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Abstract 

 

 There is a growing demand for high level surface characterization. The functionality of machine 

parts, such as tribological behavior, depends on the texture of contacting surfaces. The relation between 

texture parameters depending on the scaling of texture features, finishing process parameters, such as 

grain sizes for grinding, and functionality of a surface is investigated. Due to the fractal aspect of the 

studied surfaces, more advanced tools are used for characterization. This article presents a comparison 

of three different segmentation methods (patchwork, box, and motif) for multiscale decomposition, 

using different roughness parameters to analyse the texture of polymer samples finished with various 

abrasive papers from FEPA grade 80 to 4000 to represent varying abrasion on the different scales. The 

consistencies and discrepancies of the different procedures of multiscale decomposition in the relation 

between separability of macro and micro abrasions, identification of self-similarity and features or 

regions on varying scales and the finishing with different abrasive grain sizes have been investigated. 

 

1. Introduction 
There is a growing demand for high level surface characterization. The functionality of machine 

parts, such as tribological behavior, depends on the texture of contacting surfaces. The relation between 

texture parameters depending on the scaling of texture features, finishing process parameters, such as 

grain sizes for grinding, and functionality of a surface is investigated. However, this high number of 

variables make the tribological study complex. A divide-to-conquer strategy is then useful to simplify 

characterization. Some segmentation tools are then selected.  

Segmentation is the process to divide an image or a topography map according to specified 

criteria such as similarity or dissimilarity, feature size respectively spatial band width respectively 

scales. Decomposition is a chain or tree of segmentation results of one image or map according to a 

sequence of different parameter values of a specified segmentation criterion such as feature size, spatial 

frequency, or scale. If a series of segmentations with varying parameters is performed on an image or 

topography map, this image or map is decomposed into a series of images or topography maps of various 

scales. The series obtained by the monotonous variation of segmentation parameters is called tree or 

chain. The procedure of constructing the tree or chain using scales respectively feature size respectively 

spatial band width for segmentation parameterization is called multiscale analysis. 

The objective of this paper is to compare three multiscale decompositions of surface 

topographies, which use three different methods: patchwork, box, and motif. These are based on three 

different concepts, derived from fractal geometry [1], covering, space subdivision, and motif 

segmentation, respectively.  

This is important because surfaces can have complicated, irregular topographies, which are 

special places for interactions. Functionality can be related directly to topographies [2], and functional 

topographic analyses can be difficult to characterize adequately for product and process design and 

quality assurance. Many physical phenomena can be involved in, and interact with, surface generation 

and performance. It is through the establishment of functional correlations with performance and 

processes, and by providing means for confidently discriminating surfaces, that surface metrology can 

be valuable for science and industry. 
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Multiscale analyses and characterizations can elucidate relations in topographically dependent 

phenomena, and discriminate surface properties, that are not evident with classical topographic analyses 

[3]. They facilitate the understanding of superficial physical phenomena, such as sealing of machined 

parts [4], and brightness [5] . Multiscale decomposition can separate topographically related phenomena 

by their scales of interaction. Multiscale understanding can facilitate independent control and adjustment 

of several topographically related phenomena, simultaneously, on the same surface.  

In this work, “scale” refers to narrow bands of spatial frequencies, or wavelengths, in larger 

spectra. There are many different expressions of scale. Scales are generally expressed as lengths or as 

derived units, such as, areas, or spatial frequencies. Single topographic datasets contain ranges of scales, 

from the smallest, the sampling interval or resolution limit, to the largest, the size of the measured region.  

Multiscale analyses, characterizations, concepts, and decompositions methods have been 

recently reviewed and categorized [3]. Four principles were proposed for discovering strong correlations 

and confident discriminations: use appropriate scales, characterizations, measurements, and statistics. 

Most importantly, scales provide a special kind of dimension where underlying relationships with 

topographies and processing or performance can be found.  

Topographic characterization parameters should be chosen for their physical relevance to 

phenomena of interest, or for their strength of correlation. Average roughness, Sa, the most common 

characterization parameter [6] and the other classic height parameters, found in ISO 25178 and ASME 

B46.1 [7], are not multiscale characterizations, unless a series of filters are systematically applied to 

define multiple, specific scales before they are calculated. Some new characterization parameters, such 

as, fractal complexity (e.g., ISO 25178-2, ASME B46.1), can only be calculated over ranges of scales. 

