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This paper is devoted to the development of a new saturated non-parallel distributed compensation control law for disturbed Takagi-Sugeno fuzzy systems subject to both control input and state constraints. In order to cover a large range of real-world applications, both L 2 and L ∞ disturbances are considered which result in two different control design procedures. A parameter-dependent version of the generalized sector condition is effectively exploited in a fuzzy Lyapunov control framework to handle the control input saturation. Moreover, the proposed control method is based on the concept of robust invariant set which is able to provide an explicit characterization of the estimated domain of attraction of the closed-loop system. Different optimization algorithms are also proposed to deal with the trade-off between different closed-loop requirements in a local control context. The design conditions are expressed in terms of linear matrix inequalities which can be solved efficiently with available solvers. The numerical examples illustrate how the proposed methodology leads to less conservative results as well as less computational complexity when compared to very recent works in the literature.

Introduction

Nowadays, the stability analysis and control design based on Takagi-Sugeno (T-S) fuzzy models [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF] have become the most popular research platform in fuzzy model-based control [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF]. Indeed, over the past two decades tremendous investigations have been devoted to the study of T-S control systems [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF][START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF][START_REF] Nguyen | Shared lateral control with online adaptation of the automation degree for driver steering assist system: A weighting design approach[END_REF][START_REF] Yang | Robust stabilization of switched fuzzy systems with actuator dead zone[END_REF][START_REF] Yang | Stability and stabilization of discrete-time T-S fuzzy systems with stochastic perturbation and time-varying delay[END_REF][START_REF] Tsai | Robust H ∞ stabilization conditions for a class of uncertain T-S fuzzy neutral systems with disturbance[END_REF][START_REF] Gao | Fuzzy observer-based output feedback control design of discrete-time nonlinear systems: An extended dimension approach[END_REF]. This fact is due to many outstanding features of T-S fuzzy models for control purposes [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. First, they can be used to approximate any smooth nonlinear system with any given accuracy. In particular, the sector nonlinearity approach provides an exact T-S representation of a given nonlinear model in a compact set of the state variables. Second, thanks to its polytopic structure with linear systems in consequent parts, T-S representation allows for some possible extensions of linear control techniques to nonlinear systems.

The direct Lyapunov method has been efficiently exploited to study the stability and control synthesis of T-S fuzzy systems [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF][START_REF] Yang | Stability and stabilization of discrete-time T-S fuzzy systems with stochastic perturbation and time-varying delay[END_REF][START_REF] Tsai | Robust H ∞ stabilization conditions for a class of uncertain T-S fuzzy neutral systems with disturbance[END_REF][START_REF] Gao | Fuzzy observer-based output feedback control design of discrete-time nonlinear systems: An extended dimension approach[END_REF][START_REF] Jaballi | Reducing conservativeness of stabilization conditions for switched T-S fuzzy systems[END_REF][START_REF] Nguyen | Simultaneous design of parallel distributed output feedback and anti-windup compensators for constrained Takagi-Sugeno fuzzy systems[END_REF]. The derived conditions are expressed in terms of linear matrix inequalities (LMIs) [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] such that they are efficiently solvable with available numerical solvers. It is noteworthy that depending on the choice of the Lyapunov function, the derived conditions have different degrees of conservativeness. The following three types of Lyapunov functions has been mainly investigated in the T-S fuzzy control framework, namely quadratic, piecewise and parameter-dependent Lyapunov functions [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF]. Despite the low-complexity of the derived conditions [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF], quadratic Lyapunov functions lead generally to conservative results [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF]. Piecewise Lyapunov functions [START_REF] Johansson | Piecewise quadratic stability of fuzzy systems[END_REF] could be applied to overcome this major drawback. However, this type of Lyapunov functions requires the membership functions to induce a polyhedral partition of the state space. This fact is not compatible with T-S fuzzy models obtained from original nonlinear systems by using the sector nonlinearity approach [START_REF] Bernal | Generalized nonquadratic stability of continuous-time Takagi-Sugeno models[END_REF]. As a consequent, piecewise Lyapunov functions can only be used to deal with nonlinear systems in the sense of approximation. Recent LMI alternative methodology to stability conditions considering piecewise Lyapunov functions is presented in [START_REF] Campos | New stability conditions based on piecewise fuzzy Lyapunov functions and tensor product transformations[END_REF]. However, control design conditions based on piecewise Lyapunov functions are in general expressed in terms of bilinear matrix inequalities [START_REF] Feng | H ∞ controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities[END_REF][START_REF] Tanaka | A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions[END_REF] which are hardly tractable with available numerical solvers. The effectiveness of parameter-dependent Lyapunov functions for stability analysis and control design has been demonstrated in [START_REF] Jaballi | Reducing conservativeness of stabilization conditions for switched T-S fuzzy systems[END_REF][START_REF] Mozelli | A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems[END_REF][START_REF] Ding | Further studies on relaxed stabilization conditions for discretetime two-dimension Takagi-Sugeno fuzzy systems[END_REF][START_REF] Lee | Approaches to extended non-quadratic stability and stabilization conditions for discrete-time Takagi-Sugeno fuzzy systems[END_REF][START_REF] Xie | Control synthesis of discrete-time T-S fuzzy systems based on a novel non-PDC control scheme[END_REF]. This type of Lyapunov functions seems to be the best alternative to solve all drawbacks of both previous ones, especially for discrete-time T-S fuzzy systems [START_REF] Gao | Fuzzy observer-based output feedback control design of discrete-time nonlinear systems: An extended dimension approach[END_REF][START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF][START_REF] Ding | Further studies on relaxed stabilization conditions for discretetime two-dimension Takagi-Sugeno fuzzy systems[END_REF][START_REF] Ding | Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno's form[END_REF].

