
HAL Id: hal-03429378
https://uphf.hal.science/hal-03429378

Submitted on 15 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A hybrid reinforced learning system to estimate
resilience indicators

Simon Enjalbert, Frédéric Vanderhaegen

To cite this version:
Simon Enjalbert, Frédéric Vanderhaegen. A hybrid reinforced learning system to estimate re-
silience indicators. Engineering Applications of Artificial Intelligence, 2017, 64, pp.295-301.
�10.1016/j.engappai.2017.06.022�. �hal-03429378�

https://uphf.hal.science/hal-03429378
https://hal.archives-ouvertes.fr


A hybrid reinforced learning system to estimate

resilience indicators

Simon Enjalberta,b,c, Frédéric Vanderhaegena,b,c

aUniv Lille Nord de France
bUVHC, LAMIH

cCNRS UMR 8201, F-59313 Valenciennes

Abstract

This paper describes a learning system based on resilience indicators. It

proposes a hybrid learning system to estimate Human-Machine System per-

formance when facing unprecedented situations. Collected data from various

criteria are compared with data estimated using the local and the global re-

silience indicators, to give both instantaneous and over-time Human-Machine

System states. The learning system can be composed of two different, sep-

arate reinforcement functions; the first allowing reinforcement of its own

system knowledge and the second allowing reinforcement of its estimation

function. When used together in a hybrid approach, the resilience indicator

estimation should be improved. The learning system is then applied in a sim-

ulated air transport context and the impact of each reinforcement function

on resilience indicator estimation is assessed. The hypothesis on performance

of hybrid reinforcement learning is confirmed and it provides better results

than those obtained by the knowledge based reinforcement or the estimation

based reinforcement alone.
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1. Introduction

Ouedraogo et al. (2013) defined resilience as the positive ability of a

Human-Machine System (HMS) to recover from or adapt to critical situ-

ations. The recovery function consists of getting back to the previous nor-

mal functioning state and the adaptation function aims to provide the system

with a new stable functioning state. A large amount of research has been per-

formed in research laboratories about system safety and security in transport

or industry based on this concept (Orwin and Wardle, 2004; Pérez-España

and Arreguın-Sánchez, 2001; Enjalbert et al., 2013; Cacciabue et al., 2013).

Some of this research involves assessment based on various criteria. These

system evaluation criteria mainly concern human or machine behaviours or

their effects, or the occurrence or consequences of external perturbations.

These effects or perturbations relate for instance to human workload (Van-

derhaegen, 1997), to human errors (Lin et al., 2015), to the quality or the

production of services (Polet et al., 2009), and to the quality of coopera-

tion or learning activities (Vanderhaegen et al., 2006). Therefore, resilience

emerges in a risk management process and relates to the system capacity

to survive both planned and unexpected hazardous events (Enjalbert et al.,

2011). Unprecedented situations are defined as events with a very low fre-

quency of occurrence and/or which may have catastrophic consequences for

HMS.

This paper focuses on the learning system developed to estimate resilience

indicators. The reinforcement functions of the learning system concern re-

inforcement of the system knowledge and reinforcement of the estimation

parameters. This hybrid approach has been developed and tested on a flight
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simulator during an in-flight refuelling activity involving a team composed

of four people. Several unexpected events with potential catastrophic conse-

quences are incorporated and data collected on HMS during unprecedented

situations are used by the hybrid reinforced learning system to estimate the

local and the global resilience indicators.

In the second section of the paper, the need for resilience indicators and the

principles of the reinforced iterative learning approaches are presented in or-

der to introduce the contribution of the present work. In the third section,

the generic architecture of the learning system is detailed with specific focus

on reinforcement functions. Finally, a validation example showing the impact

of reinforcement functions on resilience indicator estimation is described and

the effectiveness of hybrid reinforcement is demonstrated.

2. Learning approaches and resilience assessment

Several concepts of learning can be found in literature. For instance,

learning by imitation or observation consists in copying a given behaviour,

or a sequence or a repetition of behaviours (Chella et al., 2006; Calinon

et al., 2007). When facing a new situation for which no knowledge is de-

fined, trial-and-error based learning should be applied (Rose et al., 2014).