These are called multiscale parameters, because their values usually vary with scale, and a range of 

scales is required for their computation. Furthermore, multiscale characterization is not limited to 

topographic datasets of heights. Many kinds of data obtained from topographies can be used, for 

example, surface curvature tensors [8], [9]. 

This paper is organized as follows. Section 2 summarizes the state of the art in multiscale 

analysis. In Section 3, we describe segmentation methods (patchwork, box, and motif) for multiscale 

decomposition. In Section 4, we provide the comparison of three multiscale methods by detaining the 

materials and methods including the results and their comments. Finally, Section 5 concludes the paper. 

 

2. State of the art in multiscale analysis 
Several researchers have demonstrated and compared relevancy of different kinds of multiscale 

analyses. Le Goïc et al. [10] studied topographies of engineering surfaces with the help of multiscale 

analysis by using gaussian filtering, discrete wavelet transforms and discrete modal decomposition. The 

relevance of the topographic characterization parameters [11] has been determined with the help of 

Mesrug software, multiscale decompositions and bootstrapping [12]. Using wavelet multiscale 

decomposition with various wavelet forms and orders, Deltombe et al. [4] have shown effects of 

machining processes on seals, especially in case of leakage. Malshe et al. [13] highlighted the link 

between multiscale properties and functionality in both natural and bioinspired engineering surfaces.  

Multiscale decompositions are effective in finding strong correlations between surfaces and 

their functionality. Through the use of the patchwork method, Moreno et al. [14] correlated oil retention 

in fried foods with relative areas. Cantor and Brown [15] found strong correlations between chocolate 

temperatures and the relative areas of fracture surfaces. In those two publications, the correlation 

coefficient R as function of scale was shown. R values are greater when relative areas of the topographies 

are calculated at the most relevant scales, whereas low R values are obtained for less relevant scales. 

Multilayered steel sheet surfaces with coating and industrial paint were studied by Mezghani et al. [16] 

with continuous wavelet multiscale decomposition, and the authors have shown the influence of each 

layer over the final surface. More specifically, roughness is influenced by the last layer of paint while 

waviness is more affected by the deeper layers. 

Two kinds of multiscale analysis methods are considered here. In both kinds, a range of scales 

and step intervals are selected, and multiscale characterization parameter values are calculated over this 

range. One kind of method uses a series of sampling distance that are constant for each step of the 

decomposition, such as, gaussian, wavelet, box, Richardson, i.e., compass, or classical area-scale 
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patchwork methods. The other kind uses an algorithm to find various scales during one step of 

decomposition, like the motif method. An example of the second kind, with variable sampling distance, 

is the slit island method designed by Mandelbrot [1] which detects isolated local roughness peaks by 

slicing a topography with a plane. Here, each isolated peak has its own scale based on its apparent area. 

Contrary to some of these earlier methods, where scales are based on arbitrary and fixed elementary 

entities and some variations of them, the main idea here is to find a pattern.  

It appears that multiscale analysis of surface topographies could be in turmoil. Choosing one 

method over others could be baffling. Selection can depend on ease of implementation, instead of 

morphological justification. From 1980 to 2000, multiscale aspects were limited to computing fractal 

dimensions on one surface. Different calculation methods have been reported, and results compared 

with theoretical fractal dimensions with simulated curves and fractal functions. Many methods exist for 

generating simulated rough surfaces. They are generally equivalent to the generation of fractional 

brownian surfaces. On the other hand, mathematicians tried their methods on a wider range of fractal 

curves, such as Takagi surfaces [17]–[19], and proved that topological methods lead to better estimations 

compared with spectral methods. 

Questions remain in surface metrology. Can a method, which relevantly estimates fractal 

dimension on ideal mathematical fractal curves, be applied, ipso facto, to topographic characterizations, 

and especially, their multiscale behavior? This legitimate question is still to be answered and leads 

surface metrologists to reconsider fractal dimensions as a tortuosity and irregularity indicator of rough 

surfaces over universal mathematical parameters [20]. 

