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Abstract: Microstructure characteristics and compressive property relationships of so-called har-
monic (composed by fine and coarse grains) and conventional pure titanium (Ti) and Ti-6Al-4V
alloy processed by powder metallurgy route are presented in the present work. Electron backscatter
diffraction (EBSD) analysis was performed to characterize the as-processed microstructures. The har-
monicity structure of selected samples is described, and relevant EBSD maps are presented. The bulk
samples’ hardness is reported, along with compressive responses at quasi-static and intermediate
strain rates, ranging from 0.005 s−1 to 16 s−1. The strain rate sensitivity of these metallic samples is
discussed, and the benefits in terms of mechanical properties of the harmonic microstructures com-
pared with the non-harmonic conventional ones are highlighted. Finally, a modified Johnson–Cook
model was shown to predict fairly the experimental results.

Keywords: titanium; titanium alloys; microstructure; harmonic structure; compression tests; consti-
tutive modeling

1. Introduction

Ti and Ti-6Al-4V alloys are widely used in several fields (aeronautics, biomedical
applications, nuclear energy) as functional materials due, for example, to their low density
and good corrosion resistance [1–3]. Ti-6Al-4V alloys belong to the α + β alloy [4]. A com-
monly used method to improve polycrystalline metals and alloys’ strength characteristics
is grain refinement [5] via the well-known Hall–Petch law [6,7] that correlates the inverse of
the square root of the grain size d to the yield strength σy (or hardness) and σ0 (a material
constant) as follows:

σy = σ0 +
k√
d

(1)

The Hall–Petch coefficient k represents the grain boundaries contribution to the yield
strength of a metallic sample [8].

An increase of the mechanical resistance and/or the flow stress of metals leads quite
often to a decrease of the ductility. To avoid such loss, several approaches were considered
such as severe plastic deformation (SPD) techniques [9] or combining extrusion machining
and heat treatment [10]. Bimodal microstructures (or presenting gradient microstructure)
were also elaborated or considered to obtain good mechanical properties—ductility com-
promise [8,11–13]. In this context, powder metallurgy (PM) route consisting of coupling
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mechanical milling (MM) of pure Ti or Ti-6Al-4V powders and spark plasma sintering
(SPS) was suitable for preparing bulk Ti and Ti-6Al-4V alloys having a tailored bimodal
microstructure [14,15]. When the parameters of MM and SPS are optimized, such a process
leads to a microstructural design concept called “harmonic structure” (HS). Indeed, due to
the MM process, the initial powder surface is modified. From a spherical shape, it evolves
to an irregular one. Cross-sectional scanning electron microscopy (SEM) micrographs of
the milled powders show outer and inner regions [14]. The outer region, the thickness of
which can be controlled during the MM process (milling time), is strongly deformed and
contains a high density of structural defects (dislocations, point defects), unlike the internal
region in which the stored energy is low. During the SPS, elevated dwell temperature
induces the recrystallization phenomenon. Indeed, the external zone with the most stored
energy will generate tiny grains (the shell), unlike the particle’s internal area (the core).
Subsequently, SPS sintering will consolidate all of the powder by creating an interconnected
network of the different particles’ shells. This mechanism leads to a so-called harmonic
structure [16–19].

The HS enhanced mechanical properties were attributed to the distribution of mainly
fine grains and others that are mainly coarse. Harmonic microstructures lead to a homo-
geneous distribution of strain, while plastic activity occurs and avert plastic deformation
localization due to an accommodation of plastic deformation induced by the strain distri-
bution in the coarse grains domains, which lead to an accommodation of work hardening
to large strain values [20,21]. All the studies carried out to date have shown that har-
monic structures improved mechanical properties compared to conventional fine-grained
or ultra-fine microstructures [20–25]. In particular, a much better synergy between me-
chanical strength and ductility was observed [18,21]. This results from the microstructure’s
heterogeneous character, which induces the delocalization of the deformation due to the
grain size gradient [26], thus delaying the plastic instability during uniaxial tensile tests,
for example [17]. This tendency seems to be a characteristic common to heterogeneous
microstructures [27–30]. Indeed, as revealed by the available literature, heterogeneous
microstructures are known to induce better mechanical properties compromise, due to
the presence of long-range stresses, themselves induced by the presence of geometrically
necessary dislocations due to incompatibilities of deformation.