A redundant learning system is another way to engage the learning capac-

ity of the system (Vanderhaegen and Zieba, 2014). Cooperative learning or

co-learning are then useful for exchanging data between decision makers in

order to understand the learning process or to share knowledge (Doisy et al.,

2014). Effective techniques, characterized by efficient self-learning and adap-

tivity abilities, have been employed to construct learning systems (Xu and
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Yan, 2004; Liu et al., 2013; Norrlöf and Gunnarsson, 2005; Wiering and van

Hasselt, 2008). Many of these involve reinforcement learning or reinforced

learning. Reinforcement learning is usually applied for repetitive tasks, in

order to minimize tracking errors. If the error reduction is successful, the

reinforcement is based on a reward for managing knowledge. Other authors

prefer using the vocabulary of reinforced learning because their interest is

not limited to repetitive tasks and error tracking reduction. Vanderhaegen

et al. (2011) focused on the learning from human errors in order to provide

human operators with decision support tools .

In this study, the learning approach objective is to estimate missing or im-

measurable data from Human-Machine System facing unprecedented situa-

tions. In the first section, a theoretical analysis based on extended State of

the Art of Iterative Learning Control (ILC) systems is proposed. Then, in a

second section, indicators based on resilience criteria for HMS are developed.

Finally, these indicators are adapted to reinforced learning approaches.

2.1. Iterative learning control systems

The feedforward process aims at assessing the future possible decisions

regarding the current system states and the management of the previous

ones. The feedback aims at recovering possible erroneous knowledge, at re-

fining knowledge or at creating new knowledge (Vanderhaegen, 2010). So the

feedforward-feedback mechanism that consists in using the current knowledge

related to previous activities in order to calculate the future ones. A great

number of research works have proposed feedback and/or feedforward con-

trollers using different methods in order to reach the mentioned objectives.

There are frequency based approach (related to iteration frequency) or tem-
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poral based approach (related to timing process).

Iterative Learning Control (ILC) systems are used to benefit from the

repetitive nature of the tasks as experience gained to compensate for the

poor or incomplete knowledge of the plant model and disturbance. The re-

peatability of the task determines the learning ability of the ILC. Current

(ei) in Equation (1) and previous (ei−1) in Equation (2) tracking errors ,

and previous input ui−1 are used to assess the current input ui in Table 1.

The recursive process of ILC technique to assess the current characteristics

and to improve tracking control performance in batch processes is given in

Equation (3). The formalism can be seen as a generalization of the previ-

ous ones; the control is done regarding the previous errors at certain level

because of limited memory capacity. A feedback-feedforward structure for

the trajectory tracking of a linear Direct Current motor is given in Equation

(4). The same structure for sharp tracking control of a manipulator robot,

by employing a saturated input γ which limits the control input within a

reasonable bound, was also proposed. The corresponding learning control

updating law is given by Equation (5). The class of non-linear systems to

which the proposed learning scheme can be applied is then extended. A

combined feedback-feedforward controller and disturbance observer designed

for a direct drive motion control was proposed in Equation (6). The digital

disturbance observer is included in the proposed feedbackfeedforward con-

trol structure to compensate for disturbances (friction and cogging effects).

Finally, a framework for the assessment of the consequences of human errors

based on learning and prediction of the actions of a human operator is given

in Equation (7) in Table 1. These processes are modelled by using the itera-
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Table 1: Different formalisms for feedforward and/or feedback based learning control.

References Formula

Xu et al. (2004) ui = ui−1+Gfeedforward(ei−1)

(1)

Ojha et al. (2017)

Geng et al. (2017)

Xu et al. (2004) ui = ui−1+Gfeedback(ei)

(2)

Radac and Precup (2016)

Lee and Lee (2007) ui = ui−1+G1(ei−1)+· · ·+Gp(ei−p)

(3)

Lee et al. (2000) ui = ui−1+Gffei−1+Gfbei

(4)

Jang et al. (1995) ui = γνi = γ(ui−1+Gffei−1+Gfbei)

(5)

Yan and Shiu (2008)

ui = uffi + ufbi − udi

= Gff (ei−1, ui−1) +Gfbei −Gd(ei−1, ui−1)

(6)

Vanderhaegen et al. (2009) ui = ei+G((ei−1, ui−1), . . . , (e0, u0))

(7)

Polet et al. (2012)
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tive learning control concept and by integrating it in a feedforward-feedback

approach.

