
HAL Id: hal-03446614
https://uphf.hal.science/hal-03446614

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Review on Dynamic Recrystallization of Martensitic
Stainless Steels during Hot Deformation: Part

I-Experimental Study
Hamed Aghajani Derazkola, Eduardo Garcia, Alberto Murillo-Marrodán,

Damien Méresse

To cite this version:
Hamed Aghajani Derazkola, Eduardo Garcia, Alberto Murillo-Marrodán, Damien Méresse. Re-
view on Dynamic Recrystallization of Martensitic Stainless Steels during Hot Deformation: Part
I-Experimental Study. Metals, 2021, 11 (4), pp.572. �10.3390/met11040572�. �hal-03446614�

https://uphf.hal.science/hal-03446614
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


metals

Review

Review on Dynamic Recrystallization of Martensitic Stainless
Steels during Hot Deformation: Part I—Experimental Study

Hamed Aghajani Derazkola 1,* , Eduardo García Gil 1 , Alberto Murillo-Marrodán 1 and Damien Méresse 2

����������
�������

Citation: Derazkola, H.A.; García

Gil, E.; Murillo-Marrodán, A.;

Méresse, D. Review on Dynamic

Recrystallization of Martensitic

Stainless Steels during Hot

Deformation: Part I—Experimental

Study. Metals 2021, 11, 572. https://

doi.org/10.3390/met11040572

Academic Editor: Stefano Spigarelli

Received: 22 February 2021

Accepted: 25 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanics, Design and Industrial Management, University of Deusto, 48007 Bilbao, Spain;
e.garcia@deusto.es (E.G.G.); alberto.murillo@deusto.es (A.M.-M.)

2 LAMIH UMR CNRS 8201, Université Polytechnique Hauts-de-France, CEDEX 9,
F-59313 Valenciennes, France; dmeresse@uphf.fr

* Correspondence: h.aghajani@deusto.es

Abstract: The evolution of the microstructure changes during hot deformation of high-chromium
content of stainless steels (martensitic stainless steels) is reviewed. The microstructural changes taking
place under high-temperature conditions and the associated mechanical behaviors are presented.
During the continuous dynamic recrystallization (cDRX), the new grains nucleate and growth in
materials with high stacking fault energies (SFE). On the other hand, new ultrafine grains could
be produced in stainless steel material irrespective of the SFE employing high deformation and
temperatures. The gradual transformation results from the dislocation of sub-boundaries created
at low strains into ultrafine grains with high angle boundaries at large strains. There is limited
information about flow stress and monitoring microstructure changes during the hot forming of
martensitic stainless steels. For this reason, continuous dynamic recrystallization (cDRX) is still
not entirely understood for these types of metals. Recent studies of the deformation behavior of
martensitic stainless steels under thermomechanical conditions investigated the relationship between
the microstructural changes and mechanical properties. In this review, grain formation under
thermomechanical conditions and dynamic recrystallization behavior of this type of steel during the
deformation phase is discussed.

Keywords: martensitic stainless steels; microstructure changes; hot deformation

1. Introduction

Martensitic stainless steels (MSS) are a family of alloys composed mainly of iron,
chromium (Cr), and carbon (c) as main elements [1]. MSS have a martensitic crystal
structure in the hardened condition [2]. They are ferromagnetic, treatable and have better
corrosion resistance comparing to other types of stainless steels (SS). Chromium (Cr) in
these steels is usually 10.5–18% weight percentage (wt %) with a higher percentage of
carbon (C) in comparison to ferritic steels [3–5]. The specific amount of C and Cr is used to
ensure the formation of a martensitic structure after a complete cycle of heat treatment [6].
In MSS, an adequate Cr amount is needed to provide corrosion resistance, which is achieved
by the formation of a chromium oxide film on the surface [7,8]. The steel requires at least
11 wt % Cr to have stainless characteristics. On the other hand, the austenite phase cannot
be stable in steels with more than 10.5% Cr. For this reason, carbon, nitrogen, nickel, and
manganese are added to MSS as austenite stabilizers. In addition, some other elements like
molybdenum (Mo) and tungsten (W) are added to carbide for strengthening the MSS [9]. In
such cases, Mo2C and W2C can improve the strength of MSS. Elements such as titanium and
aluminum are added to the low carbon MSS to promote the precipitation of intermetallics
(IMC), such as NiTi and NiAl [10].

In addition, the high carbon content favors the formation of some carbides with other
elements like niobium, silicon, tungsten, and vanadium, which increase the wear resistance
of MSS. In some cases, small amounts of nickel are added to MSS to improve corrosion
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resistance and toughness [9]. During MSS production, the temperatures in the furnace are
high enough to transform the steel structure into austenite. After cooling treatment in air,
the microstructure of MSS will transform allotropically into the martensite phase [11]. With
different heat treatments, such as quenching and tempering, it is possible to achieve a wide
range of strength (between 275–1900 MPa), wear and corrosion resistance [12]. In 1913,
Harry Brearley invented the first class of MSS that called 410 grades. The 410 is the primary
grade of MSS commercialized and standardized in the 1930s and 1940s [13]. MSS are used
in various applications like surgical instruments, springs, valves, shafts, bearings, turbine
blades, and petrochemical tools [14]. The 410 stainless steel (SS) has evolved through the
years by adding chemical elements to enhance its use in specific applications [15]. Figure 1
illustrates a schematic view of MSS grades with additional elements compared with 410.
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In addition, the chemical composition of carbide strengthened MSS is presented in
Table 1. The steels in Table 1 are divided into three groups. The first group is the low to
medium C (0.10 ± 0.30 wt %) alloys with approximately 12 wt % of Cr. They are used
in creep resistance applications and also in steel components that require ductile fracture
resistance at high temperatures. The second group is those containing higher levels of C
(0.60–1.2 wt %) and rather large amounts of Cr (16–18 wt %). Higher content of C and Cr is
added in this group to achieve higher hardness and promotion of wear resistance. The third
group is the high chromium cold work die steels (D2 and D7). The high Cr content and
cold working on these steels improve wear and corrosion resistance simultaneously. As
mentioned before, the MSS is usually used in components where corrosion and oxidation
resistance with high strength are required [16]. From a metallurgical point of view, three
types of MSS exist, and their behavior as traditional (first and second types), new or
uncategorized (third type) MSS could be studied [17]. The first type contains specific wt
% carbon (as reported in Table 1) and is strengthened by iron carbide precipitation when
tempered at low temperatures or by alloy carbide precipitation when tempered at higher
temperatures (secondary hardening), as discussed before. The second type contains a
lower amount of carbon and is strengthened by the precipitation of particles of copper
or intermetallic on tempering [18]. Another type is the precipitation-strengthen MSS.
Precipitation strengthened MSS are low-C steels, strengthened by the precipitation of
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second-phase particles, other than alloy carbides, during thermal treatment. Pure copper
particles, NiAl, NiTi, Ni3Ti and Ni3Be, are well-known precipitates in this MSS type [18].
Table 2 presents some grades of precipitation strengthened MSS.