Since 2000, multiscale analyses are more focused on decomposition, instead of summing up the 

object of decompositions with scaling laws, whose coefficients can be linked to the fractal dimension. 

Zahouani et al. [21] studied multiscale transfer functions using continuous wavelet decomposition and 

proved the relevancy of local scale approaches over the determination of a universal coefficient.  

Bigerelle and Iost [22] showed that a multiscale method is relevant if topographic differences can be 

demonstrated statistically. Though many multiscale decompositions exist, selecting the most relevant 

method to accurately identify multiscale signatures remains difficult. A classification system of different 

methods, although as questionable as any such system, is necessary then. This could be attempted by 

introducing their topographic implications. 

Before constructing a multiscale classification system, consider continuous mathematical 

representations of rough surface types. Consider “rough” to be an interpretation of measured textures, 

or topographies, at certain scales that can include irregular components. Three types can be defined. 

First, a rough surface can be represented as a function of two parameters (type A), generally x and y, 

under the form 𝑧 = 𝑓(𝑥, 𝑦). Another option (type B) is the use of parametric surfaces under the form 

𝑧 = 𝛤(𝑡). Last representation (type C) is from a collectivist point of view, based on the combination of 

multiple parametric curves. Then, roughness is under the form 𝑧 =  ⋃ 𝛤𝑖(𝑡)𝑖∈𝐼  where I is the index set 

of curves Γ𝑖(𝑡). In fact, type A is a special case of type B, which in turn is a special case of type C. Each 

type (A, B and C) is a morphological representation of the roughness, and surface topography as a 

measurement belongs to type A class (Figure 1). 

  
Figure 1: Surface types from a 2D sliced view 

Obviously, parameterization of surface roughness facilitates the use of morphological methods 

related to type A surfaces for the study of type B surfaces. Then, two classes of fundamental 

Page 3 of 17 AUTHOR SUBMITTED MANUSCRIPT - STMP-100789.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



4 
 

morphological methods can be defined: functional methods (FM) related to type A rough surface 

representations, and parametric methods (PM) linked to type B rough surface representations. However, 

a physical difference remains between FM and PM, with sometimes non-negligible implications in 

surface roughness characterization. The developed interfacial area ratio Sdr specifying a ratio between 

the size of the area of the surface skin of a topography and the size of the area of the projected surface, 

is a good example. The developed interfacial area ratio Sdr is calculated directly from the digitized 

measured data set, perhaps after filtering the shortest wavelengths, only at the scale of the sampling 

interval. It cannot be used to estimate a fractal dimension. In a way, it is not the true developed area, 

because developed area only has meaning when it is linked to the scales of measurement and calculation. 

ISO 25178-2 does not require that the sampling interval accompany the developed interfacial area ratio 

Sdr, which severely limits its usefulness. 

 

3. Three multiscale methods for topographic analysis 
Three kinds of functions can be used to describe topographies, convolutions, variations and 

coverings.   

Convolutions decompose topographies with scalable functions and look for the highest 

similarity between them. Initial topographies are reinterpreted as combinations of elementary 

mathematical forms. Elementary, scalable forms are still to be defined. Ideally, scalable functions should 

fit morphology at every scale. A wavelet with a scalable form, similar to an elementary topographic 

form, could be relevant for search of multiscale physical mechanisms. Bigerelle et al. [23] showed that 

even a specific wavelet is relevant for characterization of an isolated topographic signature, but specific 

wavelets fail when used on surfaces generated by an assembly of multiple, elementary mechanisms, for 

example, an abraded surface. On the other hand, Le Goïc et al. [10] highlights that the choice of a 

convolution method depends on the surface type, such as, periodic, with defects, or spectral. 

Variations create numerical indicators that characterize topographic variations locally at specific 

scales. The structure function is well-known. Most can robustly characterize topographic variations in 

scalable windows [24]. 