ILC has become a competitive control method through the development of

different learning controllers for many applications, essentially in robotic op-

erations, chemical processes and motor drive machines. Initially the ILC

input signal is formed using the error from previous iterations, i.e., the input

ui is computed using the previous input ui−1 and ei−1 in so-called Previ-

ous Cycle Learning (PCL) in Equation (1) or recursively ei−1, . . . , ei−p in

Equation (3). Several authors have computed the input ui using the current

tracking error ei in so-called Current Cycle Learning (CCL) in Equation (2).

Then, it has been proposed to combine the current error, ei with the previous

one ei−1, when forming ui in Equation (4), (5) and (6). This approach leads

to a causal relationship between the current error and the input signal. It

can be seen that PCL and CCL are functioning a complementary manner

with the aim to improve the control performance through Previous and Cur-

rent Cycle Learning (PCCL) structure, complementary role of feedback and

feedforward structures.

The formalisms, summarised in Table 1, are used to deal with machines

processes control (optimize robot or motor motion) during repetitive tasks

mostly tracking errors performance control by managing a static knowledge.

These control processes are not applied to problems involving humans and

do not manage knowledge in unexpected or unprecedented situations. An ex-

tended approach by using the previous couples ((ei−1, ui−1), . . . , (e0, u0)) was

proposed with feedforward-feedback learning control systems having their

updating laws mostly depending on current and/or previous errors in Equa-
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tion (7). The originality of this model is that it is applied to HMS with the

aim to predict human errors. It combines feedforward-feedback processes

and use predefined knowledge that is reinforced or corrected regarding the

observed previous couples.

A State of the Art has been realized to compare different structures of the

feedforward and/or feedback Iterative Learning Control systems in order to

select the more appropriate one or to build an efficient one, for improving

knowledge on known situations and for creating knowledge related to new

situations. Therefore, the proposed article extends the Iterative Learning

Control concept by proposing a hybrid reinforced learning structure that

reinforces the learning by controlling two criteria of learning errors: errors

between knowledge and error between predictions by taking into account

matrices of data instead of vectors of data. Moreover, this new structure is

applied to predict resilience indicators.

2.2. Resilience indicators

The proposed learning contribution should be able to estimate instanta-

neous and over-time HMS states, called respectively the local and the global

resilience indicators. These indicators are based on several criteria such as

the success level of a given task, the safety level of this task or the human

workload in terms of interactions with the technical systems. For an iteration

i and k criteria of resilience, the vector denoted Uki in Equation (8) is based

on two indicators, the local indicator, uki, and the global indicator,
i∑

i=1

uki.

Uki =

 uki
i∑

i=1

uki

 (8)
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An iteration i is a discrete event at the end of a time window, that enables

synchronization between HMS to be compared depending on the situation.

The term Ui is then a vector with k rows, representing the k resilience criteria

for iteration i in Equation (9).

Ui =


U1i

U2i

...

Uki

 (9)

Finally, in Equation (10), the matrix UI is incremented, by iteration 1 to

i with i columns based on Uki vectors.

UI =


U11 U12 . . . U1i

U21 U22 . . . U2i

...
...

. . .
...

Uk1 Uk2 . . . Uki

 (10)

2.3. Reinforced learning systems

Reinforcement or reinforced learning systems are mainly based on the

iterative learning control principle illustrated in Figure 1 with K the content

of a knowledge composed of KI matrices from precedent ’similar’ situations.

Iterative learning control consists, for iteration i and for each of the k

resilience criteria, of using the previous tracking errors εki−1 from a given

reinforcement function Gfeedback and the previous state of HMS in terms of

resilience indicators uki−1 from Ui−1 in UI−1 to estimate the current state of

HMS u∗ki. This process is repeated for the k resilience criteria and can be

generalized as in Equation (11).
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Figure 1: Estimation process in learning system architecture.

U∗
i = Ui−1 +Gfeedback(εi−1) (11)

The tracking error, denoted εi for iteration i, is assessed in Equation (12)

by evaluating the differences between the actual vector Ui from matrix UI

and the estimated vector U∗
i for the k resilience criteria.

εi =


ε1i

ε2i
...

εki

 =


U∗
1i − U1i

U∗
2i − U2i

...