Physical constraints such as control input saturation and system state constraints are ubiquitous in real-world applications due to safety and/or economic reasons. The presence of input saturation seriously degrades the closed-loop performance, in the extreme case, the stability may be lost [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]. However, this practical control issue has not been completely addressed for T-S fuzzy control systems [START_REF] Nguyen | Simultaneous design of parallel distributed output feedback and anti-windup compensators for constrained Takagi-Sugeno fuzzy systems[END_REF][START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF][START_REF] Nguyen | Lyapunov-based robust control design for a class of switching non-linear systems subject to input saturation: application to engine control[END_REF][START_REF] Klug | Fuzzy dynamic output feedback control through nonlinear Takagi-Sugeno models[END_REF]. Some notable works can be cited as follows. In [START_REF] Tseng | H ∞ fuzzy control design for nonlinear systems subject to actuator saturation[END_REF][START_REF] Du | Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint[END_REF][START_REF] Chang | Fuzzy control of multiplicative noised nonlinear systems subject to actuator saturation and H ∞ performance constraints[END_REF], a norm-bounded approach was used to deal with the actuator saturation. The resulting non-saturated controllers are generally very conservative and often lead to poor closed-loop performance [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF][START_REF] Cao | Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation[END_REF]. Descriptor representation approach [START_REF] Tanaka | A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions[END_REF] has been recently employed to deal with continuous-time input-saturated T-S fuzzy systems in [START_REF] Bezzaoucha | Stabilization of nonlinear systems subject to uncertainties and actuator saturation[END_REF]. It should be noted that this result is only applied to a restrictive class of T-S fuzzy systems with all linear subsystems being openloop stable. The saturation function was represented in polytopic form to deal with input nonlinearity of continuous-time T-S systems [START_REF] Cao | Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation[END_REF][START_REF] Saifia | Fuzzy control for electric power steering system with assist motor current input constraints[END_REF][START_REF] Zhao | Robust stabilization of T-S fuzzy discrete systems with actuator saturation via PDC and non-PDC law[END_REF], then extended to time-delay T-S systems [START_REF] Ting | A robust fuzzy control approach to stabilization of nonlinear time-delay systems with saturating inputs[END_REF] and a class of switching T-S systems [START_REF] Yang | Robust stabilization of switched fuzzy systems with actuator dead zone[END_REF][START_REF] Nguyen | Lyapunov-based robust control design for a class of switching non-linear systems subject to input saturation: application to engine control[END_REF]. However, based on quadratic Lyapunov functions these results could be conservative. It should be stressed that state constraints were not considered in most of these works (except for [START_REF] Nguyen | Lyapunov-based robust control design for a class of switching non-linear systems subject to input saturation: application to engine control[END_REF]). Such type of constraints appears naturally when the sector nonlinearity approach is used to obtain T-S representation of nonlinear systems [START_REF] Nguyen | Anti-windup based dynamic output feedback controller design with performance consideration for constrained Takagi-Sugeno systems[END_REF]. Explicit consideration of these limitations allows to prevent destabilizing initial conditions of the closed-loop systems [START_REF] Klug | Fuzzy dynamic output feedback control through nonlinear Takagi-Sugeno models[END_REF]. Especially, this becomes crucial when disturbance signals are actively involved in the systems [START_REF] Nguyen | Simultaneous design of parallel distributed output feedback and anti-windup compensators for constrained Takagi-Sugeno fuzzy systems[END_REF]. Recently, interesting nonquadratic boundedness approach has been also proposed in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] to deal with T-S fuzzy systems subject to both control input and state constraints. Notice that the results proposed in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] require several line searches to solve the design conditions which is costly in terms of computation. Moreover, slack decision variables have been intensively introduced in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] to reduce the conservatism of the results. Therefore, the resulting design conditions are of high complexity and not suitable for high dimensional T-S systems or T-S systems with important number of subsystems. These facts will be clearly shown in Section 5 by means of a numerical example. It is also important to highlight that the method in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] cannot deal with the case where T-S systems are subject to L 2 disturbances.

Motivated by the above control issues, this paper is devoted to the development of a new inputsaturated control law for disturbed T-S fuzzy systems subject to both control input and state constraints. Differently from [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF], the proposed method is based on the concept of robust invariant set [START_REF] Blanchini | Set invariance in control[END_REF]. The main contributions of the new method can be summarized as follows:

• A parameter-dependent version of the generalized sector condition has been effectively exploited in the framework of fuzzy Lyapunov function based control design to handle the actuator saturation. This fact leads to less conservative design conditions with low computational complexity compared to existing works dealing with the same class of problem.

• The new method can provide an explicit characterization of the estimated domain of attraction of the closed-loop system which is not the case of [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF].

• The proposed results can be applied to T-S systems subject to L ∞ or L 2 disturbances. Numerical examples illustrate that the proposed methodology can be applied to a large class of nonlinear systems and suitable for real-world-applications.

The paper is organized as follows. Section 2 formulates the control problem and some useful preliminaries are also presented. In Section 3, we develop new non-quadratic design conditions for two different cases corresponding to two types of disturbances affecting the constrained T-S systems. Optimization algorithms for different control design purposes are presented in Section 4. The interests of the proposed method are clearly demonstrated by means of examples in Section 5. Finally, Section 6 provides some concluding remarks.

Notation. For an integer number r, Ω r denotes the set {1, 2, . . . , r}. I denotes the identity matrix of appropriate dimension. For any square matrix X, He (X) = X + X . X > 0 means that the matrix X is positive definite. The ith element of a vector u is denoted u (i) and X (i) denotes the ith row of matrix X. ( * ) stands for matrix blocks that can be deduced by symmetry. For a positive definite function V (x) defined on R nx , we denote E Vρ = {x ∈ R nx : V (x) ≤ ρ} and E V ≡ E V,1 . The scalar functions η i , i ∈ Ω r , are said to verify the convex sum property on a set D, if η i (θ) ≥ 0 and r i=1 η i (θ) = 1 for ∀θ ∈ D. For such functions and for matrices Y i and Z ij of appropriate dimensions, we denote

Y θ = r i=1 η i (θ (t)) Y i , Z θθ = r i=1 r j=1 η i (θ (t)) η j (θ (t)) Z ij Y -1 θ = r i=1 η i (θ (t)) Y i -1 , Y θ+ = r i=1 η i (θ (t + 1)) Y i (1)
Throughout this paper, the time argument will be dropped when convenient.