Finally, coverings estimate the Minkowski sausage to find the Minkowski-Bouligand 

dimension. Box, oscillation, and sphere are kinds of coverings. These can also be used in PM multiscale 

analyses. Mandelbrot [1] defined four classes of covering methods: fixed yardstick, variable yardstick, 

Minkowski, and Packing methods. Additionally, Mandelbrot proposed an original method to calculate 

fractal dimensions of topographies, applicable to either FM or PM, the slit island method. This method 

sections topographies horizontally to form islands and computes fractal dimensions from relations 

between their areas and perimeters. Assuming self-similarity of these islands, fractal dimensions of 

surfaces can be determined. Actually, this method is equivalent to the calculation of a length at a given 

scale by taking roughness peak of same area. By varying the area and by measuring with a fixed 

yardstick size the perimeter of the island, the multiscale roughness can be estimated. Even if this method 

can produce statistical artifacts [22], it is unique. First, a peak is isolated, and not an arbitrary sub-region. 

Also, the apparent area of a roughness peak at a given scale corresponds to a spatial scale of the 

roughness. Then, this multiscale method doesn’t impose an observation, or gauge, scale. It can be 

classified as an object method (OM) which can analyse type C surfaces. 

These three morphological analysis classes are compared in this article by using three methods 

adapted to topographic surfaces. Table 1 indicates in which class defined by Mandelbrot [1], pp. 25-26, 

the compared methods belong to. 

 
Table 1: Classification of multiscale methods by five categories defined by Mandelbrot 

  Mandelbrot Categories 

  
Fixed 

Yardstick 
Variable 
Yardstick 

Minkowski Packing 
Slit 

Island 

Methods 

Box     X X   

Patchwork X X       

Motif       X X 
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The patchwork method for area-scale analysis extends Richardson’s method with yardsticks, 

used by Mandelbrot to compute Britain coastline length [1], profiles to areal measurements and surfaces 

(ASME B46.1 ch10 [7], ISO 25178-2). In classical area-scale analysis, measured surfaces are 

decomposed into progressively smaller triangular patches, performing a succession of virtual tiling 

exercises covering a range of scales (Figure 2). Each tiling exercise uses triangles of the same area in 

3D, representing the scale. The tiled area at that scale is the number of triangles times the area of the 

triangle. Only full triangles, with the prescribed area, are counted in the tiling exercises. This leaves 

some portions at the edges of the measured surface untiled with each exercise. Therefore, the nominal 

area, i.e. x-y area, floor, or projected area, of the tiling is different for each exercise. To calculate the 

area ratios, i.e. relative areas, at each scale the tiled area is divided by the corresponding floor, or 

nominal, area for that tile size [25], which corresponds with the developed interfacial area ratio Sdr. 

Here a patchwork-like method is used. The triangular tiling, with a succession of triangle sizes, is 

approximated by first doing a succession of fits to the topography at different scales, then using the 

developed area function, Sdr, in MountainsMap® (Digital Surf) on the fits. The fits are a low pass filter. 

By subtracting the fits from the original surface, a high pass filter can be obtained. Nonetheless, they 

appear to be a reasonable approximation of the classical tiling method, which essentially uses successive 

down samplings to achieve multiscale characterizations.  

 
Figure 2: Concepts of the patchwork-like, the box and the motif multiscale decompositions 

The box method evaluates topographic characterization parameters described in the ISO 25178 

standard, like Sa and Sz, in a fraction of the original surface, i.e., a box (see Figure 2). In this study, the 

boxes are squares in x and y axes. Multiscale decomposition is obtained by systematically modifying 

the box size, i.e. the length of one edge of the square, and recalculating the parameters. The zero for the 

calculation of the height parameters is also recalculated with each box, so the values tend to decrease 

with box size.  

The motif method considered here is based on a variation of Wolf pruning. Though Wolf 

pruning can be applied on many kinds of 2D data, it will be used on topographies in this paper. It detects 

topographic motifs, and computes parameters, such as, their height, their equivalent diameter and their 

orientation. In 2D, a motif can be defined as the segment between a succession of one peak, one valley 

and one peak - or alternatively, as in this study, a succession of one valley, one peak, and one valley, 

when summits are the object of the study. Furthermore, a second notion called the combination of motif 

needs to be added. Depending on user-defined height constraints, generally a Sz percentage (such as 5% 
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of Sz in ISO 25178 standard) or a percentage of total surface nominal area, motifs can be either merged 

or considered separately. When height constraint values get sufficiently small, motifs tend to be peaks 

(Figure 2). The 3D extension of the motif can involve neighboring points [26]. Figure 3 shows how 

motifs are merged, depending on the user-defined constraints, for various percentages of the total surface 

nominal area. Multiple scales are obtained during a decomposition, where each detected peak possess 

its own scale. 