U∗
ki − Uki

 =



 u∗1i − u1i
i∑

i=1

(u∗1i − u1i)

 u∗2i − u2i
i∑

i=1

(u∗2i − u2i)


... u∗ki − uki

i∑
i=1

(u∗ki − uki)





(12)

Other approaches integrate a feedforward-feedback process in order to

take into account possible future tracking errors with another function called

Gfeedfoward in Equation (13):

U∗
i = Ui−1 +Gfeedforward(εi) +Gfeedback(εi−1) (13)
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A way to simplify this approach in Equation (14) considers the tracking

errors as input data εi, and the current result of the function (output) is

defined by combining the previous pairs (εi−1, Ui−1):

U∗
i = εi +Gfeedback(εi−1, Ui−1) (14)

The current and previous errors εi, εi−1, ... ε1, considered as inputs for

estimation of HMS resilience indicators, can be composed from the benefits,

costs and potential deficits or dangers of a given human action (Vanderhaegen

et al., 2011).

At a given iteration i, the reinforced learning system aims to estimate the

local and global indicator values, termed U∗
i in Equation (15) relating to the

previous actual change in UI−1, based on the errors between the previous

estimation, the actual value and the content of a knowledge K:

U∗
i = Gfeedforward(UI−1) +Gfeedback(UI−1, U

∗
i−1, K) (15)

The knowledge K is composed of KI matrices, each containing the local

and the global indicator values for iterations 1 to i. The structure of KI is

then the same as that of matrix UI for iteration i.

Finally, two reinforcement processes are combined to form the iterative learn-

ing function: the first consisting of reinforcing the associated knowledge, and

the second aiming to reinforce the error reduction between the estimated and

actual values. Each reinforcement impact will be individually assessed, then

both reinforcements will be combined in order to produce a so-called hybrid

reinforcement function taking into account both local and global previous

resilience indicators values i.e. a multi objective hybrid reinforcement as

11



suggested by Delgado et al. (2008).

3. Principle of the hybrid learning system

3.1. Generic architecture of the learning system

The generic hybrid learning system architecture is an iterative process,

depicted in Figure 2. Each iteration in the Gfeedfoward function aims to

determine the presence of a similar matrix UI−1 in the knowledge K with the

objective of estimating local and global resilience indicators U∗
i . In terms of

the inputs UI−1, the Gfeedfoward function searches for the KI−1 in K, denoted

EI−1, that is similar to UI−1, in order to identify vector U∗
i that is assumed

to be equal to Ei.

Figure 2: The generic hybrid learning system architecture.

The initial estimation of U∗
i is realized in Equation (16) by applying this

Gfeedfoward(UI−1) function based on the Euclidean norm:

Gfeedforward(UI−1) = U∗
i ,

U∗
i = Ei,

∀KI−1 ∈ K, ||EI−1 − UI−1|| = Min||KI−1 − UI−1||

(16)
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After this, two kinds of reinforcement could be applied to improve esti-

mation performance by using the input matrix UI−1 and previous error εi−1:

• Reinforcement of the current knowledge.

• Reinforcement of the current estimation.

To quantify the impact of the reinforcement functions, the difference be-

tween the Mean Absolute Errors (MAE), and the Mean Squared Error (MSE)

are assessed. The reinforcement processes aim to refine this estimation by

integrating the results of the Gfeedback(UI−1, U
∗
i−1, K) function. At a given it-

eration i, the first reinforcement integrates the knowledge K by considering

the errors between the inputs UI−1 and the knowledge content, whereas the

second reinforcement process takes into account the εi−1 error between Ui−1

and U∗
i−1 made at the previous iteration i − 1. The corresponding Gfeedback

functions are then respectively renamed Gfbk k in Equation(17) for Knowl-

edge reinforcement and Gfbk e in Equation (18) for Estimation reinforcement,

and are defined with the following inputs:

• Knowledge reinforcement:

Gfeedback(UI−1, U
∗
i−1, K) = Gfbk k(UI−1, K) (17)

• Estimation reinforcement:

Gfeedback(UI−1, U
∗
i−1, K) = Gfbk e(UI−1, U

∗
i−1) (18)
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3.2. Knowledge reinforcement

The first reinforcement principle aims to reinforce the knowledge content

related to the gaps between the matrix content KI−1 and the inputs UI−1.