Problem Formulation and Preliminaries

Problem Formulation

In this paper, the fuzzy model proposed in [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF] is used to approximate and/or represent a given nonlinear system. This type of model is described by fuzzy IF-THEN rules which represent local linear input-output relations of a nonlinear system. The ith rules of the discrete-time T-S fuzzy system subject to control input saturation can be represented in the following form Model rule i :

IF θ 1 is M i1 and . . . and θ p is M ip THEN x (t + 1) = A i x (t) + B u i sat (u (t)) + B w i w (t) z (t) = C i x (t) (2) 
where sat u (l) = sign u (l) min u (l) , u max(l) , l ∈ Ω nu , and M ij , i ∈ Ω r , j ∈ Ω p , is the fuzzy set and r is the number of model rules; x ∈ R nx is the state, u ∈ R nu is the control input, w ∈ R nw is the system disturbance, z ∈ R nz is the performance output, and θ = [θ 1 , . . . , θ p ] ∈ R p is the vector of premise variables. The real matrices A i , B u i , B w i , C i , i ∈ Ω r , are constant and of adequate dimensions. Then, the T-S fuzzy system is defined as follows

           x (t + 1) = r i=1 η i (θ) (A i x (t) + B u i sat (u (t)) + B w i w (t)) z (t) = r i=1 η i (θ) C i x (t) (3) 
where the normalized membership functions η i (θ), i ∈ Ω r , are defined as

η i (θ) = λ i (θ) r j=1 λ j (θ) , λ j (θ) = p l=1 M lj (θ) (4) 
In (4), M lj (θ) denotes the membership function of fuzzy set M lj . It is worth noting that the normalized membership functions η i (θ), i ∈ Ω r , satisfy the convex sum property.

Remark 1. T-S fuzzy system is a class of fuzzy systems where the consequent parts are functions of premise variables [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF]. These functions can be linear or affine as most of the cases in fuzzy control framework [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF][START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. However, T-S fuzzy systems with local nonlinear models have been also studied in the literature, see for instance [START_REF] Klug | Fuzzy dynamic output feedback control through nonlinear Takagi-Sugeno models[END_REF][START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF]. It can be clearly observed that the input-saturated system (2) is a special class of T-S fuzzy systems. This class of T-S systems has been widely investigated in different control contexts, see [START_REF] Yang | Robust stabilization of switched fuzzy systems with actuator dead zone[END_REF][START_REF] Nguyen | Simultaneous design of parallel distributed output feedback and anti-windup compensators for constrained Takagi-Sugeno fuzzy systems[END_REF][START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF][START_REF] Chang | Fuzzy control of multiplicative noised nonlinear systems subject to actuator saturation and H ∞ performance constraints[END_REF][START_REF] Saifia | Fuzzy control for electric power steering system with assist motor current input constraints[END_REF][START_REF] Zhao | Robust stabilization of T-S fuzzy discrete systems with actuator saturation via PDC and non-PDC law[END_REF] and references therein for more details. We note that using the sector nonlinearity approach [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF], an exact T-S fuzzy representation (3) can be straightforwardly obtained from an input-saturated nonlinear system as will be illustrated later.

In this paper, the following assumptions will be considered for the control design of system (3).

Assumption 1. All components of the state and the scheduling vectors are measured. Notice that the scheduling variable vector may be a function of the state variables.

Assumption 2. The control input vector u is bounded in amplitude, that is

-u max(l) ≤ u (l) ≤ u max(l) , l ∈ Ω nu (5) 
where the control bound u max(l) > 0 is given.

Assumption 3. The domain of validity P x of the T-S fuzzy system (3) is defined as

P x = x ∈ R nx : h m x ≤ 1, m ∈ Ω q (6)
where the vectors h m ∈ R nx are given and can be computed from the state constraints of (3).

Assumption 4. The disturbance signal w belongs to one of the following classes of function

W 2 δ = w : R + → R nw , ∞ t=1 w (t) w (t) ≤ δ (7) W ∞ δ = w : R + → R nw , w (t) w (t) ≤ δ, t ≥ 0 (8) 
where the bound δ > 0 is given.

Let us consider the following non-parallel distributed compensation (non-PDC) control law:

u (t) = r i=1 η i (θ) G i r i=1 η i (θ) H i -1 x (t) (9) 
where H i , i ∈ Ω r , are regular matrices. Using the notations defined in (1), the closed-loop system can be rewritten from ( 3) and ( 9) as follows

x (t + 1) = A θ + B u θ G θ H -1 θ x (t) -B u θ ψ (t) + B w θ w (t) z (t) = C θ x (t) (10) 
where

ψ (u) = u -sat (u).
This paper aims at proposing a systematic method to design non-PDC controllers ( 9) such that the closed-loop system (10) satisfies the following properties:

• Property 1. [Regional internal stability] There exists a positive definite function V (x) such that all closed-loop trajectories starting from the set E V converge exponentially to the origin in the absence of disturbances or the disturbances are vanishing (w = 0).

• Property 2 [Input-to-state stability and disturbance attenuation] Given vectors h m ∈ R nx , m ∈ Ω q , as in Assumption 3 and a positive scalar δ > 0. Depending on the type of disturbances involved in the dynamics of system [START_REF] Nguyen | Simultaneous design of parallel distributed output feedback and anti-windup compensators for constrained Takagi-Sugeno fuzzy systems[END_REF], see Assumption 4, we distinguish two following control problems.

Control Problem 1. When w = 0 and w ∈ W 2 δ . There exist positive scalars ρ and γ such that, for ∀x (0) ∈ E Vρ , the corresponding closed-loop trajectory of (10) remains inside the domain of validity P x defined in [START_REF] Yang | Stability and stabilization of discrete-time T-S fuzzy systems with stochastic perturbation and time-varying delay[END_REF]. Moreover, the L 2 -norm of the output signal z is bounded as follows

z (t) 2 ≤ γ w (t) 2 + ρ, ∀t ≥ 0.
Control Problem 2. When w = 0 and w ∈ W ∞ δ . All closed-loop trajectories of (10) initialized inside the set E V will be confined in the domain of validity P x defined in [START_REF] Yang | Stability and stabilization of discrete-time T-S fuzzy systems with stochastic perturbation and time-varying delay[END_REF]. Moreover, there exists a positive scalar number γ such that the L ∞ -norm of the output signal z is bounded by

z (t) ∞ ≤ γ, x (0) = 0, ∀t ≥ 0.

Preliminary Results

Hereafter, some useful preliminary results for the theoretical developments in Section 3 are presented.

Fact 1. [START_REF] Mansouri | Output feedback LMI tracking control conditions with H ∞ criterion for uncertain and disturbed T-S models[END_REF] Given positive definite matrix Φ and any matrix M of appropriate dimensions, the following matrix inequality holds

M ΦM ≥ M + M -Φ -1 (11) Lemma 1. Given matrices G i ∈ R nu×nx , H i ∈ R nx×nx and W i ∈ R nu×nx , for i ∈ Ω r ,
let us define the following set:

P u = x ∈ R nx : G θ H -1 θ -W θ H -1 θ (l) x ≤ u max(l) , l ∈ Ω nu (12) 
If x ∈ P u , then the inequality on the dead-zone nonlinearity ψ (u), where u is defined in (9):

ψ (u) S -1 θ ψ (u) -W θ H -1 θ x ≤ 0 (13) 
holds for any positive diagonal matrices S i ∈ R nu×nu , and for any scalar functions η i (θ), i ∈ Ω r , satisfying the convex sum property.