Table 1. Chemical composition of various grades of MSS.

Grade C Mn Si Cr Mo W P V S Ref.

410 0.15 1.0 0.5 11.5–13 - - 0.04 - 0.03 [19]
416 0.15 1.25 1.0 12.0–14.0 0.6 - 0.04 - 0.15 [20]
420 0.15–0.4 1.0 1.0 12.0–14.0 - - 0.04 - 0.03 [21,22]
422 0.23 1.0 0.75 12.0 1.0 1.0 0.04 0.22 - [23]
431 0.2 1.0 1.0 15.0–17.0 1.25–2.00 - 0.04 - 0.03 [24]

440A 0.60–0.75 1.0 1.0 16.0–18.0 0.75 - 0.04 - 0.03 [25]
440B 0.75–0.95 1.0 1.0 16.0–18.0 0.75 - 0.04 - 0.03 [26]
440C 0.95–1.20 1.0 1.0 16.0–18.0 0.75 - 0.04 - 0.03 [27]
D2 1.50 0.3 0.25 12 1.0 - - 1.0 - [28]
D7 2.35 0.4 0.4 12 1.0 - - 4.0 - [29]

8Cr13MoV 0.775 0.458 0.333 14.68 0.213 - 0.031 0.182 0.004 [30]

Table 2. Chemical composition of precipitation MSS grades.

Grade C Co Cu Cr Si Mo Ni Al other Ref.

PH15-5 0.04 - 3.0 15 - - 4.7 - 0.20 Nb [29,31]
PH7-17 0.04 - - 17.06 0.385 - 7.2 1.06 0.674 Mn [32]

Custom 450 0.04 - 1.5 11.5 - - 8.5 - 0.7 Nb [33]
PH17-4 0.07 - 3.5 16.5 - - 4.0 - 0.3 Nb + Ta [34,35]
PH13-8 0.03 - - 12.6 - 1.7 7.9 1.0 - [36]

Custom 465 0.02 - - 11.8 - 1.0 11.0 - 1.7 [37]
Custom 455 0.05 - 2.0 11.5 - 0.5 8.5 - 1.1 [38]

SM2Mo 0.02 - - 12.59 0.42 1.90 5.01 0.0062 [36,39,40]
SM2MoNb 0.022 - - 12.91 0.41 2.05 5.16 0.0043 [41–43]

Pyromet X-15 0.01 20 - 15 - 2.9 - - - [11]
Pyromet X-23 0.03 10 - 10 - 5.5 7.0 - - [11]

2Cr13 0.18 - - 12.86 0.39 - 0.12 - 0.53Mn + 0.002S [44]
00Cr13Ni5Mo2 0.013 - - 12.97 0.18 2.04 4.92 - 0.59 Mn + 0.001S [44]

18Cr-5Ni-4Cu-N 0.06 - 4.13 17.63 0.86 2.11 5.55 - 0.08 Nb + 0.13 V + 0.41 N + 0.025 P [45]

The third type corresponds to those MSS, which are strengthened by the precipitation
of both alloy carbides and intermetallic. The chemical composition of this group (3rd type)
involves the combined precipitation of NiAl and alloy carbides (secondary hardening). This
type has standard high chromium content and alloying combinations that allow quenching
from the austenitizing temperature to obtain an almost completely martensitic structure
with a small amount of retained austenite [18]. Table 3 presents the chemical composition
of 3rd group samples.

Table 3. Chemical composition of intermetallic-carbide-strengthened MSS grades.

Grade C Cr Ni Mo Co V Nb Ref.

AFC77 0.15 14.5 - 5 13.5 - - [46]

AFC260 0.08 15.5 2.0 4.3 13.0 - - [13]

HSL 180 0.20 12.5 1.0 2.0 15.5 - - [11]

CSS-42L 0.13 13.8 2.1 4.7 12.5 0.60 0.04 [11]

Metal forming (metalworking) consists of deformation processes in which a metal
billet or blank is shaped by the action of tools or dies. The design and control of such
processes or final products depend on the base material’s characteristics, the conditions
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at the tool/workpiece interface, the mechanics of plastic deformation (metal flow), the
equipment used, and the finished product requirements [47]. Among various metals
and alloys, stainless steel is favorable for industries due to its excellent properties and
reasonable price. Hot metalworking is one of the major technologies used to produce
stainless steel products. In this process, the stainless steel as raw material is in billet, rod,
or slab form, and the surface-to-volume ratio in the formed part increases considerably
under the action of primarily compressive loading [48,49]. Rolling, skew mills, ring rolling,
forging, draw benches for tube and rod, and extrusion are samples of manufacturing
processes that form stainless steels in hot condition. Among metallurgical changes of
metallic materials, dynamic recrystallization (DRX) is very crucial to the microstructural
evolution during hot deformation of alloys with low, medium, and high stacking fault
energy (SFE) [50,51]. This phenomenon changes the microstructure substantially through
nucleation and growth of new strain-free grains at the expense of pre-existing ones [52,53].
The DRX is of critical importance from the industrial viewpoint because it reduces the
stored strain energy, and the corresponding softening effect decreases the required force to
shape a workpiece. Taking advantage of DRX to decrease the required energy for shaping
a product and avoiding plastic instabilities or premature fracture is quite a practical way in
different industrial manufacturing processes [6]. In addition to this, DRX often contributes
to improving microstructure, thereby refining the grain structure and improving the final
product’s mechanical properties. For a careful design of the hot working process, having
in-depth information about a material’s dynamic recrystallization behavior is essential [54].
There is sufficient literature about DRX phenomena in stainless steel during hot forming,
but there is not comprehensive literature or review about DRX in martensitic stainless
steels during how working. Based on the mentioned underlying phenomena, this review
article’s aim is a deep understanding of DRX in MSS from an experimental point of view.

