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Abstract 

 

Blast is a complex phenomenon which needs to be understood, especially in a military 

framework, where this kind of loading can have severe consequences on the human body. 

Indeed, the literature lists a number of studies which try to investigate the dangerousness of 

such a phenomenon, both at experimental and numerical level, and the injuries that could 

occur when the fighters or police officers are stroke by blast wave. When focusing on primary 

blast effect, this paper analyses the effect of this loading on the occurrence of rib fracture, 

using previously developed injury risk curves. 
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INTRODUCTION 

Computer science allows, nowadays, indeep investigations of several phenomena of the 

Physics, which are complex to study at experimental level. In the context of impact 

biomechanics, numerical simulations allow capturing physical parameters, and observing very 

fast phenomena, which are difficult or impossible to observe using experimental devices. In 

addition, when the human body is concerned, numerical simulation is an essential step 

allowing avoiding ethical limitations due to experimental protocols. For these reasons, 

numerical biomechanics have seen important development these last 30 years, and have seen 

the use of numerical models, more or less efficient, to investigate the consequences of severe 
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loadings on the human body. Focusing on the blast framework, the literature list a number of 

study which try to investigate how such a loading can wound the body: Stuhmiller et al. in 

1999 [1] began these investigations with the development of first model, and years after have 

seen the development of animal or human models [2-26], with an aim of primary blast injury 

(PBI) analysis. Among these studies, lots of them try to investigate PBI which affects air-

containing organs such as the lungs [9], and some injury risk curves have been proposed for 

this specific organ. However, the question about other potentially injured organs can be 

raised, and if a blast loading could affect other type of organs such as skeletal and specially 

ribs, with more or less severe injuries: What are the consequences of a blast on the skeleton?  

How ribs fractures can occur? Can a numerical metrics be correlated with clinical 

observations? 

This question has been widely studied in recent literature, in the automotive crashworthiness 

[27, 28] or high velocity impacts framework [29, 30, 31]. The question can still be raised 

concerning the consequences of a blast loading. Studies of the literature concluded that 

extremeties bones are injured most of the time [32, 33]. Indeed, Ramasamy et al. 2011 [32] 

explain “Primary orthopaedic blast injury”, which consists in the interaction of blast waves 

which interacts with the body leading to cellular disruption, soft tissue destruction and also 

bone micro-factures. The example of a blast wave travelling in the tibia was provided in this 

study, leading to shear and axial stresses inducing fracture of the bone, as explained by Hull et 

al. 1995 [34]. Considering the ribs, Christensen et al. in 2013 [35], investigated ribs fractures 

which could be the consequence of blast trauma, based on existing study [36] concerning 

skeletal blast trauma on pigs. They concluded that ribs fractures occur more often in lower 

ribs, with a specific feature called “butterfly fracture pattern”.     

Primary Blast injuries focus on injuries caused by the wave. Other injuries that can occur 
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like impact fragments on the human body or throwings of the body against a structure for 

example, are classified in other categories (secondary, tertiary or quaternary effects [25]. 

Focusing only on primary blast injury, this paper aims to study, at a numerical level, the 

possible occurrence of ribs fractures, caused by a blast wave interacting with the human body. 

A previously developed and validated finite element model of the thorax named HUByx is 

used in a reference blast configuration of the literature. The simulations consist in the 

interaction of a blast wave travelling from a 2.268 kg of C4 explosive to the human body 

model which is positioned at 2.3 m from the explosive device. Furthermore, in order to 

analyse the effect of blast on the positioning of the human body, in relation to the incident 

blast wave, sensitivity study has been conducted, making the incident angle varying from -90 

° to 90°.  Post-processing of the simulations were conducted, using previously developed 

methodology dedicated to kinetic energy projectile. Specifically, mechanical parameters in 

the ribs structures were observed, especially specific energy parameter, which is considered as 

an interesting injury metric for ribs fracture occurrence [31]. Indeed, considering several 

candidate for injury criteria, the specific energy parameter was previously pointed out, and 

highlighted as a performing metrics for ribs fracture occurrence in a context of kinetic energy 

projectile impacts. 