Proof. If x ∈ P u , then it can be deduced

-u max(l) ≤ G θ H -1 θ -W θ H -1 θ (l) x ≤ u max(l) , l ∈ Ω nu (14) 
Notice that we have to show that

ψ u (l) r i=1 η i S i(l,l) -1 ψ (u) -W θ H -1 θ x (l) ≤ 0, l ∈ Ω nu ( 15 
)
where S i(l,l) , i ∈ Ω r , l ∈ Ω nu , denotes the element of the lth row and lth column of matrix S i . To this end, three possible cases according to the value of u (l) that may occur:

From the results of these three cases, the proof of Lemma 1 can be concluded.

Lemma 2. Let Υ k ij , i, j, k ∈ Ω r , be symmetric matrices of appropriate dimensions and {ν k } k∈Ωr , {ω i } i∈Ωr , be any families of functions satisfying the property of convex sum. The condition

r k=1 r i=1 r j=1 ν k ω i ω j Υ k ij < 0 holds if    Υ k ii < 0, i, k ∈ Ω r 2 r -1 Υ k ii + Υ k ij + Υ k ji < 0, i, j, k ∈ Ω r , and i = j (20) 
The relaxation result in Lemma 2 is extended from the one in [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF]. Other more efficient relaxation techniques can be found in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF][START_REF] Liu | New approaches to H ∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI[END_REF] at the expense of high computational costs.

Main Results

In this section, we derive LMI-based methods for designing controllers that can solve the control problems defined in Section 2. Two types of design conditions according to two classes of disturbances are provided.

Constrained T-S Fuzzy Systems Subject to L 2 Disturbances

The following theorem provides sufficient conditions for designing a non-PDC controller (9) when T-S system (3) is subject to L 2 disturbances.

Theorem 1. Given T-S fuzzy system (3) and a positive scalar δ where w ∈ W 2 δ . If there exist positive definite matrices

X i ∈ R nx×nx , positive diagonal matrices S i ∈ R nu×nu , matrices H i ∈ R nx×nx , G i ∈ R nu×nx , W i ∈ R nu×nx , i ∈ Ω r ,
and positive scalars ρ, γ such that

ρ + γδ < 1 (21) 
H i + H i -X i * G i(l) -W i(l) u 2 max(l) > 0, i ∈ Ω r , l ∈ Ω nu (22) X i * h m X i 1 ≥ 0, i ∈ Ω r , m ∈ Ω q (23) Γ k ii < 0, i, k ∈ Ω r (24) 2 r -1 Γ k ii + Γ k ij + Γ k ji < 0, i, j, k ∈ Ω r , and i = j (25) 
where

Γ k ij =       -H i -H i + X i * * * * C j H i -I * * * W i 0 -2S i * * 0 0 0 -γI * A j H i + B u j G i 0 -B u j S i B w j -X k       (26) 
Then, the non-PDC controller (9) solves Control Problem 1 stated in Section 2.

Proof. Using Lemma 2 with ω i = η i (θ (t)) and ν k = η k (θ (t + 1)), i, k ∈ Ω r , it can be deduced from ( 23)- [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] that

      -H θ -H θ + X θ * * * * C θ H θ -I * * * W θ 0 -2S θ * * 0 0 0 -γI * A θ H θ + B u θ G θ 0 -B u θ S θ B w θ -X θ+       < 0 (27) 
Using the matrix property [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] of Fact 1 with M = H θ and Φ = X -1 θ = P θ , and the well-known Schur complement lemma [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], inequality [START_REF] Tseng | H ∞ fuzzy control design for nonlinear systems subject to actuator saturation[END_REF] implies clearly that

    -H θ P θ H θ + H θ C θ C θ H θ * * * W θ -2S θ * * 0 0 -γI * A θ H θ + B u θ G θ -B u θ S θ B w θ -X θ+     < 0 (28) 
By the congruence transformation with diag H -1 θ , S -1 θ , I, I , ( 28) is found to be equivalent to

    -P θ + C θ C θ * * * S -1 θ W θ H -1 θ -2S -1 θ * * 0 0 -γI * A θ + B u θ G θ H -1 θ -B u θ B w θ -X θ+     < 0 (29) 
Using again Schur complement lemma, inequality [START_REF] Chang | Fuzzy control of multiplicative noised nonlinear systems subject to actuator saturation and H ∞ performance constraints[END_REF] can be proved to be equivalent to

Ξ P θ+ Ξ +   -P θ + C θ C θ * * S -1 θ W θ H -1 θ -2S -1 θ * 0 0 -γI   < 0 (30) 
where

Ξ = A θ + B u θ G θ H -1 θ -B u θ
B w θ and P θ+ = X -1 θ+ . Notice that if one pre-and post-multiplies (30) by vector x ψ (u) w and its transpose, the following inequality can be obtained after some algebraic manipulations

V (x (t + 1)) -V (x (t)) + z (t) z (t) -γw (t) w (t) . . . -2ψ (u) S -1 θ ψ (u) -W θ H -1 θ x (t) < 0 (31) 
where the positive definite function V (x (t)) is defined as

V (x (t)) = x (t) n i=1 η i (θ) P i x (t) = x (t) P θ x (t) (32) 
Moreover, if condition [START_REF] Ding | Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno's form[END_REF] is verified, then it follows clearly that matrices H i , i ∈ Ω r , are regular since X i > 0. By Schur complement lemma and matrix property [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], it can be deduced from ( 22) that

H θ P θ H θ - G θ(l) -W θ(l) G θ(l) -W θ(l) u 2 max(l) ≥ 0 (33) 
Pre-and post-multiplying [START_REF] Zhao | Robust stabilization of T-S fuzzy discrete systems with actuator saturation via PDC and non-PDC law[END_REF] with the regular matrix H -

θ yields P θ - G θ(l) H -1 θ -W θ(l) H -1 θ G θ(l) H -1 θ -W θ(l) H -1 θ u 2 max(l) ≥ 0 (34) 
Then, it is easily observed that condition [START_REF] Ting | A robust fuzzy control approach to stabilization of nonlinear time-delay systems with saturating inputs[END_REF] implies the inclusion E V ⊆ P u . Similarly, condition [START_REF] Ding | Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno's form[END_REF] implies E V ⊆ P x . Since E V ⊆ P u ∩ P x , by Lemma 1 it follows from (31) that

V (x (t + 1)) -V (x (t)) + z (t) z (t) -γw (t) w (t) < 0 (35) 
From now, two cases can be distinguished.