In this work, compression tests of harmonic samples (designed by coupling MM and
SPS) and non-harmonic ones (designed by SPS only) of Ti and Ti-6Al-4V are investigated
considering three strain rates. The effect of the initial microstructures on the mechanical
properties is discussed, and the strain rates influence presented. Two models of plastic
flow behavior were examined and compared with the experimental results.

2. Materials and Methods

Ti and Ti-6Al-4V alloys were all designed by the SPS process from a powder metallurgy
route as originally proposed and developed by Prof. K. Ameyama’s group [16–19,31]. By
coupling MM and SPS process, HS samples can be obtained, compared to only considering
SPS, which leads to conventional homogeneous or bimodal microstructures. The SPS is
a PM process allowing high processing versatility [1]. SPS method (also known as field
assisted sintering technology (FAST) is a fast-sintering process. Initial powders of metal
or ceramic are placed in a graphite die and then a uniaxial pressure is applied during
sintering [32]. For example, bulk Ni-W alloys can be successfully sintered from blends of
high-purity Ni and W powders (W amount ranged from 10 to 65 wt.%) during a relatively
short time and lead to fully densified samples [12,33–35]. Two Ti and three Ti-6Al-4V
samples will be considered in this work. The first set of two samples was obtained from
initial unmilled Ti and Ti-6Al-4V powders (IP) referred to as Ti-IP and Ti-6Al-4V-IP. The
chemical composition of the powders is presented in Table 1.
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Table 1. Chemical composition of the Ti and Ti-6Al-4V initial powders (mass %).

Powder Al V Fe H N O C Ti

Ti - - 0.04 0.012 0.015 0.111 0.004 bal.

Ti-6Al-4V 6.24 4.1 0.1 0.002 0.005 0.108 0.024 bal.

The second set of three samples was made from room temperature (RT) mechanically
milled (MM) powders under Ar flow, using planetary ball milling (Fritsch P-5). Depend-
ing on the microstructure characteristics to be fabricated, different milling times were
considered, such as 90, 180, and 360 ks. The resulting MM powders are referred to as Ti-
6Al-4V-MM-90 ks, Ti-6Al-4V-MM-180 ks, and Ti-MM-360 ks, respectively. The combination
of MM and SPS processes leads to samples with an HS design composed of coarse-grained
regions (core) and a rim of fine-grained regions (shell) as described elsewhere [16–19,22].
The sintering parameters were as follows for all samples: applied uniaxial pressure of
50 MPa for half an hour considering a dwell temperature of 800 ◦C. An SPS 510-ML by NJS
was considered.

After the sintering process, SPS pellets dimensions were such that the diameter and
thickness of 15 and 3.5 mm, respectively, were obtained. The density of the samples was
measured by the Archimedes method using an Ohaus Voyager Pro®. Samples cut from
the pellets were first mechanically mirror-polished and then electrochemically polished
using A2 electrolytic solution using a LectroPol-5® electropolishing apparatus from Struers
(Copenhagen, Denmark). Scanning electron microscope and EBSD (electron backscatter
diffraction) analyses were all realized with a JEOL JSM-7100F apparatus (Tokyo, Japan). A
voltage of 15 kV was fixed. The step size was fixed to 0.1 µm for all the 2D acquisitions.
EBSD data were then analyzed using HKL Channel 5 software and the AZTec (UK) software,
both from OXFORD Instruments (Oxford, UK). Vickers microhardness (HV) tests were
performed using a Future Tech® microhardness tester (Model FM) (Future-Tech Corp.,
Kawasaki, Japan) under a 1000 gf load applied during 20 s. To get more reliable results,
20 measurements were done on each sample. Compression tests were finally performed
on two different apparatus. Quasi-static tests (

.
ε = 0.005 s−1) were performed using a

Sintech 20D apparatus. A Rudolph XR200 (H.D. Rudolph GmbH, Reinheim, Germany)
electro-optical extensometer was used to track the deformation. A Yokogawa DL750-10
MHz (Yokogawa Electric Corporation, Tokyo, Japan) was used to record the signals. A
maximum force of 100 kN can be considered and a constant displacement is applied.
Finally, intermediate strain rates were performed using an Instron VHS65/20 (Instron,
Norwood, MA, USA).