2. Hot Formability of MSS

Generally, hot working refers to the temperature of mechanical processing that is
above half of the melting temperature (Tm) of base metal. Being above 0.5 Tm decreases
yield strength and hardness and increases the ductility of metallic materials [55]. From
a metallurgical point of view, the plastic deformation above the metal’s recrystallization
temperature is called hot working (forming) [56].

From the manufacturing processes point of view, metal forming is divided into two
main groups: sheet metal forming and bulk metal forming. One of the main parameters to
find specific material that the specific process can form is workability or formability test.
There are several kinds of formability tests in sheet metal forming. Uniaxial and multiaxial
tensile tests in various temperatures are a well-known approach to find the formability of
sheet metals. The formability limitation, mechanical properties, and prediction of fracture
during sheet metal forming are accessible by formability test results.

On the other hand, in bulk metal forming, like forging, extrusion, coining, rolling, and
stretching, another type of workability test is implemented—this type of test is called a hot
compression test. The dimension of raw materials and applied stress concept informing
process are the main results that caused researchers to use hot compression test in the
laboratory. The compression stress for the flow of materials is the primary stress used in
bulk metals forming like hydrostatic forging, orbital forging, skew rolling, tube forming,
extrusion, and even solid-state additive manufacturing hot conditions. Some research
has been done to develop new workability tests for materials in bulk scale, but so far, the
primary test for formability (workability) of metallic materials, especially steel, is the hot
compression test.

Various forming processes of metals, like forging, rolling, drawing, and extrusion, can
be done in hot conditions [57]. In order to understand the behavior in hot conditions of
metallic materials, such as MSS, hot compression tests are usually carried out to characterize
hot workability (formability). This test consists of isothermal tests in a wide range of
temperature and strain rates. This experiment is pervasive and well-known in laboratories
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and industry [58]. The sample is heated up to the desired temperature (near the actual
temperature of considered hot forming). It remains at the temperature for a specific period,
and after this, the compression test is carried out on the sample while the high temperature
is maintained. At the final stage, the piece is quenched to ambient temperature as a real
situation in the industry [59].

The temperature, duration time of heating, and heat treatment could vary depending
on both the chemical composition of the steel and the forming process (various strain rates)
studied. For the test, a cylindrical specimen with a specific section and height is machined from
the as-received bar. First, the sample is heated using a constant heating rate until the highest
temperature of the test campaign is reached. This temperature is then maintained for a certain
time to ensure homogeneity and, after this period, it is cooled down to the test temperature.
Then the isothermal compression test is carried out at various temperatures and strain rates.
There are standards for testing procedures like ASTM-E209 (standard practice for compression
tests of metallic materials) that can be used [60]. The result is the flow stress behavior of the
material under different plastic deformation conditions. Figure 2 shows an example of a hot
compression test setup that was employed for various MSS. As seen, the heating rate, heating
period, and deformation time (strain rate) are different.
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3. Dynamic Recrystallization of MSS under Hot Deformation

The word recrystallization usually refers to the replacement of a deformation mi-
crostructure by new grains [62,63]. The process of recrystallization during heat treatment
is called static recrystallization (SRX) [64,65]. SRX (primary recrystallization) is one of the
most studied phenomena, which refers to the nucleation and growth of new grains during
heat treatment [40,66]. The schematic view of this process is depicted in Figure 3.
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strain hardened materials [67].

During the early stages of heat treatment, static recovery (SRV) develops recrystalliza-
tion nuclei as fine dislocation-free crystallites. In the early stages of heat treatment, the
development of recrystallization nuclei development is started. In this stage, the recrystal-
lization nuclei are fine dislocation-free crystallites. The nuclei grow by the distant migration
of the boundaries, which consume the strain-hardened microstructure. In the early-stages
of SRX, the nuclei are outlined by low angle boundaries (LAGBs), the misorientations,
of which gradually increase until they attain values typical of high angle boundaries
(HABs) [68,69]. During heat treatment, the microstructure is a mixture of recrystallized
and strain hardened grains. This type of microstructure is known as discontinuous static
recrystallization (dSRX) [70]. Alongside, the sub-boundary misorientation (θ) increases
gradually till all the low-angle boundaries (LABs) are transformed into HABs, and this
type of microstructure remains homogeneous all over. This structure is referred to as in
situ or continuous static recrystallization (cSRX). SRX occurs to strain hardened metals
heated above approximately half of their melting point (~0.5 Tm). During hot forming
processes, the material is heated up before the process, and after its deformation, it tolerates
another thermal cycle as heat treatment. For this reason, a billet could have partial SRX in
its microstructure before starting the hot process [70].

At high strains and temperatures above about 0.5 Tm (as a hot deformation require-
ment), the new grains appear at the nucleation strain and then completely replace the
initial microstructure. This mechanism is called dynamic recrystallization (DRX). DRX
phenomena are acknowledged as an important feature to restore the ductility of those
materials, which are being work hardened during the deformation process. DRX allows
large deformation in the material without crack or damage appearance [71,72].

