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Abstract. This paper presents an innovative approach for the modelling of viscous behaviour of short-fibre reinforced
composites (SFRC) with complex distributions of fibre orientations and for a wide range of strain rates. As an alternative to more
complex homogenisation methods, the model is based on an additive decomposition of the state potential for the computation
of composite’s macroscopic behaviour. Thus, the composite material is seen as the assembly of a matrix medium and several
linear elastic fibre media. The division of short fibres into several families means that complex distributions of orientation or
random orientation can be easily modelled. The matrix behaviour is strain-rate sensitive, i.e. viscoelastic and/or viscoplastic.
Viscoelastic constitutive laws are based on a generalised linear Maxwell model and the modelling of the viscoplasticity is
based on an overstress approach. The model is tested for the case of a polypropylene reinforced with short-glass fibres with
distributed orientations and subjected to uniaxial tensile tests, in different loading directions and under different strain rates.
Results demonstrate the efficiency of the model over a wide range of strain rates.

1. Introduction

Thermoplastics reinforced with short fibres are more and
more appealing for a wide-range of industrial applications,
in particular in automotive industry in parts possibly
subjected to sever loading conditions (e.g. crash. . .). As
a consequence of complex reinforcement configurations
in terms of orientation, geometrical and mechanical
properties and complex polymeric matrix behaviour,
SFRC behaviour is governed by numerous interdependent
phenomena, such as plastic flow, ductile damage and
strain-rate dependency of the matrix, fibre breakage,
debonding or pull-out... Beyond the limits of linear
elasticity, these phenomena can obviously not be modelled
by a simple rule of mixture and more elaborated models,
like the extended homogenization methods to components’
non-linear behaviour have been developed. However, when
all or some of phenomena listed above are interfering,
the aforementioned methods become too complex to
implement to allow to take all these relatively sophisticated
features into account. To overcome these limitations, an
original approach was recently proposed by Notta-Cuvier
et al. [1,2], where complex fibre orientations can be easily
dealt with thanks to the consideration of an assembly
of the matrix medium with several fibre media, each of
them being characterized by a volume fraction, να

f , and
a unit orientation vector. Stress transfer from the matrix
to fibres is governed by a modified shear-lag model. Note
that the model was then extended to strongly anisotropic
ductile damage in the matrix material [3]. In this work, the
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modelling is now extended to take the rate-dependency of
the matrix behaviour into account.

2. Constitutive model

2.1. Stress state of matrix material

Rate dependency of the matrix behaviour is predicted
with coupled viscoelastic-viscoplastic schemes. The
viscoelastic part of the response is taken into account using
the linear Wiechert model (i.e. Maxwell Generalized)
consisting of a finite number of Maxwell elements
arranged in parallel with a linear elastic Hooke element.
This response is updated, when necessary by a viscoplastic
scheme. The hereditary integral over the time, t, of the
viscoelastic stress response is formulated as:

σ (t) =
∫ t

−∞
Rve (t − Γ ) :

dε (ζ )

dζ
dζ (1)

where σ and ε are the matrix stress and strain tensors,
respectively. Rve is the fourth order relaxation tensor
expressed by:

Rve (t) = Lve
∞ +

N∑
i=1

Lve
i exp

(
− t

τi

)
(2)

where N is the number of Maxwell elements. Lve
∞ is the

fourth order long-term elasticity tensor of the Hooke’s
element defined by:

Lve
∞ = 2G∞ Id + K∞ I ⊗ I (3)
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τi and Lve
i are the relaxation time and the fourth order

elasticity tensor of the ith Maxwell element, respectively,
with:

Lve
i = 2Gi Id + Ki I ⊗ I (4)

Id is the deviatoric projection tensor such as:

Id = Is − 1

3
I ⊗ I. (5)

The matrix viscoplasticity is taken into account following
Perzyna’s viscoplastic model [4]. The pressure dependent
and nonsymmetric (visco) plastic flow, i.e. sensitivity of
the polymeric matrix behaviour to the nature of loading
(e.g., tension, compression..), are modelled by Raghava’s
yield surface [5]. Plastic flow occurs as soon as the
first invariant of the stress tensor, I1 (σ ), and the second
invariant of the deviatoric stress tensor, I2 (σ ), reach a
critical combination. Expression of the yield surface, f ,
is given by:

f (σ, R) =
(η − 1) I1 (σ ) +

√
(η − 1)2 I 2

1 (σ ) + 12ηI2 (σ )