 
Figure 3: Motifs with three different area constraints 

Box and patchwork methods belong to the fixed sampling distance category, whereas the motif 

method uses a variable sampling distance. These three multiscale analyses (Figure 2) are applied to 

abraded surfaces of PEEK, to evaluate their abilities to discriminate wear phenomena from topographies. 

 

4. Comparison of three multiscale methods 

4.1.  Materials and Methods 
A PEEK rod, 30 mm in diameter, was cut into 20 mm thick disks. Each disk was polished to a 

mirror finish with a Tegramin 25 (Struers™) rotary grinding machine. Then each was ground with an 

abrasive paper. The FEPA grit sizes varied from 80 to 4000 as shown in Table 2. 

Table 2: Abrasive grade (FEPA), mean grit grain diameter, and number of disks 

Abrasive Grade 

Mean Abrasive 

Grain Diameter 

(µm) 

 

 

Number of Disks 

80 201 1 

120 125 2 

180 82 2 

320 46 2 

500 30 2 

800 22 2 

1200 15 2 

2000 10 2 

4000 5 2 
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 Topographies were measured with a white light interferometer Zygo (NewView 7300™) with 

a 50X Mirau objective. To form each 2x2 mm topographic dataset, 432 individual measurements were 

stitched together with a 20% overlap. Each dataset has a spatial resolution of 0.219 µm along x and y 

axes and is composed of 83 million pixels. Stitching is essential as a wide scale range is obtained, 

allowing an enhanced detection of physical multiscale phenomena. Secondly, stitching has also the 

ability to stabilize roughness and morphological parameters, because stitched datasets contain more data 

and are statistically closer to a representative surface than a single elementary measurement would be. 

There are 10 such datasets per disk from randomly selected locations for a total of 170. 

 Initial measurements were processed with functions in MountainsMap®, consistent with ISO 

25178. Form was removed with a 3rd order polynomial fit, providing a reference plane. Renderings of 

PEEK topographies are shown in Figure 4. 
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Figure 4: PEEK topographies after abrasion with abrasive papers FEPA 80 (top), 500 (middle) and 2000 (bottom) 

In principle, performing analyses and characterizations at an appropriate scale facilitates the 

understanding of topographically related phenomena [3]. The topographies studied here consisted of 

intersecting grooves and scratches over a range of sizes, forming a kind of fractal pattern. Each surface 

was homogeneous at scales sufficiently larger than the grooves. Different wear mechanisms can be 

active at different scales. Different grits and mechanisms logically make grooves of different sizes and 

depths, peak sizes and densities. Although abrasive processes might seem simple, it is difficult to 

determine, a priori, an appropriate scale for elucidating mechanisms of abrasive wear. This difficulty 

suggests a multiscale approach. Many multiscale decompositions exist, with their own advantages and 

drawbacks [3].  

Here the analysis methods described above, patchwork, box and motif Wolf pruning 

segmentation, are compared. The results of each multiscale decomposition are plotted below.  
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4.2.  Computational Results 

 
Common outputs of multiscale analyses are plots of characterization parameters as a function 

of gauge parameters, i.e., scales of observation. Though characterization and gauge parameters vary 

depending on the multiscale decomposition method and the scale sensitivity of the characterization 

parameter, common behavior patterns are sought. For example, scaling phenomena could be detected if 

the regimen shift is observed, delimiting macroscopic and microscopic, i.e., more local surface 

characteristics. Each multiscale method in this article has its own characterization and gauge parameters. 

Figure 5 shows the evolution of the developed interfacial area ratio (Sdr, ISO 25178) as a 

function of the scale of the spline fit, the gauging parameter, for each abrasive grain size (FEPA grade). 