Typically, DRX is favored by high temperatures and low strain rates and is also
acknowledged as a grain refinement mechanism under most forming conditions. A new
grain structure appears after DRX by the formation and migration of high-angle grain
boundaries, promoting the grain refinement of the deformed alloy [67,68]. The DRX has
three main subgroups that consist of discontinuous dynamic recrystallization (dDRX),
continuous dynamic recrystallization (cDRX) and geometric dynamic recrystallization
(gDRX) [54,73–76]. The dDRX has two main phases, namely, nucleation and growth
stages [77]. The dDRX occurs by means of bulging mechanisms. Increasing deformation
leads to fluctuations in the grain boundary, leading to the formation of serrations and
bulges that eventually transform into new strain-free grains [78–80]. It consists of grain
bulging, dislocation rearrangement, and boundary movement [81].

During plastic deformation, the dislocations glide and climb to form sub-grains by
dynamic recovery (DRV) [82]. Dislocation motions prepare new grains nucleation. In
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this phase, the bulges without or with a few dislocations are surrounded by accumulated
dislocations. After that, the bulges separate to generate nuclei in the early stages of
dDRX [83]. Nuclei are high-energy sites that pin the movement of the dislocations. In
the final stages of deformation, the nuclei grow until original grains are replaced by finer
recrystallized grains. There is a slow transformation of the sub-grains mainly formed in the
vicinity of the boundaries into nuclei delineated by HABs and referred to as discontinuous
dynamic recrystallization (dDRX) [84]. The dDRX is rarely reported in high chromium
MSS during hot deformation. This type of recrystallization (dDRX) is common in low
and medium stacking-fault energy (SFE) steels, and MSS are in the category of high SFE
materials [85]. The schematic view of dDRX is depicted in Figure 4.
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The cDRX directly changes the orientation of sub-grains and forms new grains [87,88].
The cDRX steps consist of cell structure formation, sub-grain rotation and increasing of
the misorientation, and conversion of grains from LAGB to HAGB [89]. During cDRX,
dislocations are generated and rearranged to form LAGB sub-grains boundaries and
newborn grains surrounded by HAGB. The cDRX is very common in high stacking-fault
energy (SFE) materials like MSS.

In gDRX, during hot deformation with large deformation, substantial grain refinement
occurs via grain elongation and thinning. Grain elongation and thinning increase the grain
boundary area dramatically [90–93]. The grain boundaries become serrated as a result of LAGB
(sub-grain) formation [94]. This behavior compresses grains serrations on opposite sides that
lead the grains to collapse each other, causing grain fragmentation [95]. Both gDRX and the
cDRX have the same features, which are continuous growth of HAGB area and absence of
nuclei [96]. At the same time, gDRX usually occurs due to large deformations when the grains
are extremely elongated and thinned by grain migration [97,98]. The schematic view of cDRX
and gDRX is shown in Figure 5a,b, respectively.
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From a metallurgical aspect, the hot formability of an MSS is generally limited by
the generation of various deformation defects [99]. At the same time, Dynamic recovery
(DRV) and dynamic recrystallization (DRX) impede the accumulation of defects. Thus, the
DRX and DRV are the softening mechanisms during hot forming that allow the formability
of MSS and prevent defect formation [4,67]. Only a few small dynamic recrystallization
grains are distributed along the grain boundary, whereas most deformed microstructures
usually are composed of dynamically recovered grains. DRV is a unique flow softening
mechanism that plays a softening role in counter-balance of the work hardening. As
mentioned, the microstructure behavior is related to the temperature and strain rate. At
high-temperature deformation of MSS, the necklace structure is formed by fine grains
originated in the recrystallization at the elongated grain boundaries. It is reported that, at
low-temperature and high-strain rate (in adiabatic deformation situation of MSS), different
shear forces are created in diverse parts of the sample [100]. In such case, the dislocations
are stuck on the interface of grain boundaries, and inhomogeneous grain distributions are
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developed [101]. Inhomogeneous grain distributions lead to internal shear force, which
causes a flow localization band during hot deformation. The flow localization is an induced
instability, which is undesirable for mechanical properties [102–104]. Figure 6 shows the
different microstructure of 14% Cr at various temperatures and strain rates in adiabatic
hot deformation situations. The microstructure evolution mechanism of 14% Cr MSS at
different strain rates and temperatures during hot compression deformation can be divided
into six regions. Partial DRX represents the region in which the DRX occurs partially, and
full DRX represents the region in which the DRX occurs entirely. Flow localization occurs
in the unstable region, and the grains are elongated in the DRV region [105]. During the
hot compression test, when the strain rate decreases and the temperature increases, the
MSS is placed in an unstable region. From a formability point of view, the undesirable
microstructure forms at unstable regions due to the plastic flow localization. The plastic
flow localization occurs when during hot compression of MSS, the adiabatic temperature
rises at low-temperature and strain rate increases. This type of temperature strain rising
in the unstable area causes different shear forces in diverse parts of the specimen. In this
case, When the deformation temperature rises, the average grains become coarse after
hot compression. It indicates that the power dissipation of microstructure evolution is
dominated by recrystallization grains during hot deformation.
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Figure 6. The microstructure evolution mechanism of 14% Cr MSS during deformation condi-
tions [105].

Some research has been done to monitor cDRX with imaging of microstructure at vari-
ous strains [32]. It is shown that the original microstructure of the 17-7PH MSS is austenite
matrix (γ) with the coaxial ferrite phase and δ ferrite. Figure 7 shows the microstructure of
deformed 17-7PH MSS samples at 950 ◦C and strain rate of 0.01 s−1 at strains of 0.15, 0.3,
0.45, and 0.6. It is shown that the γ grains and δ islands have almost remained equiaxed at
low strains (0.15). In the middle of this sample, work hardening region as the serrated grain
boundaries detected that indicate the progress of DRV in the substructure. The appearance
of serrated grain boundaries at low strains is a sign of fast DRV in the 17–7PH MSS. Some
small grains, presumably due to DRX, are appeared around the original grain boundaries
and the necklace structure in the early stages of recrystallization not observed.