The reinforcement consists, for iteration i, of searching for the winner vector,

denoted Wi−1 in WI−1 in KI−1, which is similar to the input vector Ui−1 in

UI−1. The knowledge reinforcement then proceeds in two steps. The first

step, Gfbk node, aims to reinforce theWI−1 matrix content and the second step,

Gfbk base, consists of merging this new knowledge with the other knowledge

matrices in Equation (19).

Gfbk k(UI−1, K) = Gfbk base(Gfbk node(UI−1, K)) (19)

The Gfbk node(UI−1, K) function in Equation (20) aims to identify the

Wi−1 vector in WI−1 defined as follows:

Gfbk node(UI−1, K) = WI−1,

∀KI−1 ∈ K, ||WI−1 − UI−1|| = Min||KI−1 − UI−1||
(20)

The reinforcement of WI−1 is achieved with the Gfbk node(UI−1, K) func-

tion in Equation (21):

Gfbk node(UI−1, K) = W reinforced
I−1 ,

W reinforced
I−1 = WI−1 + (WI−1 − UI−1)

= 2 ∗WI−1 − UI−1

(21)

The reinforcement of the entire knowledge is performed using theGfbk base(UI−1, K)

function in Equation (22):
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Gfbk base(UI−1, K) = Kreinforced
I−1 ,

∀KI−1 ∈ K,Kreinforced
I−1 6= W reinforced

I−1 ,

Kreinforced
I−1 = KI−1 + (KI−1 −W reinforced

I−1 )

= 2 ∗KI−1 −W reinforced
I−1

(22)

The estimation of U∗
i becomes, in Equation (23):

U∗
i = Gfeedforward(UI−1)

+Gfbk base(Gfbk node(UI−1, K))
(23)

3.3. Estimation reinforcement

For all iterations, the estimation error between Ui and U∗
i , denoted εi, is

assessed using the Gfbk e(UI) function in Equation (24) that is dedicated to

this vector assessment:

Gfbk e(UI , U
∗
i ) = εi (24)

If the error of the previous iteration noted εi−1 is known, then, this as-

sessment can be approximated in Equation (25) as follows:

Gfbk e(UI , U
∗
i ) = εi =

1

2
∗ (εi + εi−1)

=
1

2
∗ (εi−1 + Ui−1 − U∗

i−1)
(25)

Therefore, the estimation of U∗
i is carried out using this error and by

applying the Gfeedforward(UI−1) function in Equation (26):

U∗
i = Gfeedforward(UI−1) + εi (26)
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3.4. Hybrid reinforcement

The hybrid reinforcement integrates both the knowledge reinforcement

and the estimation reinforcement. The Gfeedback(UI−1, U
∗
i−1, K) function is

composed of theGfbk e(UI−1, U
∗
i−1) function and theGfbk k(UI−1, K) function,

in Equation (27):

Gfeedback(UI−1, U
∗
i−1, K)

= Gfbk e(UI−1, U
∗
i−1) +Gfbk k(UI−1, K)

(27)

After integrating the component functions characteristics, this function

becomes, in Equation (28):

Gfeedback(UI−1, U
∗
i−1, K)

= εi +Gfbk base(Gfbk node(UI−1, K))
(28)

The global application for determining U∗
i is then given by Equation (29):

U∗
i = Gfeedforward(UI−1) + εi

+Gfbk base(Gfbk node(UI−1), K)
(29)

4. Evaluation of hybrid reinforced learning system

The Hybrid reinforced learning architecture was tested using a military

air transport system, involving a simulated cockpit with a four-person flight

crew, illustrated in Figure 3. The experiments were performed with the in-

flight refuelling group from the Istres air base (France). Six military teams,

working in small four-person group, were trained together and required to
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take a large number of decisions in uncertain situations. Their activities

were reproducible using a flight simulator of a BC-135 Boeing during in-

flight refuelling.

Figure 3: The military air transport system cockpit.

4.1. Experimental protocol

The experimental scenario was inspired by a real incident. Initially, smoke

accompanied by a burning smell is detected in the cabin. Then, a series of

apparently unlinked faults occur (e.g., frost on the windows, loss of fuel indi-

cations, an overheating transformer, smoke). The aircraft is over the ocean

and cannot land. The problem is an electrical failure and is located in a

specific area of a generator. Its fuse, which is poorly visible, has blown. In

fact, all the failed components have the same origin, but expert opinion is

divided between two possible causes. Thus, the team has to face an ambigu-

ous or uncertain situation. Facing these successive faults, the team has to

make sense of the situation in order to apply the correct procedures. They

are not expected to know the recovery rules, but they have all the manuals
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with which to identify them.

