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Research Article

Modeling and PDC fuzzy control of
planar parallel robot: A differential–
algebraic equations approach

Benyamine Allouche, Antoine Dequidt, Laurent Vermeiren and
Michel Dambrine

Abstract
Many works in the literature have studied the kinematical and dynamical issues of parallel robots. But it is still difficult to
extend the vast control strategies to parallel mechanisms due to the complexity of the model-based control. This
complexity is mainly caused by the presence of multiple closed kinematic chains, making the system naturally described by
a set of differential–algebraic equations. The aim of this work is to control a two-degree-of-freedom parallel manipulator.
A mechanical model based on differential–algebraic equations is given. The goal is to use the structural characteristics of
the mechanical system to reduce the complexity of the nonlinear model. Therefore, a trajectory tracking control is
achieved using the Takagi-Sugeno fuzzy model derived from the differential–algebraic equation forms and its linear matrix
inequality constraints formulation. Simulation results show that the proposed approach based on differential–algebraic
equations and Takagi-Sugeno fuzzy modeling leads to a better robustness against the structural uncertainties.
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Introduction

In modern societies, manipulators have become a key tool

in industry due to their great versatility in repetitive task.

The mechanical architectures traditionally used in auto-

mated production line are based on serial robots. These

robots are made of a sequence of rigid links serially assem-

bled through revolute and/or prismatic active joints.1 In

other words, the end effector is connected to the base via

a single open-loop kinematic chain which gives them a

large work space and high dexterity.2 Despite these advan-

tages, serial robot suffer from high inertia due to the posi-

tion of actuators, which are located on the moving part,

they also suffer from a low payload to weight ratio and a

low precision due to the cumulative joint errors and link

deflection. Owing to the drawback of serial robot,

parallel manipulators have taken a great interest in many

applications, such as high-speed machining, assembly and

packaging task, flight simulators, and various medical and

space applications.3–7 Parallel robots are generally charac-

terized by their nonanthropomorphic shape, they are com-

posed of an end effector connected to a base by at least

two separate and independent kinematic chain.8 This mul-

tiple kinematic chain provides a high rigidity and agility

with a high payload to weight ratio due to the deportation
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of the actuators to the base and the distribution of the

load between different chain.9 However, they suffer

from some drawbacks such as limited work space, abun-

dance of singularities,10 and complex dynamic model

caused by the presence of multiple closed kinematic

chains (CKCs).11

Many works discussed the kinematic or the dynamic

issues of CKCs.9,12 But it is still relatively difficult to extend

the vast control theory developed for serial manipulator to

the parallel one, and this difficulty is due to the complexity

of the model-based control.13 This complexity comes from

the fact that parallel robot are described by a set of differ-

ential–algebraic equations (DAEs) of index-3.14 This differ-

ential index represents the number of time differentiating the

constraint equations to obtain a set of ordinary differential

equations (ODEs).15 The main difficulty here is the high

differential index (index > 2).16,17 This makes the DAEs not

explicitly expressed in the state–space representation which

is a suitable form for most of the control strategies.

In the case where the model of the robot is given on the

ODEs form, the simplest way for the control is the famous

linear single-axis proportional integral derivative (PID) con-

troller in the joints space.8,18–22 This method is well-known

for its effectiveness under the assumption of locally linear

dynamics. It is verified only for low-speed control and can-

not be efficient over the whole work space with a single

tuning.23 An equivalent version of linear single-axis control

in the Cartesian space is given in the works by Callegari and

colleagues.24–27 In this case many simplifications are

assumed that leads to a lack of accuracy and stability.27

Another famous approach based on feedback linearization

is the computed torque control (CTC).28 This technique is

widely spread in serial robotics8,29,30 and has been imple-

mented on several parallel platforms.23,31 From this, the lit-

erature on the control of parallel robot based on ODE models

is very large and mainly depends on the complexity of the

studied manipulator and the targeted control strategy such as

the sliding mode control,32,33 the H1 control,34,35 the robust

TS control,3 the adaptive control,36,37 the passivity-based

approach,38 and other variances.10,23,39–43 Despite this non-

exhaustive scope, models of CKCs are still complex and

highly nonlinear in most cases which makes the guarantee

of stability in the Lyapunov sense quite difficult.

