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Abstract. Resistance Spot Welding (RSW) is widely used in the automotive industry thanks to its production
convenience and cost effectiveness. Around four thousands spot welds are indeed employed to assemble the
body-in-white. RSW of multiple sheets and combining multiple materials are increasingly realized. The Ultra-
High-Strength Steels (UHSS) are particularly well suited for the entire range of structural parts requiring good
crash resistance. However, the mechanical strength and the rupture of such new generation of RSW under
multi-axial loadings is not yet well studied. The present work investigates the mechanical strength and the
failure of a three-sheet spot welded assembly composed of two sheets of UHSS 22MnB5 and a third sheet
of mild steel DX54D. An advanced experimental procedure is proposed for testing this assembly in pure and
combined (tensile shear modes) modes I/II. Two types of specimen with different sheet thicknesses have been
studied. The obtained results are analyzed to investigate the loading angle effect and the assembly configuration
effect on the mechanical strength. Failure modes are also studied in relation with the increasing of the loading
angle. Finally, the parameters of a macroscopic force-based failure criterion dedicated for FE crash modeling
are identified.

1 Introduction

A new generation of multi-sheet multi-steel grade spot-
welded assemblies has been recently introduced in the au-
tomotive industry, with the increase of the safety require-
ment. Also, lightweight automobile is the development
trend in recent years, to reduce energy consumption and
carbon emissions. In fact, the use of the Ultra High-
Strength Steels (UHSS) in these spot welded assemblies
makes it possible to reduce weight by 30% to 50% com-
pared to conventional steel grades [1], while achieving the
same crash performance. However, the mechanical behav-
ior of this new generation of assemblies is not yet suffi-
ciently studied. To the knowledge of the authors, most of
published works for combined loadings concern two-sheet
spot-welded assemblies [2–5]. When three-sheet assem-
blies are considered, only few works relate the study of the
mechanical strength under quasi-static loading using con-
ventional tensile-shear specimens [6–10]. In this context,
this paper presents an experimental Arcan set up to inves-
tigate the mechanical behavior and the failure of the three-
sheet multi-steel grade spot-welded assemblies in pure and
combined loading conditions. According to the assembled
sheet thicknesses, two types of specimen have been stud-
ied to investigate the influence of the spot welded assem-
bly configuration on the mechanical behaviour and on the
failure mode. The first section presents the studied spot
welded assemblies, and the experimental tests. The ob-
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tained results and a discussion of the effect of the loading
angle and the welded assembly configuration are presented
in the second section. Finally, some conclusions are pre-
sented in the third section.

2 Experimental tests
2.1 Studied three-sheet spot welded assemblies

The studied spot welded assemblies consist of three-sheet
assemblies of various thicknesses and involving two steel
grades. According to the assembled sheet thicknesses, the
specimens of the studied assemblies are classified in two
lots:
• Lot A: (P1) is 2 mm thick and made of an ultra-high steel

22MnB5, (P2) is 0.65 mm thick and made of mild steel
DX54D and (P3) is 1.65 mm thick and made of 22MnB5
(Fig. 1).
• Lot B: (P1) is 2.5 mm thick and made of an ultra-high

steel 22MnB5, (P2) is 1 mm thick and made of mild steel
DX54D and (P3) is 1 mm thick and made of 22MnB5
(Fig. 2).

The mechanical properties of the two materials are pre-
sented in Table 1.

2.2 Hardness measurement

Vickers hardness testing was performed with Future Tech
Hardness Tester. The applied force level for hardness mea-
surement was equal to 300 g. The averaged and linearised
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Fig. 1. Studied spot welded assembly-LotA

Fig. 2. Studied spot welded assembly-LotB

Table 1. Mechanical properties of sheets metals
σy (MPa) σmax (MPa) A (%)

DX54D 171 301.6 57
22MnB5 1100 1500 6

hardness distribution results revealed the nugget dimen-
sions, and allows us to identify three zones of spot weld:
Nugget, Heat Affected Zone (HAZ) and Base Material
(BM) (Fig. 3).
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Fig. 3. Hardness distribution along the diametrical direction of
manufactured spot weld joint

2.3 Experimental device

The tests are carried out on a high speed hydraulic machine
(INSTRON VHS 65/20). The forces along the three main
directions of the machine (Fx, Fy and Fz) are measured
during the tests, using a triaxial load cell (Kistler 9367C)
(Fig. 4). The displacement is obtained by a LVDT sensor.