Compression tests were all performed on cylinders that present diameter of about
3 mm and a height of about 3.5 mm prepared from the as-sintered cylinders. All tests
were reproduced three times, and the averages are presented in this work. Home-made
programs written in Python language, and Matlab® were both used to analyze data from
compression tests.

Choice of a Constitutive Mathematical Model

It is always useful to have simple analytical models (but with sufficient accuracy
for engineering applications) to describe a set of experimental behaviors [36–41]. Sev-
eral constitutive material models were proposed in the literature (Johnson–Cook [19],
Bammann–Chiesa–Johnson [42], Zerilli–Armstrong [43], Bodner–Partom [44] models . . . ).
In this work, we examined two such phenomenological models, namely, the Johnson–Cook
(JC) model [45] and a modified Johnson–Cook (MJC) model [46], which were developed
for general metals. They are here employed for the first time (to the best of our knowledge)
to describe the compression behavior of harmonic materials (five studied titanium and
titanium alloys).
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3. Results and Discussions

The results presented herein were obtained with the operating conditions given in
Table 2. As it is seen, the same holding time and applied pressure were considered for all
the samples during the SPS process. Notice that after the SPS process, high density of more
than 99% of theoretical density was obtained in all samples.

Table 2. Processing conditions of the samples.

Sample Name Milling Time of the
Powder (ks)

Spark Plasma
Sintering (SPS)

Holding Time (ks)

Applied Pressure
during the SPS
Process (MPa)

Density of the Sample
(g·cm−3)

Ti-IP - 1.8 50 4.55

Ti-MM-360 ks 360 1.8 50 4.52

Ti-6Al-4V-IP - 1.8 50 4.39

Ti-6Al-4V-MM-90 ks 90 1.8 50 4.36

Ti-6Al-4V-MM-180 ks 180 1.8 50 4.36

3.1. Microstructural Characterization

To begin with the microstructure, we first present in Figure 1 the inverse pole figures
(IPF) of the as-processed samples. Polycrystalline pure Ti samples were composed of the
α-hexagonal close-packed (hcp) phase [47]. IPF maps of the pure Ti-IP (Figure 1a) and the
Ti-MM-360 ks (Figure 1b) illustrate that the Ti-IP highlighted a larger grain size than the
Ti-MM-360 ks one. Indeed, the MM process reduced the mean grain size of the Ti-MM-360
ks (12.2 µm) compared with the non-milled sample (24.3 µm). It can also be noticed that a
bimodality of the grain size distribution occured in this mechanically milled pure Ti sample.
Moreover, in both cases, the microstructures did not present any preferential orientation of
the grains, which were thus randomly oriented.

Polycrystalline Ti-6Al-4V alloys were composed of a hexagonal close-packed phase
and a body-centered cubic one [48,49]. IPF maps of the Ti-6Al-4V alloys are gathered
in Figure 1c–e. The average grain size of the Ti-6Al-4V-IP (Figure 1c) alloy was 2.8 µm
versus 1.7 µm for Ti-6Al-4V-MM-180 ks (Figure 1d) and Ti-6Al-4V-MM-90 ks (Figure 1e).
Ti-6Al-4V-IP displayed an equiaxial and lamellar microstructure, while the milled alloys
(MM-90 ks and MM-180 ks) displayed only an equiaxial one. In all cases, the grains were
also randomly oriented. It was interesting to notice that in the two mechanically milled
Ti-6Al-4V samples, the fine grains surrounded the coarse ones [22].
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Figure 1. Inverse pole figures (IPF) maps of (a) Ti-IP, (b) Ti-MM-360 ks, (c) Ti-6Al-4V-IP, (d) Ti-6Al-4V-MM-180 ks, and
(e) Ti-6Al-4V-MM-90 ks.