The aim of this work is to deal with the parallel robot on

its DAE form, the difficulty here is that the DAE forms are

not expressed explicitly in state–space representation.44

From this, in the second section a DAE model is presented,

then the ODE model is deduced to show how complex the

ODE model could be. After that, a technique based on the

input–output linearization (IOL) is used to write the DAEs

model on the state–space representations with an algebraic

equation helping to compute the nonlinear parameters that

represent the internal forces of the robots. The originality

here is that by computing the internal forces the robot can

be fully described by two decoupled submodel and then,

depending on the complexity of those models, the robot can

be controlled either in the joints space or in the operational

space. In the third section, a brief description of the Takagi-

Sugeno (TS) modeling and control is given. The TS mod-

eling is applied on the legs model of 2-degree-of-freedom

(DOF) parallel manipulator by transforming the internal

forces as premises for the control law. The interest of bond-

ing the internal forces is to make the system naturally

robust against the structured uncertainties just by solving

some simple linear matrix inequality (LMI). In the last

sections, a comparison between PDC and CTC control laws

is presented and some concluding remarks are given.

Mechanical modeling of a 2-DOF parallel
manipulator

DAE model of Biglide

The Biglide is a 2-DOF planar parallel manipulator31,45

(Figure 1). This parallel kinematic machine consists of two

bars mounted through a joint on two separate sliding blocks

(active prismatic joints), the extremity of each bar is connected

to an end effector, thereby forming a CKC. This configuration

allows the positioning of the end effector (operational

coordinates: X ¼ ½ x y �T ) at a specified point in the opera-

tional space by controlling the position q ¼ ½ q1 q2 �T (active

joint coordinates) of the prismatic joints.

The kinematic analysis of the Biglide leads to the fol-

lowing constraint of loop closure

�ðq; X Þ ¼ 0 with �ðq; X Þ ¼ ðx� q1Þ2 þ y2 � a2

ðq2 � xÞ2 þ y2 � a2

 !

(1)

The inverse kinematics can thereby be expressed as

q ¼ gðX Þ with gðX Þ ¼
x� CðyÞ
xþ CðyÞ

� �
; CðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � y2

p
(2)

Thanks to its simple mechanism, the forward kinematics

of the Biglide can be easily derived from equation (2)
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Figure 1. Kinematic diagram of Biglide robot.
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½ x y �T ¼ q1 þ q2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðq1 � q2Þ2

4

s2
4

3
5

T

(3)

Under the assumption that the mechanical system satis-

fies the loop-closure constraint, the kinematic relationship

between end effector velocities and active joints velocities

is computed by differentiating the constraint (1) with

respect to time, and this relationship is conveniently

described by two Jacobian matrices JxðX ; qÞ and

JqðX ; qÞ9 as

JxðX ; qÞ _X ¼ JqðX ; qÞ _q (4)

with JxðX ; qÞ ¼
x� q1 y

x� q2 y

� �
, JqðX ; qÞ ¼

x� q1 0

0 x� q2

� �

In order to derive motion equations of the Biglide, the

structural characteristics of the robot are exploited to write

a model based on two independent subsystems: the end

effector dynamics and the open-kinematic chains

dynamics. The actuator forces (robot inputs) are denoted

by � ¼ ½�1 �2 �T (Figure 1). The passive joint coordi-

nates are denoted by � ¼ ½ �1 �2 �T . The robot is subject

to gravity ~g ¼ �g~j with k~j k¼ 1. The active and passive

joint coordinates of each link are denoted by

�i ¼ ½ qi �i �T , i ¼ 1; 2. The dynamics of each leg are

denoted by Hi, while the dynamic of the end effector is

denoted byFP. Thereby, the dynamics can be easily

obtained from different formalisms such as Newton–Euler

equations, Lagrange equations, or virtual work8 as

Hi ¼ M�
i
ð�iÞ€�i þ N�

i
ð�i; _�iÞ _�i þ G�

i
ð�iÞ�i (5)

Fp ¼ MxðX Þ €X þ GxðX ÞX (6)

where M�
i
ð�iÞ ¼

mi �msi sin�i

�msi sin�i Ji

� �
and MxðX Þ ¼

m 0

0 m

� �
represent the inertia matrices

N�
i
ð�i; _�iÞ ¼

bi msicos�i
_�i

0 0

" #
represents the centrifu-

gal and Coriolis matrix

G�
i
ð�iÞ ¼

0 0

0 msigcos�i=�i

� �
and GxðX Þ ¼

0 0

0 mg=y

� �
represent the gravity matrices.