2η

−σt − R (κ) . (6)

with
I1 (σ ) = tr (σ ) (7a)

and

I2 (σ ) =
1

2
S : S (7b)

where S is the deviatoric stress tensor. The hydrostatic
pressure dependency parameter, η, is defined using the
ratio between the quasi-static initial yield stress in
compression and tension, σc and σt , respectively, and:

η =
σc

σt
· (8)

In the expression of the yield surface, R (κ), is a nonlinear
isotropic hardening function, defined by Balieu et al. [6]:

R (κ) = Q1κexp (−b1κ) + Q2 (1 − exp (−b2κ)) + b3κ
3

+ b4κ
2 + b5κ (9)

where Q1, Q2, b1, b2, b3, b4 and b5 are material
parameters. The hardening variable κ is the equivalent
viscoplastic strain defined by:

κ =

√
3

2
εvp : εvp (10)

with εvp the viscoplastic strain tensor. Since the
viscoplastic deformation of polymer materials is not an
isochoric phenomenon, a non-associated viscoplastic flow
rule is used. The asymmetry of this volume change (i.e.,
not similar for positive and negative hydrostatic pressures)
is modelled by a hyperbolic viscoplastic dissipation
potential [6], defined by:

F (σ ) =

√
3I2 (σ ) +

1

3

(
a+ < I1 >2+ a− < −I1 >2

)
(11)

where a+ and a− are volume variation parameters for
positive and negative hydrostatic pressures, respectively.
The viscoplastic strain rate tensor can therefore evolve
differently for positive and negative hydrostatic pressures.
The symbol 〈.〉 is the Macauley braket, that is, for any
scalar x , given by (x+|x |)

2 . According to this non-associated
flow rule the viscoplastic strain rate tensor is given by:

ε̇vp = λ̇n. (12)

Where n is the viscoplastic flow direction tensor expressed
by:

n =
∂ F

∂σ
· (13)

Consequently, with the given dissipation potential, the
viscoplastic strain rate tensor becomes:

ε̇vp = λ̇

3
2 S + 1

9

(
a+ < I1 >+ a− < −I1 >

)
I√

3I2 (σ ) + 1
27

(
a+ < I1 >2+ a− < −I1 >2

) ·
(14)

Matrix material’s strain rate dependency is introduced by
a viscoplastic formulation. The static yield surface, f ,
is extended according to an overstress based viscoplastic
theory and a dynamic yield surface is then defined, as
follows [4]:

Fvp (σ, R, κ̇)

=
(η − 1) I1 (σ ) +

√
(η − 1)2 I 2

1 (σ ) + 12ηI2 (σ )

2η

− (σt + R (κ)) − σ̃ vp ≡ 0. (15)

With σ̃ vp the overstress: As postulated in Perzyna’s model,
the viscoplastic multiplier λ̇ is expressed in terms of
overstress as follows:

λ̇ =
κ̇0√

2
3 n : n

(
σ̃ vp

2η (σt + R (κ))

) 1
n

(16)

and equivalently:

σ̃ vp = (σt + R (κ))

(
κ̇

κ̇0

)n

(17)

where n and κ̇0 are the strain rate sensitivity and
viscosity parameters, respectively, and κ̇ is the equivalent
viscoplastic strain rate, defined by:

κ̇ =

√
2

3
ε̇vp : ε̇vp = λ̇

√
2

3
n : n. (18)

The expression of the dynamic yield surface can therefore
be rewritten as follows:

Fvp (σ, R, κ̇)

=
(η − 1) I1 (σ ) +

√
(η − 1)2 I 2

1 (σ ) + 12ηI2 (σ )

2η

− (σt + R (κ))