A specific set up, based on Arcan principle, has been
developed to link the specimen to the tensile machine.
The loading modes are therefore combined and well con-
trolled, with a reduced contribution of the plates strength
surrounding the weld nugget in the macroscopic response.
The angular position α between the loading directions (the
vertical axis) and the normal to the surface of the specimen

defines the tensile/shear ratio (Fig. 4). Note that an ade-
quate test device is especially designed for each angular
position [12, 13] .

The experimental tests are performed such that the
loading is applied on the two external plates of the spec-
imen, at a loading velocity equal to V = 1 mm/s. The
proposed device is made on a titanium alloy with a specific
conception to minimize the inertia effects and to allow var-
ious dynamic loading.

Fig. 4. Experimental device for three-sheet assembly tensile test-
ing

3 Experimental results and discussion

Tanks to the proposed Arcan device, six loading angles
are tested (α = [0◦, 30◦, 45◦, 60◦, 75◦, 90◦]). The exploita-
tion of experimental results, allowed to identify the failure
modes, to study the influence of the loading angle on the
mechanical behavior, and to investigate the specimen con-
figuration effect on the mechanical strength.

3.1 Failure modes

The post-mortem observations of the tested specimens al-
low to identify two main failure modes according to the
loading angle: Pull-out failure mode and the Inter-facial
failure mode.

• Pull-out failure mode: For this mode the failure oc-
curs around the spot weld nugget. This failure mode is
obtained for the pure and combined loading tests where
the normal load is dominant during test. The normal
load generates a stress concentration and leads to create
a crack. Thus, the weld nugget is pulling out from the
P3 layer (22MnB5, thickness 1.6 mm). Figure 5 shows
the section cut view of failed spot welds (post-mortem
specimen) for the pure tensile mode (α = 0◦).

• Inter-facial failure mode: For this mode the failure oc-
curs inside the spot weld nugget. This failure mode is
obtained for the pure shear test when the shear load is
dominant during test. The shear load generates a stress
concentration at the sheet/sheet interface into nugget
level and leads to create a inter-facial crack that prop-
agate through the spot weld nugget such as shown in
figure 6 that presents a section cut view of failed spot
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Fig. 5. Pull-out failure mode of three-sheet spot weld for tensile
mode (α = 0◦)

welds (post-mortem specimen) for the pure shear mode
(α = 90◦).

Fig. 6. Inter-facial failure mode of three-sheet spot weld for shear
mode (α = 90◦)

3.2 Effect of the loading angle on mechanical
strength

Figure 7 presents the exponential evolution of the peak
load as a function of the loading angle. In fact, for
0◦ ≤ α ≤ 30◦ the peak load increases slowly. Then, for
α = 45◦, it increases rapidly up to reach its maximum
value for pure shear (α = 90◦).
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Fig. 7. Evolution of the maximum load as a function of the loand-
ing angle

The increase of the peak load for the pure shear test
is explained by the characteristics of the failure mode as-
sociated to each loading modes. In fact, for the Pull-out
failure mode obtained for the pure and combined loading
modes, the rupture occurs around the spot weld nugget in
the HAZ, with a Pull-out failure section area estimated

equal to S Pull−out = π × ϕnugget × th3, where ϕnugget is
the nugget spot weld diameter and th3 the P3 thickness
(fig. 5). However, for the Inter-facial failure mode (for
α = 90◦), the rupture occurs cross the nugget spot weld
such as the Inter-facial failure section is estimated equal
to S Inter− f acial = π × ϕ2

Inter− f acial, where ϕInter− f acial is the
spot weld diameter (fig. 6). For the Lot A, S Pull−out ≃
14.45 mm2 < S Inter− f acial ≃ 50 mm2, which explains the
increase of the peak load between the pure tensile test and
the pure shear test.