With m, mi, msi, Ji, i ¼ 1,2 are the inertial parameters of

the robot, which are the end effector mass, the mass, and

the first and second moments of link i related to revolute

joint axis on the sliding blocks 1 and 2, respectively.

From the kinematic constraint it is easy to write passive

joints coordinate functions of operational coordinates.

� ¼ �ðX Þ where �ðX Þ ¼ tan�1 CðyÞ
y

� �
½ 1 �1 �T

(7)

Thereby, the velocities of passive joints can be

expressed as

_� ¼ KxðX Þ _X where KxðX Þ ¼

0
1

CðyÞ

0
�1

CðyÞ

2
66664

3
77775 (8)

Using the equations (7) and(8), the dynamic of the open-

kinematic chain Hi, i ¼ f1,2g given by equation (5) are

reordered into active part Hq and passive part H� such that

Hq

H�

" #
¼

M11 M12

M21 M22

" #
€q

€�

" #
þ

N11 N12

0 0

" #
_q

_�

" #

þ
0 0

0 G22

" #
q

�

" #
(9)

with M11 ¼ diag(m1, m2), M12 ¼ M21 ¼ diagð�ms1sin�1;
�ms2sin�2Þ, M22¼diagðJ1; J2Þ, N11¼diagðb1; b2Þ, N12 ¼
diagðms1cos�1

_�1;ms2cos�2
_�2Þ, G22¼diagðms1gcos�1=�1;

ms2gcos�2=�2Þ.
The virtual power P�r of the overall dynamic of the

robot given by the equations 6 and 911,46 is first written

with a dependent virtual velocity field ð _q�T ; _�
�T
; _X
�T Þ

such that

P�r ¼ _q�T ðHq � �Þ þ _X
�T

Fp þ _�
�T

H� ¼ 0 (10)

Using equation (8), the virtual passive velocities is elim-

inated with _�
�T ¼ _X

�T
KT

x , leading to the following form

P�r ¼ _q�T ðHq � �Þ þ _X
�T ðFp þ KT

x H�Þ ¼ 0 (11)

The new virtual velocities field ð _q�T ; _X
�T Þ is still depen-

dent. Therefore, we introduce the Lagrange multipliers

� ¼ ½�1 �2 �T such that, the virtual power of the con-

straint (1) is expressed with equation (4) as follows

P�c ¼ ð _q�T JT
q � _X

�T
JT

x Þ� ¼ 0; 8� ¼ ½�1 �2 �T 2 R2

(12)

Finally, the virtual power with the Lagrange multipliers

is expressed as follows

P� ¼ P�r þ P�c ¼ _q�T ðHq þ JT
q �� �Þ

þ _X
�T ðFp þ KT

x H� � JT
x �Þ ¼ 0 (13)

Given that the Lagrange multipliers are unknown, the

virtual velocities field ð _q�T ; _X
�T Þ may be considered as

independent and then the index-1 DAEs model of the

constrained system in terms of (q, X) is derived from

equation (13) as

P� ¼ 0 8½ _q�T _X
�T �T 2 R4

)

M 011€qþM 012
€X þ N 011 _qþ N 012

_X þ JT
q � ¼ �

M 021€qþM 022
€X þ N 022

_X þ G022X � JT
x � ¼ 0 (14)

Jq _q� Jx
_X ¼ 0

8>><
>>:
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with M 011 ¼ M11, M 012 ¼ M12Kx, M 021 ¼ KT
x M21, M 022 ¼

Mx þ KT
x M22Kx,

N 011 ¼ N11, N 012 ¼ M12
_Kx þ N12Kx, N 022 ¼ KT

x M22
_Kxþ

KT
x N22Kx, G022 ¼ Gx þ KT

x G22�.

Input–output linearization

The DAEs model given by equation (14), presents the

coupled dynamics between the legs and the end effector.