Despite teams differences, comparison between teams could be achieved in

terms of the criteria selected for this study, aggregated into so-called local

and global resilience indicators. Several criteria were defined in order to

evaluate the general Human-Machine System development: criteria related

to system safety, human workload, and the team mission. These criteria

are the main factors concerning system performance in the event of a major

mishap and are evaluated by experts. The goal of the experiment was to

observe the reaction of teams faced with unprecedented situations and to es-

timate the resilience indicators. The specific hypothesis to be tested during

the experiment mainly concerned the way teams reacted (procedures, etc.)

but is not described in this paper, since here we are focusing on the estima-

tion of resilience indicators. A more detailed discussion and description has

been realised by Ouedraogo et al. (2013).

Ui =



 um i

i∑
i=1

um i

 us i
i∑

i=1

us i

 uw i

i∑
i=1

uw i




(30)

For iteration i, the system state in terms of local and global resilience

indicators must be estimated. The resulting matrix, denoted UI , is composed

of vectors Ui depicted in Equation (30), containing the same number of rows
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as there are k criteria of the resilience estimation:

• The team mission criterion um i is the percentage success in achievement

of this mission.

• The safety criterion us i relates to the recovery efficiency to faults.

• The human workload criterion uw i is linked to the number of inter-

actions between staff members (i.e., frequency of communication, ac-

tions) and between the staff and the technical system (e.g., standard

procedures, applied actions).

All the uki were given a score by experts between 0 and 1; with 1 in-

dicating maximum resilience to the situation (success of mission or aircraft

safe or 100% workload available) and 0 the minimum for the worst situations

with respect to the resilience criteria (mission failed or aircraft crashed or

overloaded operators). Then
i∑

i=0

uki is assessed between 0 and i.

4.2. Reinforcement impact assessment

At iteration i, |Eki|, the absolute error for criteria k, is calculated using

Equation(31).

|Eki| =
1

2
∗
(
|u∗k i − uk i|+

1

i
∗

i∑
i=1

|u∗k i − uk i|
)

(31)

Then |Ei| is calculated to provide a single value as the error of estimation

by merging all criteria with the same relative weighting. The result is in the

range [0; 1] in Equation (32).
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|Ei| =
1

k
∗

k∑
k=1

|Eki| (32)

The Mean Absolute Error (MAE) of estimation is summed for i iterations

using Equation (33).

MAE =
1

i
∗

i∑
i=1

|Ei| (33)

Table 2: Difference in MAE on the resilience indicator estimation.

local resilience global resilience

Teams ∆ER ∆KHR ∆ER ∆KHR

Team 1 -0,29 -0,53 -0,15 -0,15

Team 2 0,05 -0,11 0,19 -0,06

Team 3 0,06 -0,20 -0,50 -0,27

Team 4 -0,13 -0,34 0,06 -0,28

Team 5 -0,28 -0,24 -0,05 -0,12

Team 6 -0,43 -0,64 -0,33 -0,49

Average -0,17 -0,34 -0,13 -0,23

Next, the difference in MAE between two functions is calculated at the

end of the experiment to evaluate the reinforcement impact on the estima-

tion process with a result in the range [−1; 1]. Table 2 shows the differences

in Mean Absolute Error (MAE) results obtained between no reinforcement

and the Estimation reinforcement functions, denoted ∆ER, and between the

Knowledge reinforcement and the Hybrid reinforcement functions, denoted
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∆KHR. For the estimation of one particular team, the data from the other

teams were integrated into the knowledge, because the comparisons between

no reinforcement and the Knowledge reinforcement, and between no rein-

forcement and the Hybrid reinforcement functions could not be achieved.

If the MAE difference is positive, then the first function is better than the

second, i.e. no reinforcement gives better results than the Estimation re-

inforcement function for ∆ER and Knowledge reinforcement is better than

Hybrid reinforcement for ∆KHR. Of course, if the MAE difference is neg-

ative, then the second tested function is better than the first. ∆ER was

negative in each case except for team2. This demonstrates the effectiveness

of Estimation reinforcement versus no reinforcement. For ∆KHR, the nega-

tive values, lower than ∆ER in 10/12 cases, demonstrate the value of Hybrid

reinforcement. Finally, the lowest average values confirm the performance of

Hybrid reinforcement for both local and global resilience indicators.