1. If w = 0, it follows from [START_REF] Nguyen | Anti-windup based dynamic output feedback controller design with performance consideration for constrained Takagi-Sugeno systems[END_REF] that

∆V < 0, ∀x ∈ E V ( 36 
)
where ∆V = V (x (t + 1)) -V (x (t)). Condition [START_REF] Blanchini | Set invariance in control[END_REF] ensures that for ∀x (0) ∈ E V , the corresponding trajectory converges asymptotically to the origin.

2. If w = 0 and w ∈ W 2 δ , summing both sides of inequality [START_REF] Nguyen | Anti-windup based dynamic output feedback controller design with performance consideration for constrained Takagi-Sugeno systems[END_REF] from 0 to the T f -th instant yields

V (x (T f )) < V (x (0)) + γ T f t=1 w (t) w (t) - T f t=1 z (t) z (t) , ∀x ∈ E V (37) 
From ( 21) and [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF], it follows that V (x (T f )) < ρ + γδ < 1. Thus, we can conclude that every closed-loop trajectory stating from E Vρ will be confined in the set E V . In addition, from (37) and considering the limit case T f → ∞, we obtain

∞ t=1 z (t) z (t) < V (x (0)) + γ ∞ t=1 w (t) w (t),
which means that the L 2 -norm of the output signal is bounded: z 2 < γ w 2 + ρ.

Then, the desired results of Theorem 1 follow.

Remark 2. It should be noticed from Theorem 1 that there is a trade-off between the size of the set of admissible initial conditions E Vρ and the maximal energy level δ of the disturbances when x (0) = 0 [START_REF] Nguyen | Lyapunov-based robust control design for a class of switching non-linear systems subject to input saturation: application to engine control[END_REF]. Concretely, the lower is the admissible δ, the larger is the estimate of the domain of attraction E V .

Constrained T-S Fuzzy Systems Subject to L ∞ Disturbances

The following theorem provides conditions for designing a non-PDC controller (9) when T-S fuzzy system (3) is subject to L ∞ disturbances.

Theorem 2. Given T-S fuzzy system (3) and positive scalars δ, τ 1 < 1, where w ∈ W ∞ δ . If there exist positive definite matrices

X i ∈ R nx×nx , positive diagonal matrices S i ∈ R nu×nu , matrices H i ∈ R nx×nx , G i ∈ R nu×nx , W i ∈ R nu×nx , i ∈ Ω r ,
and positive scalars γ, τ 2 such that conditions ( 22)-( 23) hold and

τ 1 -τ 2 δ > 0 (38) 
H i + H i -X i * C j H i γI ≥ 0, i, j ∈ Ω r (39) 
Ψ k ii < 0, i, k ∈ Ω r (40) 2 r -1 Ψ k ii + Ψ k ij + Ψ k ji < 0, i, j, k ∈ Ω r , and i = j (41) 
where

Ψ k ij =     (τ 1 -1) H i + H i -X i * * * W i -2S i * * 0 0 -τ 2 I * A j H i + B u j G i -B u j S i B w j -X k     (42) 
Then, the non-PDC controller (9) solves Control Problem 2 stated in Section 2.

Proof. Following the same line as in the proof of Theorem 1, conditions ( 22)-( 23) and ( 40)-( 41) imply the satisfaction of the following inequality:

V (x (t + 1)) + (τ 1 -1) V (x (t)) -τ 2 w (t) w (t) . . . -2ψ (u) S -1 θ ψ (u) -W θ H -1 θ x (t) < 0, ∀x ∈ E V ( 43 
)
where the positive definite function V (x (t)) is defined in [START_REF] Saifia | Fuzzy control for electric power steering system with assist motor current input constraints[END_REF]. By Lemma 1, it follows from (43) that

V (x (t + 1)) + (τ 1 -1) V (x (t)) -τ 2 w (t) w (t) < 0, ∀x ∈ E V ⊆ P u (44) 
We examine the two following cases.

1. If w = 0, it can be deduced from (44) that

∆V < -τ 1 V (x (t)) , ∀x ∈ E V (45) 
which means that all closed-loop trajectories stating from the set E V converge asymptotically to the origin with a decay rate τ 1 .

2. If w = 0 and w ∈ W ∞ δ , the satisfaction of ( 38) and ( 44) implies clearly that

∆V + τ 1 (V (x (t)) -1) -τ 2 δ -w (t) w (t) < 0, ∀x ∈ E V (46) 
Condition [START_REF] Nguyen | Online adaptation of the authority level for shared lateral control of driver steering assist system using dynamic output feedback controller[END_REF] guarantees that the set E V is robustly positively invariant [START_REF] Blanchini | Set invariance in control[END_REF] with respect to the closed-loop system [START_REF] Nguyen | Simultaneous design of parallel distributed output feedback and anti-windup compensators for constrained Takagi-Sugeno fuzzy systems[END_REF]. Moreover, the satisfaction of condition [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF] implies

P θ * C θ γI ≥ 0 (47) 
From (47), it is easily deduced that

z z = x C θ C θ x ≤ γx P θ x ≤ γ, ∀x ∈ E V ( 48 
)
which means that the L ∞ -norm of the output signal is bounded: z ∞ ≤ γ.

The proof of Theorem 2 can be now concluded.

Remark 3. It is noteworthy that differently from Theorem 2, the set E V obtained with design conditions in Theorem 1 is not invariant with respect to the closed-loop system [START_REF] Nguyen | Simultaneous design of parallel distributed output feedback and anti-windup compensators for constrained Takagi-Sugeno fuzzy systems[END_REF]. Indeed, if ∀x (0) ∈ E V and ∀x (0) / ∈ E Vρ , then it is not possible to guarantee that the corresponding closed-loop trajectory remains inside the set E V for ∀w ∈ W 2 δ defined in [START_REF] Tsai | Robust H ∞ stabilization conditions for a class of uncertain T-S fuzzy neutral systems with disturbance[END_REF].