The algebraic variables (Lagrange multipliers �i) repre-

sent the internal forces between the legs and the end

effector. The assembly of the two subsystems is ensured

through the algebraic constraint. This model is singular,

the difficulty here is that DAEs are not expressed expli-

citly in state–space representation.44 From this, two

main approaches have been developed. The first one is

the approximation of the DAE model to a singularly

perturbed model.47 The idea is to substitute the con-

straint equation with a fast dynamics representing the

violation of the constraint.44,48–50 From a practical point

of view, this approach is completely justified because

the connections between joints and links are elastic.51

This method helps to relax the complexity of the non-

linear model through the additional artificial dynamics,

but at the same time it extends the state vector. This

leads to an increase in the complexity of the control

applications based on the resolution of the LMI problem.

The second technique is the IOL,52 and this approach

consists of solving the algebraic equation by differentiat-

ing the constraint until the appearance of the algebraic

variables. The solution is used in the differential equa-

tion of the DAE system and a state–space model-based

control is given. The differentiation of the constraint

(14) is written as

Jq €q� Jx
€X þ _Jq _q� _Jx

_X ¼ 0 (15)

By combining (15) with the DAEs model (14), a redun-

dant ODEs model is obtained:

Mq €qþ Nq _qþ JT
q � ¼ �

M 0x €X þ N 0x _X þ G0xX � JT
x � ¼ 0 (16)

Jq €q� Jx
€X þ _Jq _q� _Jx

_X ¼ 0

8><
>:

with Mq ¼ M 011 þM 012J�1
x Jq, M 0x ¼ M 022 þM 021J�1

q Jx,

Nq ¼ N 011 þ N 012 J�1
x Jq þM 012J�1

x
_Jq �M 012J�1

x
_JxJ�1

x Jq,

N 0x ¼ N 022 þM 021J�1
q

_Jx �M 021J�1
q

_JqJ�1
q Jx, G0x ¼ G022.

From system of equations (16) and by placing the dif-

ferential equations into the algebraic one, the Biglide par-

allel robot can be fully described by two different

subsystems as follows

Legs model
Mq €qþ Nq _qþ JT

q � ¼ � (17)

P�þ L _q�Qq�W� ¼ 0

�

Endeffector model
M 0x €X þ N 0x _X þ G0xX � JT

x � ¼ 0 (18)

P�þ L0 _X �Q0X �W� ¼ 0

(

with P ¼ JqM�1
q JT

q þ JxM 0x
�1JT

x , L ¼ JqM�1
q Nq � _Jqþ

_JxJ�1
x Jq � JxM�1

x N 0xJ�1
x Jq, L0 ¼ LJ�1

q Jx, Q0 ¼ JxM�1
x G0x,

Q ¼ Q0g�1, W ¼ JqM�1
q .

This is the first main results of this article, the Biglide robot

can be controlled by two different approaches depending on

the targeted control law. The first approach is to only use the

legs model equation (17). In this case, the internal forces� are

seen as nonlinear terms to be compensated by the controller.

The second approach is to only consider the end effector

model (18). In this case, the internal forces of the system are

seen as a new input control defined by the algebraic equation.

ODEs model of Biglide

In order to get the ODEs model of Biglide in operational

space, the virtual active joint velocities are eliminated from

the virtual power equation (11) using the equation (4),

_q�T ¼ _X
�T

JT
x J�T

q , the virtual power can be rewritten with

the independent velocities _X
�

as

P�r ¼ _X
�T�

JT
x J�T

q ðHq � �Þ þ Fp þ KT
x H�

	
¼ 0 8 _X

� 2 R2

(19)

Therefore, the ODEs model can be obtained from equa-

tion (19) as � ¼ Hq þ JT
q J�T

x ðFp þ KT
x H�Þ. Then to elim-

inate €� and €q, the first derivative of equations (19) and (8)

are used. Finally the ODE model of Biglide in operational

space is given as

� ¼ MðX Þ €X þ NðX ; _X Þ _X þ GðX ÞX (20)

with MðX Þ ¼

m1 þ 1

2
ðm� �1 þ �2Þ f1ðX Þ

m2 þ 1

2
ðm� �2 þ �1Þ f2ðX Þ

2
6664

3
7775, NðX ; _X Þ¼

n11 n12

n21 n22

� �
, GðX Þ¼ 0 gCðyÞðmþ �1 þ �2Þ=2y2

0 �gCðyÞðmþ �1 þ �2Þ=2y2

� �
, f1ðX Þ ¼

½ð2m1�3�1��2Þy2þmCðyÞ2þ J1þ J2�=2yCðyÞ, f2ðX Þ¼�½ð2m2�
3�2 � �1Þ y2 þ mCðyÞ2 þ J1 þ J2�=2yCðyÞ, �1;2 ¼ ms1;2=