(
1 +

κ̇

κ̇0

)n

≡ 0. (19)
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The standard Kuhn-Tucker loading/unloading conditions
(i.e., Fvp ≤ 0, λ̇ ≥ 0, λ̇Fvp = 0) are applied to the
dynamic yield surface. It can be noted that both static
and dynamic yield surfaces are updated all along the
implementation. As a consequence, during unloading
overstress does not systematically vanish and stress state
can remain in the viscoplastic domain (i.e. stress state
above the static yield surface, on updated dynamic
surface). The rate form of the viscoplastic multiplier is
obtained by substituting its expression into the viscous
yield surface and is as follows:

λ̇=




0, if f < 0,

κ̇0√
2
3 n:n

(
(η−1)I1(σ )+

√
(η−1)2 I 2

1 (σ )+12ηI2(σ )

2η(σt+R(κ))

) 1
n

, if f ≥ 0.
(20)

2.2. Stress state of the composite material

Once matrix behaviour is solved, contributions of fibres
media to SFRC behaviour are introduced according to
the original method developed by Notta-Cuvier et al. [1].
Each fibre family is subjected to the projection of the
total deformation gradient tensor along its orientation and
behaves in a one−dimensional linear elastic way. The
average axial stress in the fibres is computed based on
Bowyer-Bader theory [7], where a progressive degradation
of the fibre-matrix interface is taken into account. As
previously stated, the stress state of the composite material
is computed as a combination of the different constituent
contributions, starting from a state potential, the Helmholtz
free energy (Eq. (21)), that is divided into as many terms
as there are media constituting the composite.

ρφ = νMρMφM +

n f am∑
α=1

να
Fρα

Fφα
F (21)

where ρ, ρM and ρα
f are respectively the densities of

the composite material, the matrix material and the
fibres family α. Using a thermodynamic formulation a
particular solution of the Clausius-Duhem inequality can
be expressed by Eq. (21) thus giving the expression of
composite macroscopic stress tensor.

σ = νMσM +

n f am∑
α=1

να
F Aασ α

F Aα. (22)

3. Example of application

The model is implemented as a VUMAT (Abaqus
Explicit) and is tested for a fictitious injection moulded
SFRC, namely a polypropylene reinforced with 10 vol.%
glass fibres. Fibre configuration is extracted from work
by Kammoun et al. [8] (EF = 76 GPa, distributed
orientations with preferential orientation in the injection
flow direction). In the present implementation, the fibre
distribution is modelled using 10 fibre media with angles
of orientation varying from 0 to 90◦, by step of 10◦,
with respect to the injection flow direction and a suitable

Figure 1. Distribution of orientations [8].

Figure 2. θ = 0◦.

Figure 3. θ = 30◦.

Figure 4. θ = 45◦.

volume fraction is associated to each fibre media, as shown
in Fig. 1. The matrix viscoelastic−viscoplastic material
parameters are chosen in accordance with the model
proposed by Balieu et al. [6], for a 20% mineral filled
polypropylene co−polymer.

In order to assess the model accuracy, uniaxial tensile
tests are performed on one element for different strain rates
and loading directions (angle of loading, θ , successively
equals to 0◦, 30◦, 45◦ and 90◦ with respect to injection flow
direction) as shown in Figs. 2 to 5.
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Figure 5. θ = 90◦.

Responses’ dependency on the strain rate is highlighted
in the linear and non-linear phases according to the
hereinabove presented implementation. This evolution is
obviously dependent on the loading direction regarding the
principal fibre direction (i.e. the injection flow direction).
It can be seen that, as the angle of loading direction
with respect to fibres’ one increases, the strain rate
dependency of the whole material’s modelled response
is dimmed down, which is in accordance with the fact
that the rate independent linear elastic response of the
fibres is of greater influence in its principal direction,
while at increased angles of orientation the response is
ratherdominated by that of the matrix.

4. Conclusions
A behaviour model for strain-rate dependent short
fibre reinforced composites is presented, based on
an original approach that aims to be an efficient
alternative to more complex procedures of homogeni-
sation. The matrix has viscoelastic-viscoplastic and
pressure dependent behaviour and complex reinforcement
configurations are considered. Current development
concerns a physical modelling of fibre/matrix interface

degradation during loading, with possible strain-rate
effects. The determination of the material constants is
the subject of an already started static and dynamic
experimental investigation.
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supported by International Campus on Safety and Intermodality
in Transportation, the Région Nord Pas de Calais, the European
Community, the Délégation Régionale á la Recherche et á
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