The previously developed methodology on kinetic energy projectile was then extended to 

various blast configuration, under the assumption of validity for blast loading: results of each 

configuration are evaluated in relation to the injury risk curve, confirming several statements 

of the literature on the potential dangerousness of blast loading on rib fracture occurrence.  

 

 

MATERIAL AND METHOD 

Biomechanical model and blast configuration 
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Modelling of blast loadings involving biomechanical models are complex to conduct, since 

very few validation data exist in the literature to ensure the reality of such simulations. Thus, 

a reference experimental study was chosen as a reference, in this study, for validation 

purpose. The experiment conducted by Merkle et al. [37], was then considered in this study, 

and which was already taken as reference for previous studies involving the biomechanical 

model impacted by a blast wave [23, 25, 26].  

The biomechanical finite element model named HUByx was used in the study (figure 1). This 

model was validated against experimental data of the literature and is widely detailed in [23, 

25, 26].  Mechanical properties of each components included in the digital model are listed in 

the following table 1, especially the soft tissue which are modelled by the Mie-Grüneisen 

EOS with thermodynamical coefficients, as follow: 
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Tissues Material 

model 

Density 

(g/mm3) 

Young’s 

Modulus 

(MPa) 

Poisson ratio Yield stress 

(MPa) 

Aorta Elastic 0.001 25 0.3  

Trachea Elastic 0.001 25 0.3  
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Diaphragm Elastic 0.001 3 0.3  

Muscles Elastic 0.001 1 - 10 0.3  

Skin Elastic 0.001 31.5 0.45  

Inter-organs space / fat Elastic 0.001 0.5 0.45  

Abdomen/intestine Elastic 0.001 0.5 0.45  

Spongy bone Elastic 0.001 50 0.4  

Cortical bone Elastic-plastic 

Johnson-Cook 

0.001 14000 0.3 70 

Cartilage Elastic 0.001 50 0.3  

Intervertebral disc Elastic 0.00125 5 0.3  

 

Soft tissues 

Elasto-plastic 

law with Mie-

Grüneisen 

equation of 

State 

 

��� �� �
 �� �� �� 

0.5882 2449 6502.2 9251.9 0.17 -0.1 

Table 1: material properties implemented in HUByx FE model.  Parameters of the Soft tissues correspond to 

the Mie-Grüneisen EOS with thermodynamical coefficients. 

 

 

Figure 1: HUByx FE model: thoracic part. 

 

The biomechanical model is included in air field. This air field also include an explosive 

device, in order to reproduce the reference blast configuration of Merkle et al. [36] consisting 

of a 2268 g of C4 charge, which generate a blast wave impacting the human body placed at 

2,3 m from the explosive device. The work of Merkle et al. provides a detailed configuration 

of the blast case. Then, in order to use a non-random configuration of blast wave and to match 

an existing blast configuration of the literature, Merkle’s configuration was chosen as a 
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reference. In extension to the initial blast configuration which involve a 0° incident wave (the 

blast strikes the face of the thorax), the human body position varied from -90° to 90°, in 

keeping constant the stand-off distance and the explosive weight. The extension of the initial 

configuration to various angle allows investigating the influence of the position of the body 

using a given blast configuration.  

As described by Bodo et al. [25], the air field is simulated by an hydrodynamic law with 

polynomial equation of state, whereas the explosive device is modelled using the Jones-

Wilkins-Lee (JWL) equation of state. 

 

Methodology of ribs fracture criteria assessment  

The basis of the methodology is the validation of the biomechanical model HUByx against 

experimental data of Bir et al. 2003 [38]. The following figures 2 to 4 illustrate the numerical 

response superimposed to the experimental corridors, extracted from [39]. 

  

Figure 2 : validation of the numerical model  against experimental corridor.  

case A (140g, 20 m/s) 

 

  

Figure 3 : validation of the numerical model  against experimental corridor.  
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case B (140g, 40 m/s) 

  

  
Figure 4 : validation of the numerical model  against experimental corridor.  

case C (30g, 60 m/s) 

 

In addition to theses curves, the parameter VCmax was evaluated on the numerical model and 

compared to the experimental values, as provided in table 2.  