a, n11¼b1, n21¼b2, n12 ¼ b1y=CðyÞ � ½ð2m1 � 3�1 � �2Þy2þ
ð2m1�3�1��2ÞCðyÞ

2þJ1þ J2� _y=ð2CðyÞ3, n22 ¼ �b2y=CðyÞþ
½ð2m2�3�2� �1Þy2þð2m2�3�2��1ÞCðyÞ2þ J1þ J2� _y=ð2CðyÞ3.

In a more general case, it is not obvious to get the

ODEs model of parallel robot in operational space. To get

the model in the active joint space, the same logic is

followed by eliminating the virtual operational velocities.

Note that the ODEs model is given here just for a com-

parison purpose with the DAEs one. Unlike the DAEs

model, where most of the nonlinear terms are hidden into

the algebraic equation, the ODEs model presents a large

number of nonlinear terms. For this reason, we thought

4 International Journal of Advanced Robotic Systems



that it will be better to use the DAEs model to design

nonlinear controllers.

PDC fuzzy control

TS modeling

The TS fuzzy model is a mathematical representation of

systems, it belongs to the quasi LPV family.53 Inside a

compact set of state variables, TS fuzzy model can repre-

sent exactly a nonlinear system by a collection of linear

models weighted together by a nonlinear function issued

from nonlinearities of the system.54 The conditions of sta-

bility and stabilization of these models are generally based

on the Lyapunov theory.55 The advantage of this represen-

tation is that it provides a systematic framework for design-

ing control laws through the LMI constrain formulation.56

Let’s consider the following nonlinear plant

_xðtÞ ¼ AxðtÞ þ BuðtÞ (21)

yðtÞ ¼ CxðtÞ

�

where xðtÞ 2 Rn is the state vector, uðtÞ 2 Rm is the control

input vector A, B, and C are nonlinear matrices of proper

dimension.

Let r be the number of nonlinear terms of the system

(21). A TS model is viewed as a convex sum of linear

models via membership functions (MFs), it is defined by

«If . . . Then» rules representing the local linear input–

output relations of the plant.53 From this, the nonlinear

system (21) can be written on continuous-time TS fuzzy

model as follows56

_xðtÞ ¼
Xr

i¼1

hiðzðtÞÞ½AixðtÞ þ BiuðtÞ�

yðtÞ ¼
Xr

i¼1

hiðzðtÞÞCixðtÞ

8>>>><
>>>>:

(22)

where z(t) is the premise vector (vector of nonlinear terms

of the model). It may depend on the state, input, exogenous

parameters, or time, on measurable and/or unmeasurable

variables. Matrices (Ai, Bi), i 2 f1; 2; :::; rg represent the

ith linear model of the TS form (22). The MFs

hiðzðtÞÞ � 0, i 2 f1; :::; rg are nonlinear functions and sat-

isfy the convex property as follows
Pr
i¼1

hiðzðtÞÞ ¼ 1

TS model of the legs

For the following, let’s consider the dynamical model of

the Biglide given by equation (17). In order to decompose

the internal forces � into a convex sum, the term JT
q � is

written as

JT
q � ¼  ð�Þq with  ð�Þ ¼

��1

2

�1

2

�2

2

��2

2

2
66664

3
77775 (23)

Then, the state–space representation of the Biglide robot

in term of joint variables ðq; _qÞ is given as

_q1

_q2

€q1

€q2

2
6664

3
7775 ¼ I 0

0 M�1
q

" #
0 0 1 0

0 0 0 1
�1

2

��1

2
�b1 0

��2

2

�2

2
0 �b2

2
666666664

3
777777775

q1

q2

_q1

_q2

2
6664

3
7775þ

0 0

0 0

1 0

0 1

2
6664

3
7775�

0
BBBBBBBB@

1
CCCCCCCCA

(24)

where I 2 R2�2 is an identity matrix.