Table 3: MSE on the resilience indicator estimation.

local resilience global resilience

Teams KR ER HR KR ER HR

Team 1 1,31 0,41 0,32 0,63 0,33 0,49

Team 2 0,84 0,46 0,67 0,66 1,14 0,55

Team 3 0,70 0,88 0,40 0,76 0,43 0,43

Team 4 0,71 0,53 0,21 0,55 0,28 0,23

Team 5 0,82 0,71 0,62 0,09 0,15 0,07

Team 6 0,83 0,51 0,11 0,75 0,44 0,20

Average 0,87 0,58 0,39 0,57 0,46 0,33
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The results are reinforced by Table 2, which presents the Mean Squared

Error (MSE) results obtained for the Estimation Reinforcement (ER), the

Knowledge Reinforcement (KR) and the Hybrid Reinforcement (HR). The

same process as for MAE has been used for this calculation, i.e. Eki and

Ei were initially calculated based on errors instead of absolute errors in the

range [−1; 1], and for the final MSE with a result between [0; 4] given in

Equation (34).

MSE =
1

i− 1
∗

i∑
i=2

(Ei − Ei−1)
2 (34)

The function with the lowest MSE is assumed to be the most efficient,

because the difference between the estimated and measured vector was mini-

mized. A value of 0 indicates a perfect estimation of resilience indicators with

no error in the three selected criteria and 4 indicates the maximum error. In

Table 3, the Estimation Reinforcement function provides a 9/12 improvement

over Knowledge Reinforcement, mainly because there is a lack of expert data

for network initialization and training. If each team is considered indepen-

dently, the performance of each function can be assessed. It can be seen

that the performance of the resilience indicators are not necessarily linked;

for instance, team 1 has a very good local HR value (less than the average

MSE value) and very poor global HR value (greater than the average MSE)

because the team members apply the correct manoeuvres in an incorrect se-

quence. the team 2 results are by far the worst in the experiment, because

the team members did not notice smoke in the early stage of the experiment

and apply the correct manoeuvres with delay. There is nothing in particular

to note regarding the team 3 results, except that ER in local resilience is
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slightly better than KR but worse than HR. Finally, teams 1 & 2 & 3 have

HR results that are above the average whereas teams 4 & 5 & 6 are below

the average. This can be explained by the fact these teams have been asked,

at the beginning of the experiment, to follow the same procedures as they

would usually perform, whereas last three teams have been asked to practice

new procedures. The overall performance of the teams as given by average

values shows that the Hybrid Reinforcement is the most efficient function, as

it combines both ER and KR for both local and global resilience indicators.

5. Conclusion

For a Human-Machine System facing a critical situation due to unprece-

dented events, i.e. events with a very rare frequency of occurrence and which

may have catastrophic consequences, the concept of resilience has been de-

fined as the positive ability to recover or to adapt to this critical situation.

A brief discussion on the need to estimate a Human-Machine System state

with resilience indicators has been presented. A solution employing estima-

tion through a learning system has been selected. Therefore, two reinforced

learning functions, using knowledge or estimation reinforcement, and a hy-

brid approach including both of these have been proposed and implemented

to illustrate the feasibility of such estimations. The proposed iterative rein-

forced learning structure has the ability to estimate resilience indicators and

to learn from experience. Because the knowledge reinforcement function re-

quires substantial sets of representative data in order to train the network, it

is less efficient than the estimation reinforcement function. The main advan-

tage of the hybrid reinforcement function is that it combines both estimation
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reinforcement and knowledge reinforcement, so that it allows the most effi-

cient estimation results. However, it is not possible at this stage to provide

consistent statistics, since only six teams were included in the experiment of

this project. The system designed for the estimation of resilience indicator

is a first step with the potential goal of being combined with a model of

Human-Machine System, to simulate more scenario and configurations and

to consolidate the results.

In the future, we aim to refine the reinforcement function in order to reduce

estimation errors. For example, the relative weighting of criteria during rein-

forcement impact assessment could be analysed to improve results. We would

also like to explore the use of more advanced machine learning methods to

implement promising practical estimation structure. An example involving

scenarios applied to urban guided transport systems will be addressed to

perform a more in-depth analysis and to consolidate the early results.
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