As expected, finer scales generally correspond to greater developed interfacial area ratios. Developed 

interfacial area ratios are also lower when abrasive grains are larger. Each abrasive paper is ranked from 

larger to finer abrasive grain sizes (FEPA grade 80 to 4000). Slopes of Sdr are clearly greater at the 

highest scales and smaller at the finest scales. This suggests that a crossover scale separating these two 

regimens might be identified. 

 
Figure 5: Patchwork-like method, developed surface areas (Sdr) as a function of scales of the spline fits 

Figure 6 shows box multiscale decompositions, where peak-to-valley heights, Sz, are plotted as 

a function of box sizes, the gauging parameter, for each grit size. The height parameter decreases with 

box sizes and with higher abrasive grades. Two regimens and a crossover can be observed. 
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Figure 6: Box method, peak-to-valley height (Sz) as a function of box size 

Lastly, for motifs, using Wolf pruning-like segmentation, motif height as a function of motif 

equivalent diameter, the gauging parameter, for different FEPA grades are shown in Figure 7, which 

highlights a crossover between two regimens. The crossover value changes depending on the abrasive 

paper. Overall, the motif height decreases as the motif equivalent diameter decreases. 
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Figure 7: Motif height as a function of motif equivalent diameter 

 

As a crossover can be found with the patchwork method, the box method and the motif method, 

an optimization process helps in its determination for each method and each abrasive paper grade. 

Crossover values are detected by minimizing standard deviation of residuals r for different abscissa 

values. Figure 8 shows an example of crossover detection. A system of equations needs to be solved in 

order to know the parameters A, B, C and D in Equations 1 and 2: 

 

 
{

𝑙𝑜𝑔(y) = 𝐴 ∗ 𝑙𝑜𝑔(𝑥) + 𝐵 𝑖𝑓 𝑥 ≤  𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟

𝑙𝑜𝑔(y) = 𝐶 ∗ 𝑙𝑜𝑔(𝑥) + 𝐷 𝑖𝑓 𝑥 ≥  𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟,
 𝐸𝑞. 1  

with 

 𝐷 =  𝐴 ∗ 𝑙𝑜𝑔(𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟) + 𝐵 −  𝐶 ∗ 𝑙𝑜𝑔(𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟), 𝐸𝑞. 2 
 

where x and y values are respectively area discretization value and the developed interfacial area ratio 

Sdr for the patchwork method, box size and the peak-to-valley height Sz for the box method and motif 

equivalent diameter and motif height for the motif method. Also, the standard deviation of residuals r is 

computed, and is used as an objective value for optimization. 
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Figure 8: Crossover detection with motif detection for abrasive paper 1200 

 As two linear regimens can be detected for each grit paper in the multiscale decomposition direct 

output, it is necessary to compute the crossover at the behavior shift to find A, B, C and D parameters. 

Nonlinear regression was the selected tool in this study, as the hypothesis was made that the crossover 

should have the minimum standard deviation of residual r. An example of the optimization curve for the 

motif method for one abrasive grade is shown in Figure 9. 
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Figure 9: Optimization curve to find crossover for one abrasive grade with motif method 

From here, D parameter corresponds to the intercept of the crossover value along y-axis. 

Parameters A and C are respectively the slopes of the left and right linear parts of the curve. Parameter 

B is the intercept of the left linear part. 
Crossover values, plotted as a function of mean grain diameters for all three multiscale 

decompositions, are compiled in Figure 10. Abrasive paper grades have been converted to mean abrasive 

grain diameter using the FEPA standard. With all methods, the crossover values change with the mean 

abrasive grain diameter. Quantitatively, crossover values of box and patchwork methods converge, 

whereas crossover values from motif decomposition are higher. Although, the quantitative difference 

observed with motif method compared to the two others, crossover evolution follows the same tendency 

in all three cases over a critical mean grain diameter value of 15 µm. For grains less than 15 µm, the 

motif method presents a high divergence in crossover values compared to the two other methods, that 

could be outliers. An explanation could be that the Wolf pruning segmentation performs well at most 

scales but has difficulties in finding peaks at the smallest and the largest scales. True peaks and noise 

get confused, and a few motifs with small equivalent diameters present larger dispersion. At largest 

scales, as only a few peaks are found, summary statistics are more sensible to extreme values, and lack 

of statistical stability. As the crossover detection algorithm relies on minimal standard deviation of 

residual, those unstable values may influence the detected crossover value, and result in outliers. 
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Figure 10: Crossover values depending on mean grain diameter for the three multiscale decompositions 

Also, small differences are observed at the smallest scales between crossovers from the box and 

patchwork method. It results from the difference in the computation method of roughness parameter 

peak-to-valley height Sz for box method, which is an extremum parameter greatly influenced by 

measurement noise, and the developed interfacial area ratio Sdr parameter, which is based on the 

computation of interfacial developed areas and is less influenced by extremum height values. 