From the state representation (24), the TS fuzzy model

of the Biglide can be obtained by considering the following

two nonlinearities �1ð�Þ and �2ð�Þ. From this it yields a

4-rule (2r) TS fuzzy model. Thanks to the DAE model, the

number of local models have been reduced from 16-rule TS

descriptor model3 to a set of 4-rule classical TS models.

Note that, �ið�Þ, i ¼ f1, 2g are computed via the algebraic

equation (17). A small delay "t is introduced to break the

algebraic loop. This delay can be justified by supposing

that the dynamics of the system are slow enough to not

react between t and (tþ "t). It is also known that the control

inputs are subject to saturation j�1;2j � � max, the working

space is restrained with the range of qi 2 ½qi; �qi�, i ¼ f1, 2g,

and the velocities are clamped j _q1;2j � _q max. From this

consideration, the premises �ið�Þ, i¼ f1, 2g can be bounded

as �ið�Þ 2 ½�i
��i �. The linear submodels are obtained using

the sector nonlinearity transformation56 by writing � as

�ð:Þ ¼ wi
0ð:Þ � �i þ wi

1ð:Þ � ��i (25)

with wi
0ð:Þ ¼ ð ��i � �ð:ÞÞ=ð ��i � �iÞ, wi

1ð:Þ ¼ ð�ð:Þ � �iÞ=
ð ��i � �iÞ. Note that the functions hiðzðtÞÞ � 0 are expressed

as products between the wi
j, i 2 f1; :::; rg, j 2 f1; 0g.

Controller design

For the stabilization of system (22), a parallel distributed

compensation (PDC) control law is proposed57
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uðtÞ ¼
Xr

i¼1

hi

�
zðtÞ
	

FixðtÞ (26)

where the matrices Fi 2 Rm�n need to be fixed to ensure the

stabilization of the system.58

Theorem 1: The fuzzy TS model (22) with the PDC

control law (26) is asymptotically stable if there exist

a matrix P ¼ PT >0 such as56,59

Yii < 0 8i 2 f1; :::; rg
1

r � 1
Yii þ

1

2
ðYij þ YjiÞ < 0 8i; j 2 f1; :::; rg i < j

8><
>:

(27)

with Yij ¼ AiPþ PAT
i � BiMj �MT

j BT
i . If the LMI prob-

lem is feasible, the PDC controller gain matrices are given

by Fi ¼ MiP
�1. c

An integral part is added (Figure 2) in order to compen-

sate the stationary error. Consider the extended state vector

�xT ¼ ½ xT xT
l �, then3

_xl ¼ yd �
Xr

i¼1

hiðzðtÞÞCi xðtÞ (28)

where yd is the desired input vector. The extended system is

expressed as

�_xðtÞ ¼
Xr

i¼1

hiðzðtÞÞ �Ai�xðtÞ þ �BiuðtÞ½ � þ B0ydðtÞ

yðtÞ ¼
Xr

i¼1

hiðzðtÞÞ �Ci�xðtÞ

8>>>><
>>>>:

(29)

with �Ai ¼
Ai 0

�Ci 0

� �
, �Bi ¼

Bi

0

� �
, �Ci ¼ ½Ci 0 �,

B0 ¼
0

I

� �
; where 0 and I are matrices of proper

dimension. Therefore, the extended PDC control law can

be written as

uðtÞ ¼
Xr

i¼1

hiðzðtÞÞ �Fi�xðtÞ (30)

with the extended gain vector �Fi ¼ ½Fi Li �.