3.3 Effect of specimen configuration on the
mechanical strength

Two configurations of the spot welded assembly (Lot A
and Lot B) are tested. The obtained results allowed to
investigate the effect of the thicknesses of the assembled
sheets on the behavior of the spot welded assembly. For
the pure tensile test (α = 0◦), the peak load obtained for a
specimen of Lot A (Fmax−LotA = 13.08 kN) is greater than
that obtained for a specimen of Lot B (Fmax−LotB = 10 kN)
(Figure 7).

For (α = 0◦), this peak load evolution can be explained
by the change of failure mode between the specimens of
the two Lots. In fact, for the Lot A the Pull-out failure
occurs in the interface between the Heat-Affected Zone
(HAZ) and the spot weld nugget as shows Figure 8. This
failure zone corresponds to a hardness of about 500 Hv
(Fig. 3). However, for the Lot B, the Pull-out failure oc-
curs in the interface between the Base Metal (BM) and the
Heat-Affected Zone (HAZ) of the spot weld as shows Fig-
ure 9. This failure zone corresponds to a hardness of about
330 Hv (Fig. 3).

The change of the failure zones hardness of the two
Lots justifies the evolution of the mechanical strength. In
addition to that, for Lot A the P3 thickness (th3−LotA =

1.6 mm) is thicker than that for Lot B (th3−LotB = 1 mm), so
obviously, the resistant section is larger, and consequently
the peak load for a specimen of Lot A is greater than that
obtained for a specimen of Lot B (Fmax−LotA > Fmax−LotB).

Fig. 8. Pull-out failure mode for Lot A

For the pure shear test (α = 90◦), the peak load for a
specimen of Lot A (Fmax−LotA = 27.7 kN) is also greater
than that obtained for a specimen of Lot B (Fmax−LotB =

22.5 kN) (Figure 7). The study of the failure modes for
the two Lots can explain this evolution of the peak load.
For the two Lots A and B, an Inter-facial failure mode is
obtained in pure shear test. The failure occurs inside the
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Fig. 9. Pull-out failure mode for Lot B

spot weld nugget at the sheet/sheet interface FZ12. How-
ever, figure 10 shows that the sheet/sheet interface for Lot
A is greater than that of Lot B (FZ12−LotAm = 5.64 mmm >
FZ12−LotB = .54 m). Considering the fact that the weld
nugget resistance against the Inter-facial failure mode is
determined by FZ12, this explains the better resistance of
the specimens of Lot A, for the pure shear test, compared
to the specimens of Lot B.

Fig. 10. Comparison of sheet/sheet interface dimension for Lot
A and Lot B

The effect of the spot welded assembly configura-
tion on the rupture envelope was also investigated. Fig-
ure 11 shows the evolution of the current normal force
N = Fcos(α) according to the current tangential effort
T = Fsin(α). We notice that the two envelopes are shifted.
This shift comes back to the evolution of maximum effort
depending on specimen type.
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Fig. 11. Rupture envelope

3.4 Macroscopic failure criterion

As for two-sheet welded assemblies, a force based crite-
rion Eq.1 is proposed to identify the failure of the three-
sheet spot welded assemblies [11].

(
N
Nu

)a
+

(
T
Tu

)b
= 1 (1)

where Nu = 10 kN is the ultimate normal force at fail-
ure obtained for α = 0◦, and Tu = 22.5 kN is the ultimate
tangentiel force at failure obtained for α = 90◦, a and b
are exponents of the failure criterion identified from the
experimental results of the combined loading tests.

The experimental results and the macroscopic failure
criterion are presented by figure 12.
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Fig. 12. Macroscopic failure criterioncriterion

4 Conclusion

An experimental procedure has been proposed in order
to investigate the mechanical behavior of multi-materials
multi-sheet spot welded assemblies in pure and combined
tensile/shear modes.

Two principal failure modes are obtained depending to
the loading angle. An exponential evolution of the peak
load with the loading angle is observed for these assem-
blies.

According to the assembled sheet thicknesses, two
configurations of spot welded assembly are studied. The
obtained results show that the peak load increases with the
thicknesses of third plate (P3) of the spot welded assem-
bly.

Finally, a macroscopic failure criterion is proposed and
compared to the experimental results.
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