Remark 4. The decay rate τ 1 is related to the time-domain performance of the closed-loop system [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. Therefore, it can be regarded as a tuning parameter for the proposed controller. Due to the multiplication of τ 1 and other decision variables (such as X i ), the design conditions of Theorem 2 are a set of linear matrix inequalities with a line search over the scalar τ 1 . From numerical point of view, a line search for τ 1 can be effectively done with 100 points linearly gridded in the interval [0, 1). Then, a finite set of LMI constraint problems with τ 1 ∈ {0, 0.01, 0.02, . . . , 0.99} will be solved. Therefore, τ 1 is simply a parameter for LMI optimization problem. Notice that similar constructive numerical procedure can be found in [START_REF] Oliveira | Robust state feedback LMI methods for continuoustime linear systems: Discussions, extensions and numerical comparisons[END_REF].

Remark 5. The control design conditions in Theorems 1 and 2 are based on the choice of parameterdependent Lyapunov function [START_REF] Saifia | Fuzzy control for electric power steering system with assist motor current input constraints[END_REF]. This type of Lyapunov functions allows for an LMI formulation. Moreover, it can help to reduce effectively the conservatism of the results compared to those obtained with common quadratic Lyapunov function V (x (t)) = x (t) P x (t). Indeed, the latter is simply a special case of (32) by imposing P i = P with i ∈ Ω r . It should be also noticed that the proposed method can be easily generalized by using more complex parameter-dependent Lyapunov functions [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF][START_REF] Ding | Further studies on relaxed stabilization conditions for discretetime two-dimension Takagi-Sugeno fuzzy systems[END_REF][START_REF] Lee | Approaches to extended non-quadratic stability and stabilization conditions for discrete-time Takagi-Sugeno fuzzy systems[END_REF] to reduce further the conservatism at the expense of computational cost.

Optimization Algorithms for Control Design

Both Theorems 1 and 2 provide LMI conditions to check easily the feasibility of the control problems defined in Section 2. Since the results are developed for local stability and performance, there is a trade-off between different closed-loop requirements. According to the design purposes, two following optimization problems can be formulated.

Optimization Problem 1. Find a controller [START_REF] Jaballi | Reducing conservativeness of stabilization conditions for switched T-S fuzzy systems[END_REF] solving the control problems defined in Section 2 such that the estimate of the domain of attraction E V is maximized.

It should be noticed that this control objective can be done easily in the quadratic Lyapunov framework by minimizing the trace of the Lyapunov matrix [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. However, the estimated domain of attraction in this paper is non-convex due to its associate fuzzy Lyapunov function [START_REF] Saifia | Fuzzy control for electric power steering system with assist motor current input constraints[END_REF]. To overcome this obstacle, we propose here to maximize the largest trace (X k ), k ∈ Ω r . This leads to the following optimization problems to solve Optimization Problem 1.

• For constrained T-S fuzzy systems (3) subject to L 2 disturbances: max µ (49) subject to µ > 0 and trace (X i ) ≤ µ, i ∈ Ω r , LMI conditions ( 21)-( 25) in Theorem 1.

• For constrained T-S fuzzy systems (3) subject to L ∞ disturbances:

max µ (50)
subject to µ > 0 and trace (X i ) ≤ µ, i ∈ Ω r , LMI conditions ( 22)-( 23) and ( 38)-( 41) in Theorem 2.

Optimization Problem 2. Find a controller [START_REF] Jaballi | Reducing conservativeness of stabilization conditions for switched T-S fuzzy systems[END_REF] solving the control problems defined in Section 2 such that for a given bound δ on the L 2 -norm (respectively L ∞ -norm) of admissible disturbances, the effect of the disturbances on closed-loop system [START_REF] Nguyen | Simultaneous design of parallel distributed output feedback and anti-windup compensators for constrained Takagi-Sugeno fuzzy systems[END_REF] is minimized.

This problem can be straightforwardly solved with the following optimizations.

• For constrained T-S fuzzy systems (3) subject to L 2 disturbances:

min γ (51) 
subject to LMI conditions ( 21)-( 25) in Theorem 1.

• For constrained T-S fuzzy systems (3) subject to L ∞ disturbances:

min γ (52)
subject to LMI conditions ( 22)-( 23) and ( 38)-( 41) in Theorem 2.

Notice that the optimization problems in (49), (50), (51), and (52) are convex and can be effectively solved with available LMI numerical solvers.

Remark 6. It is noteworthy that if an LMI solver based on interior point methods [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], the computational cost of the LMI optimization problem can be estimated as being proportional to N 3 var N row , where N var is the total number of scalar decision variables and N row the total row size of the LMIs [START_REF] Gahinet | LMI Control Toolbox[END_REF]. Concerning the proposed algorithms, these numbers are evaluated as follows

• For design conditions of Theorem 1

N row = 2 + 2rqn x + rn u (n x + 1) + r 3 (2n x + n u + n w ) N var = 1 + rn x (n x + 2n u ) + n x (n x + 1) /2 + n u (n u + 1) /2 (53) 
• For design conditions of Theorem 2

N row = 2 + 2rqn x + rn u (n x + 1) + r 3 (2n x + n u + n w + n z ) N var = 2 + rn x (n x + 2n u ) + n x (n x + 1) /2 + n u (n u + 1) /2 (54) 
Computational complexity of design conditions plays an important role in practice for both design and implementation of controllers. In the next section, we will evaluate such complexity between different design methods.

Numerical Examples

In this section, the effectiveness of the proposed method is demonstrated with two examples. The first one is used to show the motivations for considering the system constraints in the control design for realworld applications. The second example aims at studying the conservativeness and also the complexity of the proposed method compared to existing works. The characterization of the estimated domain of attraction is also illustrated in this example. All LMI optimizations are done with LMI Control Toolbox [START_REF] Gahinet | LMI Control Toolbox[END_REF] in Matlab R2011b with the vector OPTIONS equal to [0 100 10e9 10 0].