Simulation results

The model of the parallel robot used for numerical simula-

tions includes structured and unstructured uncertainties

(Appendix 1). The structured uncertainties represent the

variation in the end-effector mass, this variation is given

by �m 2 ½0 0:816� kg. To simulate a realistic behavior, The

numerical model includes unmodeled dynamics such as

elasticity between joints60 and the Stribeck friction61

(Appendix 2). Furthermore, two resonant modes are added

to simulate the elastic joints, the lower value of the resonant

frequency is ! ’ 29 rad=s. To compare, a CTC controller

is designed. It is a well-known approach for serial

robotics.8,29,30 It has also been implemented on several

platforms of parallel kinematic machines.23,31,62 Usually,

the tuning of the CTC controller with a PID control action

uses a pole placement technique for robot manipulators.23

The gains are adjusted in order to get a negative real

triple pole with a frequency less than the half of the lower

resonant frequency.8 The suitable value is used for simu-

lation. For the TS approach, the PDC controller was tuned

in the same manner as the CTC with a convex optimiza-

tion algorithm via the LMI solver of Matlab LMI

Toolbox.63

In order to get the TS numerical model, the joint

positions were bounded in a manner to avoid singularities

and to cover a large area of the working space

q1 2 ½54:5; 89:5� mm and q2 2 ½129:5; 164:5� mm. The

velocity of each joint was bounded as

j _q1;2j � 428 mm= s. The control inputs was saturated as

j�1;2j � 50 N. The internal forces � were bounded using

the algebraic equation (17). To guarantee the robustness

against the structured uncertainty, the internal forces were

bounded in the worst case (where the payload is equal to

the global mass of the robot).

For the simulation, we chose a circular trajectory in the

operational space. The response of both controllers, CTC

and TS, are depicted in Figures 3 and 4 for the model

without payload ð�m ¼ 0 kgÞ, Figures 5 and 6 for a payload

representing 50% of the global mass ð�m ¼ 0:816 kgÞ, and

Figures 7 and 8 for a payload representing 100% of the

global mass ð�m ¼ 1:632 kgÞ.
In the case where the robot does not carry any payload,

both control laws ensure a good tracking with a slight

advantage to the TS control law, so we can say that the

TS and CTC are robust against the unmodeled dynamics

(stick/slip friction). Moreover, from Figure 3 (c and d) we

can note that the control inputs are almost similar, this

indicates that the two controllers were tuned in a manner

to get similar performances in the nominal case. In the

second case, ð�m ¼ 0:816 kgÞ, the TS control law ensures

good tracking performances, while the CTC controller

loses the desired path but the robot remains stable. In the

latter case, ð�m ¼ 1:632 kgÞ, the TS-based control law

presents the best results exhibiting its robustness according

Figure 2. Extended PDC control scheme.
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to structured uncertainties. The CTC, as expected, presents

an unstable trajectory.

Finally, two well-known criteria are computed over the

simulation time (T¼ 0.5 s) in order to quantify the behavior

of both controllers (Table 1): the first criterion is the

integral of absolute error: JIAE ¼
ðT

0

j"jdt. where "(t) is the

radial error. The second criterion is the integral of square

value of the control: JISV ¼
ðT

0

P2
i¼1

�iðtÞ2dt.
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Figure 4. Simulation results for �m ¼ 0 kg: (a) trajectory profile and (b) radial error.
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Figure 3. Simulation results for �m ¼ 0 kg: (a) velocity profile of _x, (b) velocity profile of _y, (c) torque profile of joint 1, (d) torque
profile of joint 2, (e) internal force profile of leg 1, and (f) internal force profile of leg 2.
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Conclusion

This article proposes a novel approach for the control of

parallel robots. Those systems are particularly difficult to

control due to the presence of multiple CKCs. These

mechanical loops lead to a model naturally described by

a set of DAEs of index-3. Designing a controller based on

the DAE model is not an easy task, it requires a particular

knowledge on the control theory of singular systems. For

this reason, most of the time we transform the DAE model

into an ODE one by differentiating the constraint twice.

This manipulation is appropriate for mechanical systems

because if the system is well designed, the initial conditions
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ẋ 

(m
/s)

Time (s) Time (s)

Time (s)Time (s)

Time (s) Time (s)
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ẋ CTC
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Figure 5. Simulation results for �m ¼ 0:816 kg: (a) velocity profile of x, (b) velocity profile of y, (c) torque profile of joint 1, (d) torque
profile of joint 2, (e) internal force profile of leg 1, and (f) internal force profile of leg 2.
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Figure 6. Simulation results for �m ¼ 0:816 kg: (a) trajectory profile and (b) radial error.
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should respect the algebraic constraint. Unfortunately, the

obtained ODE model is most of the time complex and

highly nonlinear. This makes the design of nonlinear con-

trollers that requires the use of convex optimization tech-

niques such as TS modeling and LMIs quite difficult.

Because, in this case, the complexity of the controller is

an exponential function of the number of nonlinear terms.