Metals 2021, 11, 572 10 of 25

Metals 2021, 11, x FOR PEER REVIEW 10 of 25 
 

 

MSS. Some small grains, presumably due to DRX, are appeared around the original grain 
boundaries and the necklace structure in the early stages of recrystallization not observed. 

 
Figure 7. Microstructure of deformed samples at 950 °C and strain rate of 0.01 s−1 to strain of (a) 0.15, (b) 0.3, (c) 0.45 and 
(d) 0.6 [106]. 

The absence of necklace structure indicates that the probability of dDRX, which oc-
curs through the nucleation and growth of new grains almost at prior grain boundaries, 
is very weak in this steel [106]. The number of new cDRX grain has increased as defor-
mation continues, and the matric and δ islands are elongated perpendicular to the com-
pression direction. The new grains are observed inside the elongated original grains and 
along the grain boundaries. With increasing strain, decomposition and combination of the 
subgrain boundaries could lead to the formation of HABs, which are the result of the rapid 
growth of the sub-grains during hot plastic deformation [107,108]. As the deformation 
continues and the strain increases to the number of recrystallized grains increases again. 
At high strain, the dissociation of original grains by the cDRX grains has progressed, and 
the fraction recrystallization increased. In this alloy, some islands of original deformed 
grains were detected that revealed that the microstructure of a PH7-17 has not been fully 
recrystallized even at high strain during the hot compression test. In the same case, if the 
strain rate increased, the progress of DRV decreased at low strain, which is responsible 
for the formation of serrations on the grain boundaries. The reduction of deformation time 
due to the increase in the strain rate has probably led to a limitation of diffusion and the 
difficulty of dislocation’s motion. The weakness of DRV at a higher strain rate possibly 
retards the evolution of sub-grains and, therefore, postpones cDRX [106]. 

Figure 8 shows the microstructure of 12% Cr MSS after 0%, 25% and 50% hot com-
pression [57]. The original austenite in base metal has disappeared, while there is a high 
number of small sub-grains formed with an increase of deformation. The gDRX has been 
observed at elevated temperatures where sub-grain boundary formation has been ob-
served. The gDRX is detected during hot deformation at a very high strain [81,95,109]. 
After gDRX, the initial grains of the sample are fragmented into the new smaller grains 
with HABs. With gDRX, the HAB area can dramatically increase at high stacking fault 
energy (SFE) metals, but not in the same way as cDRX [110]. The cDRX includes the sub-
grains boundaries’ misorientation. The misorientation of sub-grains by cDRX is just a few 
degrees and much lower than HABs. The sub-grain boundaries are mobile and annihilate 
with other boundaries decreasing the sub-grain size throughout large strain hot defor-
mation [111–113]. In cDRX, sub-grains transform into new grains within the deformed 

Figure 7. Microstructure of deformed samples at 950 ◦C and strain rate of 0.01 s−1 to strain of (a) 0.15, (b) 0.3, (c) 0.45 and
(d) 0.6 [106].

The absence of necklace structure indicates that the probability of dDRX, which occurs
through the nucleation and growth of new grains almost at prior grain boundaries, is very
weak in this steel [106]. The number of new cDRX grain has increased as deformation
continues, and the matric and δ islands are elongated perpendicular to the compression
direction. The new grains are observed inside the elongated original grains and along
the grain boundaries. With increasing strain, decomposition and combination of the
subgrain boundaries could lead to the formation of HABs, which are the result of the rapid
growth of the sub-grains during hot plastic deformation [107,108]. As the deformation
continues and the strain increases to the number of recrystallized grains increases again.
At high strain, the dissociation of original grains by the cDRX grains has progressed, and
the fraction recrystallization increased. In this alloy, some islands of original deformed
grains were detected that revealed that the microstructure of a PH7-17 has not been fully
recrystallized even at high strain during the hot compression test. In the same case, if the
strain rate increased, the progress of DRV decreased at low strain, which is responsible for
the formation of serrations on the grain boundaries. The reduction of deformation time
due to the increase in the strain rate has probably led to a limitation of diffusion and the
difficulty of dislocation’s motion. The weakness of DRV at a higher strain rate possibly
retards the evolution of sub-grains and, therefore, postpones cDRX [106].

Figure 8 shows the microstructure of 12% Cr MSS after 0%, 25% and 50% hot com-
pression [57]. The original austenite in base metal has disappeared, while there is a high
number of small sub-grains formed with an increase of deformation. The gDRX has been
observed at elevated temperatures where sub-grain boundary formation has been observed.
The gDRX is detected during hot deformation at a very high strain [81,95,109]. After gDRX,
the initial grains of the sample are fragmented into the new smaller grains with HABs. With
gDRX, the HAB area can dramatically increase at high stacking fault energy (SFE) metals,
but not in the same way as cDRX [110]. The cDRX includes the sub-grains boundaries’
misorientation. The misorientation of sub-grains by cDRX is just a few degrees and much
lower than HABs. The sub-grain boundaries are mobile and annihilate with other bound-
aries decreasing the sub-grain size throughout large strain hot deformation [111–113]. In
cDRX, sub-grains transform into new grains within the deformed original grains. When
the dislocations accumulate progressively in LAGBs, the formation of HAGBs proliferates,
leading, consequently, to an increase of misorientation [112]. Deformation conditions like
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temperature and strain rate determine the number of sub-grains and stored energy after
hot forming.
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In the hot forming of MSS at a low strain rate, DRV is the main softening phenomenon
because there is enough time for dislocation to climb and cross-slip [114]. Low-angle grain
boundaries are formed by the migration of dislocations and have a lower energy state [115].
Generally, during hot deformation of MSS at low-temperature and high strain rate, only a
few DRX grains form along the boundaries, whereas most deformed microstructures are
DRV grains. The local bulging of grain boundaries is frequently observed as the initial
step to the nucleation of DRX, which is often termed as strain-induced grain boundary
migration (SIBM) [116]. From an industrial point of view, DRX is very important since it is
a common microstructural phenomenon during the hot forming processes of MSS [117].
For the industrial hot forming process, determining the required strains for the initiation
and completion of DRX is necessary. It is almost proved that during hot forming, the
build-up of dislocation density reaches a critical value from which grain boundaries start
to bulge through SIBM [117]. Quite close to the peak strain (critical strain) of the DRX
flow curve, SIBM happens [118]. Locally bulged boundaries sweep away dislocations
and cause a drop in the work hardening rate under the control of dynamic recovery [119].
After the critical point, the local bulges in boundaries grow to occupy the prior boundaries
and form the necklace structure at the peak [120]. The kinetics of DRX beyond the peak
determines the strain required to reach the steady-state flow. It is, therefore, evident that
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the critical peak and steady-state strains are essential in characterizing the DRX behavior
of a particular alloy.

