D. Trentesaux. 2015. “Switching Mode Control Strategy in Manufacturing Execution

Systems.” International Journal of Production Research 53 (7): 1950–1963. doi:10.1080/00207543.2014.935825.

Cardin, O., D. Trentesaux, A. Thomas, P. Castagna, T. Berger, and H. B. El-Haouzi. 2016. “Coupling Predictive Scheduling and

Reactive Control in Manufacturing Hybrid Control Architectures: State of the Art and Future Challenges.” Journal of Intelli-

gent Manufacturing: 1–15. doi: 10.1007/s10845-015-1139-0

Dilts, D. M., N. P. Boyd, and H. H. Whorms. 1991. “The Evolution of Control Architectures for Automated Manufacturing Systems.”

Journal of Manufacturing Systems 10 (1): 79–93. doi:10.1016/0278-6125(91)90049-8.

Gunasekaran, A., and E. W. Ngai. 2012. “The Future of Operations Management: An Outlook and Analysis.” International Journal

of Production Economics 135 (2): 687–701. doi:10.1016/j.ijpe.2011.11.002.

Herrera, C., A. Thomas, and V. Parada. 2014. “A Product-driven System Approach for Multilevel Decisions in Manufacturing Plan-

ning and Control.” Production & Manufacturing Research 2 (1): 756–766. doi:10.1080/21693277.2014.949895.

Holland, J. H. 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control,

and Artificial Intelligence. Arbor, MI: University of Michigan Press.

Holvoet, T., Weyns, D., and Valckenaers, P. 2009. “Patterns of Delegate Mas”. Third IEEE International Conference on Self-adaptive

and Self-organizing Systems, 2009. SASO’09. IEEE. September 1–9. doi:10.1109/SASO.2009.31.

IBM ILOG CPLEX Optimize studio. High-Performance Mathematical Optimization Engines. http://www-01.ibm.com/software/integra

tion/optimization/cplex-optimizer/

Jimenez, J. F., A. Bekrar, D. Trentesaux, G. Z. Rey, and P. Leitao. 2015. “Governance Mechanism in Control Architectures for Flexi-

ble Manufacturing Systems.” IFAC-PapersOnLine 48 (3): 1093–1098. doi:10.1016/j.ifacol.2015.06.229.

Jimenez, J. F., A. Bekrar, D. Trentesaux, G. Z. Rey, and P. Leitao. 2016. “A Switching Mechanism for Optimal Coupling of Predic-

tive Scheduling and Reactive Control in Manufacturing Hybrid Control Architectures.” International Journal of Production

Research: 1–16. doi:10.1080/00207543.2016.1177237.

Lee, C. K. M., Y. Lv, and Z. Hong. 2013. “Risk Modelling and Assessment for Distributed Manufacturing System.” International

Journal of Production Research 51 (9): 2652–2666. doi:10.1080/00207543.2012.738943.

Leitão, P, and F. Restivo. 2006. “ADACOR: A Holonic Architecture for Agile and Adaptive Manufacturing Control.” Computers in

Industry 57 (2) (February): 121–130. doi:10.1016/j.compind.2005.05.005.

Novas, J. M., J. Van Belle, B. Saint Germain, and P. Valckenaers. 2013. “A Collaborative Framework between a Scheduling System

and a Holonic Manufacturing Execution System.” In Service Orientation in Holonic and Multi Agent Manufacturing and

Robotics, 3–17. Berlin Heidelberg: Springer. doi: 10.1007/978-3-642-35852-4_1.

Pach, C., A. Bekrar, N. Zbib, Y. Sallez, and D. Trentesaux. 2012. “An Effective Potential Field Approach to FMS Holonic Heterarchi-

cal Control.” Control Engineering Practice 20 (12) (December): 1293–1309. doi:10.1016/j.conengprac.2012.07.005.

Pach, C., T. Berger, T. Bonte, and D. Trentesaux. 2014. “ORCA-FMS: A Dynamic Architecture for the Optimized and Reactive Con-

trol of Flexible Manufacturing Scheduling.” Computers in Industry 65 (4) (May): 706–720

Pan, Y., W. X. Zhang, T. Y. Gao, Q. Y. Ma, and D. J. Xue. 2011. “An Adaptive Genetic Algorithm for the Flexible Job-Shop

Scheduling Problem.” 2011 IEEE International Conference on Computer Science and Automation Engineering 4: 405–409.

IEEE. doi: 10.1109/CSAE.2011.5952878.

Raileanu, S., M. Parlea, T. Borangiu, and O. Stocklosa. 2012. “A JADE Environment for Product Driven Automation of Holonic

Manufacturing.” In Service Orientation in Holonic and Multi-agent Manufacturing Control, 265–277. Berlin Heidelberg:

Springer. doi: 10.1007/978-3-642-27449-7_20.

Saharidis, G. K., Y. Dallery, and F. Karaesmen. 2006. “Centralized vERSUS Decentralized Production Planning.” RAIRO –

Operations Research 40 (2): 113–128. doi:10.1051/ro:2006017.

Trentesaux, D. 2009. “Distributed Control of Production Systems.” Engineering Applications of Artificial Intelligence 22 (7):

971–978. doi:10.1016/j.engappai.2009.05.001.

Trentesaux, D., C. Pach, A. Bekrar, Y. Sallez, P. Leitao, and J. Barbosa. 2013. “Benchmarking Flexible Job-shop Scheduling and

Control Systems.” Control Engineering Practice 21 (9) (September): 1204–1225. doi:10.1016/j.conengprac.2013.05.004.

Valckenaers, P., H. Van Brussel, P. Verstraete, and B. Saint Germain. 2007. “Schedule Execution in Autonomic Manufacturing Execu-

tion Systems.” Journal of Manufacturing Systems 26 (2): 75–84. doi:10.1016/j.jmsy.2007.12.003.

DOI : 10.1080/00207543.2016.1218087 18



Wilensky, U. 1999. NetLogo. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University.

http://ccl.northwestern.edu/netlogo/.

Zambrano Rey, G. 2014. Reducing Myopic Behavior in FMS Control: A Semi-heterarchical Simulation Optimization Approach. PhD

diss., University of Valenciennes and Hainaut-Cambrésis (France).

Zambrano Rey, G., A. Bekrar, V. Prabhu, and D. Trentesaux. 2014. “Coupling a Genetic Algorithm with the Distributed Arrival-time

DOI : 10.1080/00207543.2016.1218087 19