 

4.3. Discussion 

 
 Three multiscale decompositions have been compared, highlighting the presence of a crossover 

scale separating two regimens. This crossover could represent limits between abrasion regimes: a larger 

one could be due to chip formation and removal, while smaller one is perhaps due to plowing. 

Furthermore, the fractal aspect of the surface is generated by the presence of little peaks on bigger peaks 

on abrasive grains over a range of peak sizes, resulting in a spectrum of scratch sizes on abraded surfaces. 

Also, slopes of multiscale plots are interesting, because fractal dimensions, or Minkowski-

Bouligand dimensions, can be calculated from the slopes. Ganti and Buschan [27] described this pattern 

on a plot composed of two fractal regions. Scaling laws can be found, generally based on a power law 

mode. 

 Quantitative differences between the motif method, and the box and patchwork methods, are 

linked to their underlying concepts. While box and patchwork algorithms detect peaks locally, the motif 

segmentation finds homogeneous regions at specific scales. Therefore, the motif tends to give higher 

crossover values than the two other methods with local perspectives. This observation is also linked to 

fixed sampling distances used for the box and patchwork methods, which do not rely on morphology, 

like the motif does. The three methods complement each other: a lower crossover is indicated by the 

box and patchwork methods, and an upper with the motif method. A true crossover value might be 

located between those given by these methods. 
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 Finally, the motif method has another advantage over box and patchwork methods. By detecting 

peaks and homogenous regions, the motif can discriminate heterogeneous topographies. Computing 

roughness parameters over motifs is possible because homogeneities required for calculating such 

parameters are verified inside a motif, while this is not true of sub-regions in patchwork and box 

methods, which use a fixed and arbitrary sampling distance.  

 This study highlights needs for new tools in the analysis of heterogeneous topographic datasets. 

Fixed sampling distance multiscale decompositions fail to correctly separate two distinctive sub-regions 

due to the arbitrary slicing of datasets. These methods often rely on summary statistics tools, such as 

means and median, which are not appropriate in the study of heterogeneous datasets. Hence, it is 

necessary to leave global techniques to a more local decomposition, and to consider spatial positions of 

each sub-area, like a motif, when studying heterogeneous surfaces. 

 

5. Conclusion 
 

Three segmentation methods, patchwork, box and motif multiscale decomposition, have been 

used for analysis of texture features and have been compared. The characteristics of the three multiscale 

analysis procedures has been investigated with the help of a study of PEEK polymer abrasion, using 

abrasive papers, with FEPA grades 80 to 4000. The texture of the topographies is homogeneous with 

fractal aspects. The topographies have been measured with a white light interferometer. 

A crossover scale, separating larger and smaller abrasion regions in scale, has been detected 

with each technique, though a quantitative difference appears with the motif method, contrary to the 

other two. Nonetheless, evolutions of crossovers with mean abrasive grain diameters follow similar 

trends for all three.  

Evaluations of the discriminating power revealed that the box and patchwork methods detect a 

lower bound for crossover, while the motif technique can find an upper bound, due to its ability to detect 

homogeneous regions inside of a topography. Thus, the three techniques complement each other in the 

detection of the true crossover value, which is probably contained between the previously described 

boundaries. 

 Motifs achieve scale-based decompositions of surfaces based on morphology of surface 

topography, e.g., peaks, unlike the patchwork and box methods that are based on measurement sampling 

without any consideration for surface morphology. This highlights a special contribution of the motif’s 

approach, using summary statistics for local analyses, relying on spatial positions of each motif in 

heterogeneous topographic datasets. 
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