 

 VCmax 

 Experimental 

Min value 

Experimental 

Max value 

Numerical 

values 

Impact condition A 0.24 0.51 0.36 

Impact condition B 0.65 2.35 1.33 

Impact condition C 0.14 0.60 0.27 

Table 2: comparison between experimental and numerical VCmax parameter 

 

Bir et al. 2004 also provided an injury risk curve from a logistic regression analysis, based on 

the VCmax criteria [40]. Thus, combining injury risk curve, and numerical values obtained 

with the numerical model, the HUByx model is then able to predict AIS score (AIS 2-3) 

during an impact using the VCmax parameter. 

Indeed, the numerical replication of Bir experiments, has shown the ability of the numerical 

model to provide biofidelic values of the VCmax parameter. The following figure 5 adapted 

from [30, 39] illustrates this ability, case B providing ribs fracture. 



 8

 

Figure 5: Injury risk curve for AIS = 2–3 as a function of the viscous criteria: regression curves from 

[33], and numerical results with the biomechanical model. 

 

However, this injury risk curve can only be used for impacts in the middle of the sternum, 

since the curve has been developed from frontal impacts. In addition, the calculation of VCmax 

value is based on the deflexion of the thorax in the antero-posterior (longitudinal) plan. For 

that reason, and in order to have a tool able to predict the ribs fracture occurrence whatever is 

the impact location on the ribcage, it is necessary to correlate VCmax value with another 

mechanical parameter extracted from the numerical simulation. To do so, Bracq et al. 

conducted some statistical analysis, based on 18 impact cases involving non-letal projectiles 

impacting the sternum [29,30], including 12 rigid projectiles, 3 deformable projectiles, and 3 

bullet projectiles impacting body armours. A statistical analysis and an intraclass correlation 

was then conducted, and 4 mechanical parameters were calculated: the VCmax value, the Von 

Mises Stress of the cortical bone, the plastic deformation of the cortical bone, and the specific 

energy of the cortical bone of the ribs for each impacts. These parameters were chosen 

considering their importance on the behaviour of the rib structure. The details of the different 

impact conditions and modelling are explained in Bracq et al. studies [29, 30]. For each 

impact configurations, all these obtained values were used to build a Pearson correlation 

matrix, as illustrated in table 3. 
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Variables VCmax σVM εpl 

VCmax    

σVM 0.839   

εpl 0.756 0.603  

Espec 0.950 0.820 0.874 

Table 3: Pearson correlation matrix obtained from statistical analysis. 

 

The analysis of the correlation matrix highlights the high correlation between the VCmax value 

and the Espec value with a high correlation coefficient of 0.950. A polynomial correlation 

between these two parameters is illustrated in figure 6 with a very good correlation parameter. 

In addition, the 95% confidence interval is also provided, pointing out the significant 

correlation between the VCmax value and Espec. 

   

Figure 6: Correlation between the Vcmax value and the Espec parameters [30, 31]. Extracted from [31] 

 

Finally, this link between VCmax value and the Espec value, provides the possibility to correlate 

the AIS score with the Espec value, and then the Espec value with the ribs fracture occurrence 

whatever is the impact location on the ribcage (figure 6). 

Based on this correlation, injury risk curve has been developed, providing the probability of 

skeletal injury as a function of the specific energy, as illustrated in the following figure 7. 
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Figure 7: probability of skeletal injury as function of the specific energy 

Thus, this curve provides a value of 25.84 J. Kg-1 for a 50% risk of AIS =(2-3) occurrence, 

with a 95% confidence interval ranging from 19.96 J. Kg-1 to 31.73 J. Kg-1 .  

As well as the study of Roth et al. [26], who investigated the effect of the position of the 

thorax submitted to a blast wave and its consequence on lung injuries, several simulations 

were conducted in this study, changing the incident angle from -90° to + 90°, for an aim of 

investigation of blast consequences on rib fractures (figure 8). 

 

Figure 8: various orientations of the human body interacting with the blast wave, β varying from -90° 

to 90° (extracted from [26]) 

 

Distribution of mechanical parameters was analysed in the rib structure. In addition, a specific 

feature concerning the rib fracture pattern was observed in the simulation and described in the 

literature as “butterfly pattern”.  

This correlation initially developed for impacts of a projectile on the ribcage has been 

extended for the study of the risk of rib fracture, when a blast wave strikes the thorax. The 

equivalence between projectiles impacts and blast impact is assumed and discussed in the 

following section. 