For this reason, this article proposes to keep the DAE form

of the system in order to decouple it into two independent

subsystems. The idea here is to collect most of the non-

linear terms inside the Lagrange multipliers �ið�Þ. Accord-

ing to our way of decomposing, the Lagrange multipliers
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ẋ 

(m
/s)

Time (s) Time (s)

Time (s) Time (s)

Time (s) Time (s)
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ẋ CTC
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ẏ 

(m
)

 

 
ẏref
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Figure 7. Simulation results for �m ¼ 1:632 kg: (a) velocity profile of x, (b) velocity profile of y, (c) torque profile of joint 1, (d) torque
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represent the internal forces of the system. Knowing that all

the physical parameters are bounded, the internal forces

were bounded according to the range of the state variables

and the saturation of the control inputs. From those bounds,

the internal forces were decomposed into a convex sum and

used as premises to establish the TS model. A PDC control

law was designed. An extended integral part was added in

order to compensate the stationary errors. Finally a com-

parison with the well-known CTC control law has been

presented. The robustness of the PDC controller has been

well checked against the structural uncertainties.
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Appendix 1

Appendix 2

Dynamic model with mass uncertainty, elastic joints,
and Stribeck friction

Numerical simulations include a model with structured

and unstructured uncertainties based on the nominal

model used to design the controller. Unmodeled

dynamics such as elastic joints44,8 between actuators and

linkages and Stribeck friction45,8 applied on prismatic

joints appear in this augmented model to provide more

realistic simulations.

The dynamics of the actuator writes

� ¼ Ma €qa þ b _qa þ �t þ �f (31)

with qa ¼ ½ qa1 qa2 �T , Ma ¼ diagðma1;ma2ÞZ, �f ¼
½�f 1 �f 2 �Z, the elastic joint model

�t ¼ ktðqa � qÞ þ btð _qa � _qÞ (32)

and the Stribeck friction model of the dry friction

�fi ¼
�fc þ ð�fs � �fcÞe

�

�
_qai

vs

�22
6664

3
7775 signð _qaiÞ if j _qaij > 0 ð slipÞ

minðj�i � �tij;�fsÞ signð�i � �tiÞ if _qai ¼ 0 ð stickÞ

8>>>>><
>>>>>:

(33)

Table 1A. Parameters of the nominal model.

Nominal parameters Values Additional simulation parameters Values

Leg length (m) Mass (kg)
a 0.07 �m 0.816

Mass (kg) ma 0.7
m 0.034 mL1 0.104
m1 0.8040 mL2 0.094
m2 0.7940 Stiffness constant (N/m)

First moment of links (kgm) kt 3:88� 103

ms1 0.0045 Damping constant (Ns/m)
ms2 0.0043 bt 17:48

Second moment of links (kgm2) Dry friction force (N)
J1 222:643� 10�4 �fs 1.5
J2 2:539� 10�4 �fc 1

Gravity acceleration (ms2) Sliding speed coefficient (m/s)
g 9.81 vs 0.1
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where ma is the actuator mass, kt the stiffness of the joint, bt the damping of the joint, �fs the static friction force, �fc the

Coulomb friction force, and vs the sliding speed coefficient.

The linkage and effector dynamics are

�t ¼ M̂ðX Þ €X þ N̂ðX ; _X Þ þ ĜðX ÞX (34)

M̂ðX Þ ¼

mL1 þ
1

2
ðm� �1 þ �2Þ

½ð2mL1 � 3�1 � �2Þy2 þ mCðyÞ2 þ J1 þ J2�
2yCðyÞ

mL2 þ
1

2
ðm� �2 þ �1Þ

½ðmL2 � 3�2 � �1Þy2 þ mCðyÞ2 þ J1 þ J2�
2yCðyÞ

2
666664

3
777775

N̂ðX ; _X Þ ¼

0
�½ð2mL1 � 3�1 � �2Þy2 þ ð2mL1 � 3�1 � �2ÞCðyÞ2 þ J1 þ J2� _y

2CðyÞ3

0
½ð2mL2 � 3�2 � �1Þy2 þ ð2mL2 � 3�2 � �1ÞCðyÞ2 þ J1 þ J2� _y

2CðyÞ3

2
6666664

3
7777775

ĜðX Þ ¼

0 gCðyÞ ðmþ�mþ �1 þ �2Þ
2y2

0 �gCðyÞ ðmþ�mþ �1 þ �2Þ
2y2

2
666664

3
777775

where the linkage mass mLi satisfies: mi¼maiþ mLi, i¼1, 2.
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