In most MSS, hot deformation is performed in the stable region of the austenite phase,
where DRX is the dominant microstructural modifying mechanism [120]. Therefore, it can
be a desirable process to take advantage of DRX to refine the microstructure of austenite
and to prevent deformation defects prior to the transformation into martensite [121]. The
softening due to DRX results in a flow stress decrement after work hardening, leading to a
steady-state regime associated with the dynamic balance between work hardening and flow
softening [122]. The steady-state flow dominated by the occurrence of DRX prevents the
formation of plastic instabilities and results in microstructural modification [106,123,124]. In
MSS, the distance between the partial dislocations is short, and for this reason, during hot
forming, the cross-slipping of dislocations happens easily. The dislocation migration prompts
the annihilation and rearrangement of dislocations, which can decrease the dislocation density,
lower the amount of stored energy and eventually retard DRX [115]. This leads to DRV forms
during hot forming. Also, at different strains, elongated and recovered grains can be seen in
MSS microstructures. Increasing the strain during hot forming is advantageous to drop the size
of the average substructure and refine the MSS microstructure. This emanation results in an
increase in dislocation density and in the number of LAGBs, which is beneficial to reduce the
average substructure size and to refine the microstructure. On the other hand, the dislocation
migration can be promoted by increasing the temperature during the deformation process [125].
The microstructure changes during the hot compression test of AISI 420 steel is depicted in
Figure 9.
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The micrograph of base metal revealed coarse austenite grains with 158 µm size. At
the deformation temperature of 1223 K and strain rate of 0.1 s−1, the original coarse austen-
ite grains are elongated, and some sub-grains are formed along boundaries (Figure 9b).
Microstructure investigation revealed that the DRX is insufficient and incomplete in high
strain rate (10−1), and partial DRX or DRV was detected as the primary deformation mech-
anism. Some serrated grain boundaries, together with local bulges, were observed on the
newly formed boundaries. The reason may be that the grain boundary (or deformation
band) has a larger driving force and more nucleation sites for DRX. It seems that the
larger density of dislocation in the corresponding regions is the root of this phenomenon.
Figures 8d and 9c show the typical microstructures of the deformation twin phenomenon,
deformed at the strain rate of 10 s−1 and the deformation temperature 1273 K, 1373 K,
respectively. The deformation twin phenomenon may be that the grain deformation and
grain boundary sliding are inhibited by the low-level dynamic recovery [61].

The obtained microstructure at different thermo-mechanical regimes of stable defor-
mation during hot forming of 410 MSS shows an equiaxed appearance of original austenite
grains extracted from the final martensitic structure, which implies the occurrence of DRX.
It is very well documented that grain size remains almost unchanged at strains over the on-
set of steady-state flow. The steady-state grain size, also known as DRX grain size, increases
with temperature, decreasing with strain rate. This demonstrates that DRX grain size is
almost independent of the initial grain size. Therefore, different models are recommended
to express the dependence of DRX grain size to processing parameters incorporated in the
Zener–Hollomon parameter (Z). Thus, concluded that DRX grain size depends on the Z
parameter and is almost independent of the initial grain size so that the DRX grain size
decreases with an increase in the Z [126].

Kishor et al. studied the characteristics of 13Cr-4Ni microstructure during hot de-
formation [62]. The optical microstructure of ASR 13Cr-4Ni martensitic stainless steels
before the deformation is shown in Figure 10a, consisting of a full-lath martensite struc-
ture. According to the achieved results, after the hot deformation, all the microstructures
predominantly exhibited a martensitic structure for all the deformation conditions. Mi-
crostructural evolution after hot deformation was characterized to validate the occurrence
of DRX and to confirm the stable and unstable regions. Uniform grain growth and small
equiaxed grains along the grain boundaries were observed at the deformation conditions
of 1000 ◦C, 0.001 s−1 and 1050 ◦C, 0.1 s−1, as can be seen in Figures 9c and 10b, respectively.
These features demonstrate the occurrence of DRX that was achieved by optimum hot
working domains. For 950 ◦C, 0.1 s−1 deformation condition (Figure 10d), the microstruc-
ture revealed partially recrystallized features (seen as equiaxed grains) and remaining
recovered structure (seen as inhomogeneous distribution of grains). This is representative
of the incomplete softening mechanism during 950 ◦C, 0.1 s−1 deformation condition.
Microstructure in Figure 10e corresponding to the instability region 900 ◦C, 10 s−1 revealed
localized flow structure and shear bands (marked by arrow) due to the absence of steady-
state behavior. It also shows refined grains formed due to recrystallization within the
bands. According to the processing map, this condition is located in the instability region.