 11

 

Computations have been performed on the supercomputer facilities of the “Mésocentre de 

calcul de Franche Comté.” All the computations were performed with the non-linear FE code 

Radioss © (Altair Engineering). 

 

RESULTS 

Several blast configurations were simulated with the variation of the position of the thorax 

facing the blast wave. Specific energy were observed in the ribs components of the 

biomechanical model (figure 9). This choice was made based on previous studies on the 

assessment of rib fractures. This metric was observed for 13 configurations. The initial 

configuration was with a β = 0° incident angle, until -90° and 90° with a step angle of 15°. 

 

Figure 9 : Interaction between blast wave and ribs structure in the biomechanical model. Specific Energy 

distribution in the ribs The wave strike the body with a 90° incident angle. 

The following table 4 list the results of the 13 simulations based on the test of Merkle, with 

blast wave impacting the thorax at different incident angle.  In addition, the values were 

placed on the rib fracture injury risk curve, as illustrated in figure 10. 
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Specific energy in 

cortical bone (J.Kg-1) 

Merkle 0° (reference 

configuration) 57 

Merkle -15° 50 

Merkle 15° 50 

Merkle -30° 38 

Merkle 30° 40 

Merkle -45° 55 

Merkle 45° 56 

Merkle -60° 66 

Merkle 60° 68 

Merkle -75° 78 

Merkle 75° 80 

Merkle -90° 68 

Merkle 90° 70 

Table 4 : Specific energy metric of the 

simulations based on Merkle’s test’s 

configuration, and for several angles 

 

 

 

 

 

Figure 10: Risk of rib fracture for each configurations of blast loading 

 

DISCUSSION 

Blast is a complex loading, combining several physical phenomena. The interaction between a 

blast wave and the human body for investigation of injury occurrence, is also complex, since 
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experimental studies can be restricted by ethical issues. One way of analysis is the numerical 

simulation. Combining biomechanical models, and also numerical modelling of the blast, the 

concept of “numerical twin” can be a very promising way to understand how the human body 

reacts when submitted to a blast wave, and to attempt to predict soft tissues or skeletal trauma.  

Blast trauma can be classified into four categories [25]. The present study focus on PBI and 

do not take the secondary blast phenomena into account. This last phenomena results from 

disintegrated penetrating fragments into the human body, and is generally with the tertiary 

injury, the main cause of rib fractures [41, 42]. That point lead to a difficulty to understand 

what is the real cause of a blast loading on the skeletal: the only blast wave (primary blast 

injury), the impact of fragments on the human body (secondary blast injury), the throwing of 

the human body on a structure or a combination of these three factors.  When a violent blast 

impacts the human body, it is of interest to analyse the presence of fractures, and if they have 

been caused by the wave itself or by fragments. This distinction should be understood to assist 

forensic experts in the interpretation of clinical observations and to then distinguish primary 

and secondary blast injuries. At a numerical level, the methodology used to develop injury 

criteria and tolerance limit using HUByx numerical model, is based on blunt impact of 

projectile on the thorax, with a specific energy in ribs of 25.84 J. Kg-1 for a 50% risk of AIS = 

(2-3).  All the simulations provided higher values of specific energy, compared to the limit of 

25.84 J. Kg-1, even considering the 95% confidence interval which ranges from 19.96 J. Kg-1 

to 31.73 J. Kg-1. For all configurations, the risk of rib injury ranges from 90 % to 100 %,  as 

illustrated in figure 10. What can be observed is that the obtained values are significantly 

higher than the tolerance limit (50% risk), and that the present configuration of blast may lead 

to ribs fractures. In the same way than previous study, based on the same blast configuration 

and for soft tissue observations [26] “for this specific explosive weight (2.268 kg of C4), with 

a specific observation point positioned at 2.3 m from the explosive”, all the values were quite 
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higher than the damage threshold. This blast configuration allowing a validation of the 

numerical results in terms of pressure wave and pressure in the soft tissues, it was also chosen 

as a reference for skeletal fracture investigation. The same kind of study should be conducted 

at a lower distance with lower explosive weight, in order to have smaller blast wave, to get 

closer to ribs fracture threshold. More generally, other blast configurations are planned to 

assess the risk of ribs fractures for more or less severe blast configurations. 