Example 1. Consider the following truck-trailer control problem [START_REF] Tanaka | Multiobjective control of a vehicle with triple trailers[END_REF][START_REF] Kau | Robust H ∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties[END_REF][START_REF] Wu | H 2 guaranteed cost fuzzy control design for discrete-time nonlinear systems with parameter uncertainty[END_REF] 

         x 1 (t + 1) = (1 -vT /L) x 1 (t) + (vT /l) sat (u(t)) x 2 (t + 1) = (vT /L) x 1 (t) + x 2 (t) + 0.2w (t) x 3 (t + 1) = x 3 (t) + vT sin (θ (t)) + 0.1w (t) z (t) = 7x 1 (t) -2x 2 (t) + 0.03x 3 (t) (55) 
where x 1 (t) is the difference of angle between the truck and the trailer, x 2 (t) the angle of the trailer compare to the horizontal axe, x 3 (t) the position related to the vertical axe of the back of the trailer, u (t) the steering angle that can be applied to the front wheels of the truck, T is the sampling time and θ (t) = x 2 (t) + (vT /2L) x 1 (t). The model parameters are given as: l = 2.8m , L = 5.5m, v = -1.0m/s, and T = 2s.

Following the same modeling procedure as in [START_REF] Tanaka | Multiobjective control of a vehicle with triple trailers[END_REF][START_REF] Wu | H 2 guaranteed cost fuzzy control design for discrete-time nonlinear systems with parameter uncertainty[END_REF] the nonlinearity sin (θ) can be exactly represented as follows sin (θ) = θη 1 (θ) + gθη 2 (θ)

for -179.427 • < θ < 179.427 • and g = 10 -2 /π. The membership functions are given by

η 1 (θ) = 1 -η 2 (θ) , η 2 (θ) = θ-sin(θ) θ(1-g) , θ = 0 0, θ = 0 (56) 
Then, the nonlinear system in (55) can be exactly represented by T-S fuzzy model (3) with

A 1 =   1 -vT /L 0 0 vT /L 1 0 v 2 T 2 / (2L) vT 1   , B u 1 =   vT /l 0 0   , B w 1 =   0 0.2 0.1   , C 1 =   7 -2 0.03   A 2 =   1 -vT /L 0 0 vT /L 1 0 gv 2 T 2 / (2L) gvT 1   , B u 2 =   vT /l 0 0   , B w 2 =   0 0.2 0.1   , C 2 = C 1 (57) 
Notice that system ( 55) is open-loop unstable and in contrast to previous works [START_REF] Tanaka | Multiobjective control of a vehicle with triple trailers[END_REF][START_REF] Kau | Robust H ∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties[END_REF][START_REF] Wu | H 2 guaranteed cost fuzzy control design for discrete-time nonlinear systems with parameter uncertainty[END_REF], the following limitations on the energy of the disturbance and the control input are explicitly considered in the control design procedure δ ≤ 6, u max = 1.

Moreover, with the expression of θ (t) and the imposed condition -179.427 For simulation purposes, the energy-bounded disturbance w (t) is selected as a constant of 2.8 happening at t = 15s with duration 2.1s. Applying the controller gains given in (58), the closed-loop responses corresponding to the initial condition x 0 = π/2 3π/4 -10 are indicated in Figure 1. Two phases can be distinguished for this simulation result. For the first phase from t = 0s to t = 15s, the disturbance is not involved in the dynamics of the truck-trailer system, and all three state variables converge to the origin. The second phase is from t = 15s till the end of the simulation. It can be observed that at t = 15s, the considered L 2 disturbance w(t) begins to act on the system dynamics for a duration of 2.1s (see the dashdot red line in Figure 1), the system state variables are therefore perturbed. However, the proposed robust controller is able to effectively reject the disturbance effect and all states converge again at the end of the simulation. It should be stressed that existing controllers provided in [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF][START_REF] Tanaka | Multiobjective control of a vehicle with triple trailers[END_REF][START_REF] Wu | H 2 guaranteed cost fuzzy control design for discrete-time nonlinear systems with parameter uncertainty[END_REF] are not able to stabilize the closed-loop system (55) in this case, see Figure 2. These facts confirm strongly the interests of considering explicitly the actuator saturation and the state constraints in the control design procedure. Notice also that the results proposed in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] for constrained T-S systems subject to L ∞ disturbances cannot be rigorously applied to this case where the involved disturbance w (t) belongs to a class of L 2 signal. Example 2. Let us consider the following constrained nonlinear system borrowed from [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF][START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF]:

     x 1 (t + 1) = x 1 (t) -x 1 (t)x 2 (t) + (5 + x 1 (t)) sat (u(t)) + 0.5x 1 (t)w(t) x 2 (t + 1) = -x 1 (t) -0.5x 2 (t) + 2x 1 (t) sat (u(t)) z(t) = x 1 (t) (59)
for -β ≤ x 1 (t) ≤ β with β > 0 and u max = 1. By choosing the premise variable as θ(t) = x 1 (t) and using the sector nonlinearity approach, one has

x 1 (t) = η 1 (x 1 ) β -η 2 (x 1 ) β
where the membership functions η 1 (x 1 ) and η 2 (x 1 ) are given by

η 1 (x 1 ) = x 1 + β 2β , η 2 (x 1 ) = 1 -η 1 (x 1 ) .
Then, the nonlinear system (59) can be exactly represented in the compact set P x = [-β, β] of the variable x 1 (t) by the following two rules discrete-time T-S fuzzy model:

Model rule 1:

If x 1 (t) is η 1 (x 1 ) Then x (t + 1) = A 1 x (t) + B u 1 sat (u (t)) + B w 1 w (t) z (t) = C 1 x (t) Model rule 2: If x 1 (t) is η 2 (x 1 ) Then x (t + 1) = A 2 x (t) + B u 2 sat (u (t)) + B w 2 w (t) z (t) = C 2 x (t) (60) 
The system matrices of the open-loop unstable T-S fuzzy system (60) are given as follows

A 1 = 1 -β -1 -0.5 , B u 1 = 5 + β 2β , B w 1 = β/2 0 , C 1 = 1 0 A 2 = 1 β -1 -0.5 , B u 2 = 5 -β -2β , B w 2 = -β/2 0 , C 2 = 1 0 (61) 
Assume also that the T-S system (60) is subject to amplitude-bounded disturbance w (t) = 0.5 sin (t).