Microalloying of MSS can change the DRX during hot deformation. The standard
and well-known element in MSS is niobium (Nb) that has an intense effect on DRX. The
microstructure changes of MSS micro-alloy during the hot compression test are shown in
Figure 11. The initial microstructure was a completely coarse equiaxed austenitic grain
structure. At a low strain rate, the austenite grains were elongated, and DRX was not
detected. Many Nb precipitates with lamellar shape appeared alongside the austenite
grain boundaries. With increasing temperature, the precipitates along grain boundaries
decreased, and a small amount of DRX with fine grains formed in hot deformed areas. It
is proved that a high density of dislocations could be produced during the martensitic
transformation and distribution of a large number of nanosized precipitates [127].
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Restoration mechanisms in metals during hot work have been one of the main issues
in recent decades. In most cases, DRV has been reported as the only restoration mechanism
for alloys with high stacking fault energy [128,129]. Besides, in metals and alloys with
high SFE, cDRX occurs instead of dDRX. cDRX plays a prominent role in producing finer
grains through hot deformation [3–5]. This mechanism mostly occurs in low carbon ferritic
steels and even to some extent in austenitic stainless steels as well as MSS [130]. Generally,
ferritic microstructures prefer the work softening by an extended DRV, resulting in cDRX
at higher applied strains [88,131]. Dynamic restoration leads to an increase in the density
of dislocations at LAGBs, thereby transforming them into HAGBs [132]. It accepted that
sub-grains might rotate to the point that the adjacent sub-grains reach a similar orientation
due to boundary diffusion processes [133]. In this case, already existing LAGBs will be
deleted [11]. These sub-grains will combine and convert to larger subgrains. The driving
force necessary for this process will be obtained by decreasing the surface area of LAGBs
in unit volume [134].

4. Analysis of MSS Flow Stress under Hot Deformation

Metals flow stress graph relates strain, strain rate and temperature. Many mechanical
or metallurgical parameters could change the results of flow stress. The addition of alloying
elements in MSS could increase the flow stress value and reduce the hot workability.
The properties of stress–strain graph are determined by the deformation temperature,
strain rate, microstructural, and the final crystallized grain size. Generally, the flow stress
decreases with increasing temperature and increases with increasing strain rate at a constant
parameter during compression test [77].

During hot deformation of MSS, three types of flow stress graphs have been reported
that indicate that there are cDRX and DRV [135]. In the first case, during high-temperature
plastic forming, the flow stress graph shows a continuous increase until reaching saturation
stress. This behavior, depicted in Figure 11a, indicates a steady state of flow, which is
the result of strain hardening decrease during deformation. In these cases, DRV is the
main restoration process during hot deformation [136]. This type of graph is usually seen
during hot deformation of MSS with low strain rates (ε < 1), and it is justified by the
fact that the softening produced by DRV is able to balance the strain hardening rate. In
the second case, which is referred to as the dDRX phenomenon, the flow stress graph
in high-temperature compression shows a gradual increase until it reaches a stress peak
(Figure 12). Then with increasing strain, the flow stress decreases until a steady-state
trend. In exceptional cases, some decreasing peaks of heights form before the steady-state
behavior. During straining (from starting point and before reaching peak stress), the graph’s
increase is the result of new grains appearance, which leads to softening due to decreasing
the rate of work hardening. After the peak stress, the steady flow stress is the result of the
dynamic equilibrium existing between strain softening and strain to harden. This dynamic
equilibrium is the result of new grains formation with grain boundary migration. The third
type of graph is obtained at high strain rate (5−1) experiments. In these cases, DRV occurs
in the substructures at the early stage of straining and sub-grains misorientations till they
attain HAB values [84,87,112,135]. During the hot forming of MSS, the relation between the
DRV rate and the grain boundaries migration velocity determines the formation of dDRX
and cDRX. With increasing temperature, the critical strain for the dDRX decreases, which
leads to a reduction in metal grain size [135,137]. The addition of elements in MSS during
production can affect the flow stress during hot deformation. For example, Niobium (Nb)
precipitates effectively postpone or inhibit DRX in MSS. During hot deformation, Nb atoms
impose solute dragging force on the moving dislocations and grain boundaries.
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Figure 12. Obtained stress–strain curves after the hot compression test of MSS that shows (a) DRV in 17% Cr MSS, (b) dDRX
in 12% Cr MSS and (c) cDRX in 14% Cr MSS [105]. (d,e) hot tension curves of 13CrMoNbV steel at temperatures in the
range of 1100 ◦C–1275 ◦C (dr 1). Microstructure of the tensile samples’ fractured surface after deformation at (f) 1100 ◦C, (g)
1150 ◦C and (h) 1200 ◦C [138].

In another type of hot testing, a hot tensile test has been done on 13CrMoNbV steel.
The engineering stress–strain curves of the steel at various temperatures are depicted in
Figure 12d,f [138]. The increasing temperature decreased the engineering stress during
the tensile test, similar to the hot compression behavior. On the other hand, the ultimate
tensile strength values increase with decreasing temperature. The 13CrMoNbV steel shows
high values of plasticity in the range of 1100 ◦C–1275 ◦C [138]. The fracture surface of
tensile samples consists of traces of intensive deformation before failures, such as micro-
voids, dimples, and sharp crests. The fracture surface becomes more heterogeneous with a
temperature increase from 1100 ◦C to 1200 ◦C. The dimples’ size increases with increasing
deformation temperature due to a more intensive plastic deformation and the coalescence of
micro-voids during a longer deformation process at high deformation temperatures [139].