The methodology used in the present paper was initially designed for blunt impact 

configuration. The present study uses scrupulously this methodology without questioning the 

way it has been designed and already published. Using the initial methodology allow 

assessing the severity of a blast wave on the body, based on blunt impact statistical analysis, 

even if questions can be raised about the correlation between blast and blunt impact, or about 

the fitting analysis in the method. The method is used under assumption that it may also be 

valid for blast loading. In that context, the use of a numerical model for various impact 

configurations is of interest: from crashworthiness to ballistic impact, free falls or blast 

impact, the validity of such numerical tools have to be check for all these different impact 

frameworks. Studies of the literature have already investigated this point, exploring civil or 

military loadings and their related injury metrics for lung injuries [43]. Interesting correlation 

was found, and for different kind of configurations: results of the numerical reconstructions of 

free falls and ballistic impacts with a biomechanical model enabled to evaluate the injury risk 

for each real world accident in relation to existing blast injury risk curve, providing coherent 

estimation of lethality and lung damage for each scenario. The equivalence of the results for 

civil and military impacts were then evaluated, providing interesting openings for the validity 

of such a method. The extension of the method from blunt impact to blast loading in this 

paper, has to be investigated more deeper and has to be confirmed with more simulations, but 
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may bring first and interesting steps in the understanding of blast effect on skeletal, as it was 

the case in previous studies, in terms of injury mechanisms and tolerance limit. 

Christensen et al (2012) [36], investigated primary and secondary skeletal blast trauma at an 

experimental level, submitting pigs specimen, to various blast configuration, with different 

stand-off distances, different explosive charges, and different explosive types, until 4kg of C4 

with a 0 stand-off distance. He also analysed ribs fractures resulting from these experiments 

[35]. The study noticed specific fracture patterns on ribs, named “butterfly fractures”, whose 

characteristics are illustrated in the following figure 11. 

 

Figure 11 : Characteristic butterfly fracture pattern on ribs (extracted from [30]) 

 

Although the numerical modelling does not provide the pattern of this specific fracture, it can 

be noticed on the numerical model, illustrated in figure 12, that a high level of stress is located 

near the most angular portion of the ribs, where butterfly fracture tend to occur, as explained 

by Christensen et al (2013) [35].    
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Figure 12 : stress level near the most angular portion of the ribs. Back view of the skeleton  

It is also of interest to keep in mind that these results depend on the modelling of ribs 

structure. Indeed, a more biofidelic constitutive law for bone, may enhance the results and 

particularly, the butterfly patterns, in order to simulate more closely the effect of the blast on 

ribs.  Recent studies on the dynamic behaviour of skeletal under dynamic loading can help to 

improve the results of the simulations [44]. In that context, it may be possible to distinguish 

clearly the values of the numerical injury metric on each rib, showing which rib is the most 

exposed to the loading and then providing the injury risk for each rib. Butterfly fractures 

generally occur in lower ribs, due to the higher resistance of upper ribs, as suggested by 

Christensen et al (2012)  [30], and distinguishing clearly the values of the numerical injury 

predictors on each ribs may allow improving the location and the accuracy of rib fracture. 

Finally, this study attempts to analyse effect of a blast loading on skeletal trauma, based on 

numerical process, and using a human thorax model. Interesting results have been found, and 

are preliminary results for deeper investigations on ribs fractures under blast. 

 

CONCLUSION 

The present study investigates blast wave impacting the thorax and specifically the ribs, at 

various orientations. The objective is to observe the effect of this phenomena on skeletal 
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structures and to compare mechanical parameters to existing injury criteria derived from blunt 

impacts. Specific energy, an interesting candidate for rib fracture injury predictor, is then 

compared to the existing limit of 25.84 J.Kg-1 for a 50% risk of AIS = (2-3), which were 

found to correlate well with ribs fractures observations in previous study using the 

biomechanical model. The numerical simulations conducted to higher values of specific 

energy, allowing concluding to ribs fractures for every simulated blast configurations. Finally, 

this is a first investigation of blast impact on the thorax and its consequences on skeletal 

trauma; numerical simulations of primary blast providing sufficient energy to induce ribs 

fractures.     
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