This example aims at studying the conservatism together with the complexity of the proposed method compared to recent work [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] dealing with the same control context, namely constrained T-S systems subject to L ∞ disturbances in Theorem 2. Table 1 shows the maximal β, denoted by β * , for which stabilizing controller can be computed from different methods and also the numbers characterizing the complexity of these methods. It can be observed from Table 1 that the new method provides not only less conservative results but also much less complex design conditions in terms of computational cost. The general formulas to compute the numbers characterizing complexity of the LMI optimization problem of the method in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] are given by

               N row = r 2 (2n x + n w ) 2 + 3r (r -1) /2 + (r (r -1) /2) 2 + . . . + 2r (3n x + n u + n w ) + r 2 (r -1) (3n x + n u + n w ) /2 N var = 1 + n x (n x + 1) /2 + n u (n u + 1) /2 + rn x (n x + n u ) + . . . + r 2 r 2 + (n x + n u ) 2 + n x (n x + 1) /2 + (2n x + n w ) 2 + r 4 (2n x + n w ) 2 (62)
Compared to (54), we can see from (62) that the computational complexity of the method in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] becomes excessively important with high dimension T-S fuzzy systems and/or T-S fuzzy systems with important number of sub-systems. This fact is also a major drawback of [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] for real-world applications. Now, taking β = 1.6 (for which the design conditions in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] are infeasible), solving LMI optimization problem in (50) with τ 1 = 0.15 for system (61) yields µ = 0.5779 and Figure 3 depicts the guaranteed domain of attraction and the phase portrait of the closed-loop system (61) obtained with the proposed method. It can be observed that this domain has clearly non-quadratic form which is maximized inside the intersection P x ∩P u . Moreover, it can be observed from the phase portrait that as expected the controller with matrices given in (63) provides stable behaviors for all trajectories initialized inside the guaranteed domain of attraction. It is worth noting that the method in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] does not provide any characterization on the estimate of the domain of attraction. • Case 1. Constrained T-S system (61) with maximal β * 1 = 1.55 that can be obtained with [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF].

P 1 = 0.
• Case 2. Constrained T-S system (61) with maximal β * 2 = 1.68 that can be given by Theorem 2. Of course, conditions in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] are all infeasible in this case.

It is worth noting that for Case 1 the maximal decay rate can be obtained with Theorem 2 in this paper (respectively Theorem 2 in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF]) is τ 1 = 0.47 (respectively τ 1 = 0.11). This fact confirms again that the proposed design conditions are less conservative than those in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] and the resulting controller can provide faster closed-loop time convergence than that in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] provide such stable responses under the same conditions. The intensive simulation results given above have clearly pointed out the advantages of the proposed control method. 

Concluding Remarks

In this paper, a new LMI-based method has been proposed to design saturated non-PDC control law for constrained T-S fuzzy systems subject to both control input and state constraints and also L 2 or L ∞ disturbances. This method relies on the use of a parameter-dependent Lyapunov function and a parameter-dependent version of generalized sector condition for control input nonlinearity. These facts allow reducing not only the conservativeness but also the computational complexity of the design conditions. Moreover, the concept of invariant set is effectively exploited to cope with local control context which provides a characterization of the closed-loop estimate of the domain of attraction. The interests of the proposed method have been clearly demonstrated by means of illustrative examples. The new method can be applied to a very large class of nonlinear systems. Moreover, the control structure is relatively simple with low-complexity design conditions. These facts are particularly interesting for real-world applications. Indeed, some challenging automotive control problems [START_REF] Nguyen | Shared lateral control with online adaptation of the automation degree for driver steering assist system: A weighting design approach[END_REF][START_REF] Nguyen | Online adaptation of the authority level for shared lateral control of driver steering assist system using dynamic output feedback controller[END_REF] are currently studied with the proposed results. Moreover, theoretical extensions to T-S fuzzy systems subject to nested saturations [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] is also a topic for future research.
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 1 Figure 1: Closed-loop behaviors of (55) corresponding to the initial condition x 0 = [π/2 3π/4 -10] and the non-PDC controller with matrices given in (58).
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 2 Figure 2: Closed-loop behaviors of system (55) corresponding to initial condition x 0 = [π/2 3π/4 -10] obtained with design conditions in [45].
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 3 Figure 3: Results obtained with β = 1.6: guaranteed domain of attraction S1 = E V , generalized sector condition for input saturation S2 = Pu, domain of validity S3 = Px.
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 6 Figure 6: Case 2 with β * 2 = 1.68. Closed-loop behaviors of T-S system (61) corresponding to the initial condition x 0 = [β * 2 4] obtained for the non-PDC controller with matrices given in (65).

  

  

Table 1 :

 1 Comparison between different design methods

	Design conditions Theorem 2 Theorem 2 in [24]
	β *	1.68	1.55
	N row	72	168
	N var	25	581

  , see Remark 4. Applying Theorem 2 for Case 1 with τ 1 = 0.47, one has

	P 1 =	1.803 0.386 0.386 0.232	,	H 1 =	0.677 -0.033 -0.897 7.510	, G 1 = -0.259 1.857
	P 2 =	0.772 -0.116 -0.116 0.234	, H 2 =	0.903 0.642 -0.362 4.568	,	G

2 = -0.065 -1.943 (64)

Combining the fact that ψ u (l) < 0 in this case with inequality[START_REF] Ding | Further studies on relaxed stabilization conditions for discretetime two-dimension Takagi-Sugeno fuzzy systems[END_REF], it follows that (15) holds.
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The closed-loop behaviors of T-S system (61) obtained with matrices for the controller given in (64) and initial condition x 0 = [β * 1 -4] is depicted in Figure 4. It can be clearly observed that controller with matrices given in (64) induces stable closed-loop behaviors and the disturbance is effectively rejected in this case. Notice also that existing controllers in [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF][START_REF] Tanaka | Multiobjective control of a vehicle with triple trailers[END_REF][START_REF] Wu | H 2 guaranteed cost fuzzy control design for discrete-time nonlinear systems with parameter uncertainty[END_REF] lead to unstable behaviors under the same conditions since system constraints were not explicitly considered in the control design for these controllers, see Figure 5. -4] obtained with design conditions in [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF].

We now apply Theorem 2 for Case 2 with τ 1 = 0.21, the following results are obtained: 

Figure 6 shows the closed-loop responses corresponding to Case 2 with initial condition x 0 = [β * 2 4]. We can see that similarly to Case 1, the proposed controller can stabilize the closed-loop system in this extreme case despite the presence of disturbance w(t). Again, controllers given in [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF][START_REF] Tanaka | Multiobjective control of a vehicle with triple trailers[END_REF][START_REF] Wu | H 2 guaranteed cost fuzzy control design for discrete-time nonlinear systems with parameter uncertainty[END_REF] cannot