5. Precipitates and Dislocations

Generally, the martensitic matrix of MSS contains precipitates after thermo-mechanical
processing. Depending on the strain rate and temperature, the size of precipitates and
also morphologies of obtained martensite after transformation could be different [140].
During thermo-mechanical processing of MSS, the probability of nanosized precipitates
formation and density of dislocations increase. During the hot working, the martensitic
matrix changes to martensitic blocks, and the blocks are further divided into several parallel
laths [141–145]. TEM images of martensitic lath and precipitates in 403Nb steel after hot
working are shown in Figure 13. The small-block and martensitic lath are detectable in
the TEM images. The large carbides (thick black arrows), nanosized MX carbides (thin
black arrows), and undissolved precipitates (white arrows) arisen during solid solution
treatment are detected [146]. The big carbides that mostly had M23C6 chemical composition
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precipitated along with the martensite lath and blocks. This carbide type is regularly
detected in conventional 9–12% Cr steel [147–149].
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NbC, Cr2N, M23C6 carbides are detected in precipitation MSS grades [45]. In this type
of MSS, the increase in strain rate rapidly increases the deformation energy in unit time,
which leads to quick dislocation movement, accumulation, entanglement, and plugging,
which makes the kinetic recovery and recrystallization incomplete [150]. Because of the
solid solution in steel, nitrogen retards the growth of the detrimental intermetallic phase,
and the precipitation of nitride and M23C6 causes hardening of the grain boundary [151].
With increasing hot compression test temperature, the atomic kinetic energy increases, and
the thermal deformation is more easily activated. Simultaneously, dynamic recrystallization
nucleation becomes easier, and the high-temperature dynamic recrystallization process
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is accelerated. These two factors greatly accelerate the softening process and reduce flow
stress. In Cu-bearing MSS, the degree of dynamic recrystallization is tremendous, and for
starting DRX lower strain rate is needed. In this type of MSS, the CrN and Cr23C6 phases
were detected during hot compression, strengthening the grain boundary and significantly
affecting the strain limit of the material [152].

The fine MX carbides are distributed mainly within that lath and along boundaries.
In some cases, deformation-induced phase transformation caused an increase of disloca-
tion density in the martensite and induced a concentration of dislocations at the bound-
aries [153]. During the hot forming, the piling up of dislocations on the boundaries creates
internal stress concentration [154]. Furthermore, the number of dislocations in martensite
lath boundaries increased. Therefore, the density of dislocations near the transformed lath
is much higher than in the initial martensite matrix [155,156].

During the hot compression test of MSS, the metal atoms can diffuse sufficiently
at a low strain rate, which is advantageous for the occurrence of dynamic recrystalliza-
tion [157]. At low strain rates, the longer DRX times make it easier for recrystallized grains
to grow [158]. Further, a lower strain rate results in less coarse energy obtained by metal
deformation. Consequently, the recrystallization driving force decreases accordingly, and
the area where recrystallization can occur also decreases simultaneously [159]. In precipita-
tion MSS grades, carbides at grain boundaries have hindered the movement of dislocations,
grain boundary slip, and metal recrystallization growth. During hot compression test,
at low-temperature and low strain rate, these carbide remains in the microstructure of
MSS, but at a higher temperature and high strain rate, the carbides at grain boundaries
gradually dissolved into the matrix [160]. On the other hand, at the high-temperature
compression test, it is shown that during the high strain rate hot compression test of MSS,
the number of carbides at grain boundaries was reduced [161]. This phenomenon indicated
that strain is greater than the time effect on dissolving of carbides. This issue can be used
in the processing efficiency of MSS [162]. The carbide precipitates dissolved at the grain
boundaries, thereby weakening the pinning effect on grain boundaries, and consequently,
DRX was easier to occur in precipitation MSS grades at a higher temperature [163].

6. Summary and Further Investigation

The main contributions of the experimental characterization of dynamic recrystal-
lization of martensitic stainless steels during hot deformation are analyzed in this paper,
focusing on its applicability to bulk forming operations.

The experimental technique mostly used for the characterization of MSS workability
in hot forming conditions is the hot compression test, as for most metals. Flow stress
behavior of the material under different plastic deformation conditions are obtained, as
well as relevant information of grain evolution that has been used for understanding DRX
phenomena. There are three types of DRX: discontinuous, continuous and geometrical.
In the dDRX, dislocation motion and accumulation favor new grain nucleation at grain
boundaries leading to a new finer cell structure. It is rarely reported in high chromium MSS
during hot deformation since it is related to low and medium stacking-fault energy (SFE)
steels, and MSS are in the category of high SFE materials. The cDRX directly changes the
orientation of sub-grains and forms new grains. During cDRX, dislocations are generated
and rearranged to form LAGB sub-grains boundaries. The cDRX is very common in high
stacking-fault energy (SFE) materials like MSS. Finally, gDRX is a mechanism of grain
refinement by grain elongation, thinning, and fragmentation. gDRX and the cDRX have the
same features, which are continuous growth of HAGB area and absence of nuclei. These
types of grain refinement added to the analysis of stability have been recurrently studied
in the literature reviewed for different grades of MSS.

Regarding the analysis of MSS flow stress during hot deformation (at temperatures
above 0.5 Tm), it has been found that DRV and DRX phenomena counteract strain hardening
and lead to strain softening at large strains. In MSS, as high SFE materials, deformation is
controlled mainly by DRV, especially at low strain rates (

.
ε < 1 s−1). During hot forming,
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the redisposition and annihilation of dislocations readily happen over DRV, leading to
the formation of subgrains. DRV and cDRX cause strain-softening of MSS during hot
deformation. In cDRX, a critical strain is needed to nucleate new grains and HABs are
formed during high strain deformation conditions. These new grains contain high densities
of dislocations. The grains structure after cDRX is nearly homogeneous.

In addition, the presence of precipitates, main carbides of different compositions (NbC,
Cr2N, M23C6) and Cr compounds (CrN and Cr23C6) cause hardening of the grain boundary,
facilitates the activation of thermal deformation and ease the nucleation of the DRX process.
As a result, an acceleration of the softening process and a reduction of flow stress are usually
observed in MSS under high-temperature forming conditions due to precipitations. Despite
the significant effort made in studying the microstructural structures of MSS produced
by DRV and DRX reviewed here, some notable features remain to be explained. First, the
application of cDRX to microstructure control in MSS grades does not consider allotropic
transformations. Second, the effects of the continuous multiphase hot bulk metal forming
on the DRX of MSS have not been considered. In hot bulk metal forming, the sub-DRX
and microstructural changes could be interesting. Third, the deformation twinning role in
producing cRDX grain refinement is also an interesting contribution for the future.
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