3.2. Mechanical Properties
3.2.1. Vickers Hardness

Vickers hardness results are presented in Figure 2. As expected, pure titanium dis-
played lower hardness than Ti-6Al-4V alloys. The hardness difference between Ti-IP and
Ti-MM-360 ks was due to the average grain size. Indeed, hardness decreases with grain
size [50]. Finally, the two Ti-6Al-4V-MM alloys showed a slightly greater mean hard-
ness than Ti-6Al-4V IP sample; here again, the difference in grain sizes seemed to be the
main reason.
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ones. Furthermore, the pure Ti-IP sample had the lowest mechanical properties, while the 
Ti-6Al-4V-MM-90 ks displayed the highest ones, whatever the strain rate. This means that 
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Figure 2. Vickers hardness of the samples (mean value ± standard deviation).

3.2.2. Compression Tests

During the compression tests, three strain rates were considered (
.
ε = 0.005 s−1, 0.3 s−1,

and 16 s−1). The results of quasi-static are shown in Figure 3 and intermediate strain
rate tests are shown in Figures 4 and 5. Pure Ti samples highlight inferior mechanical
properties compared to the Ti-6Al-4V alloys. This is partly due to the advantages of the
alloying of titanium [51] and the grain size difference. It was observed that HS samples
exhibited a higher yield strength and flow stress as compared with the non-harmonic
ones. Furthermore, the pure Ti-IP sample had the lowest mechanical properties, while the
Ti-6Al-4V-MM-90 ks displayed the highest ones, whatever the strain rate. This means that
milling during 90 ks the initial powder was enough to increase the mechanical properties
of the Ti-6Al-4V alloy sintered by SPS compared with the Ti-6Al-4V-180 ks. The shape of
the compression curves of the Ti-6Al-4V alloys at a strain rate of 16 s−1 was not the same as
the ones at 0.005 s−1 and 0.3 s−1. Indeed, from approximately 10% of the strain, a plateau
occurred at a strain rate of 16 s−1 (Figure 5) due to a work hardening difference.
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.
ε = 16 s−1).

3.3. Strain Rate Sensitivity

To determine strain rate effects on flow behaviors of our samples, strain rate sensitivity
(SRS) is computed. The well-known power-law equation [52] presented in Equation (2)
was considered:

σ = C
.
ε

m (2)

where m is the SRS exponent,
.
ε the strain rate, σ is the applied flow stress, and C a constant.

0.2% offset yield strength (σ0.2) versus the initial strain rate is presented in logarithmic scale
in Figure 6. An increase of the σ0.2 as a function of the strain rate was observed. A fairly
good linear relationship was seen in the double-log scale considering Equation (2). Each
slope in this figure corresponds to the SRS exponent, m value. Regarding the pure Ti, m is
equal to 0.025 for the Ti-IP and 0.028 for the Ti-MM-360 ks. Lower values of m are obtained
with the alloys, namely, 0.016 (for the Ti-6Al-4V-IP and Ti-6Al-4V-MM-180 ks) and 0.017
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(for the Ti-6Al-4V-MM-90 ks). These values of SRS exponents are in accordance with m
values of Ti and Ti-6Al-4V samples given in the literature [53,54]. It is interesting to notice
that the microstructures of IP and MM samples do not significantly influence the SRS.
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3.4. Constitutive Modeling
3.4.1. Johnson–Cook Model

The conventional Johnson–Cook (JC) model [19] uses the following formula:

σ =

{
(A + Bεn

p)

(
1 + C ln

.
ε
.
ε0

)}
×
(

1− (
T − Tr

Tm − Tr
)

m)
(3)

where σ is the equivalent plastic stress. A, B, C, n, and m are material parameters. εp,
.
ε, and

.
ε0 represent the plastic strain and the considered and reference strain rates, respectively.
Tm and Tr are the melting and reference temperatures. This model is quite easy to use and
appropriate to describe the plastic behavior of samples [37,45,55].

All the compression tests were performed under room temperature. We can therefore
neglect the thermal softening effect, Equation (3) was then modified to:

σ =

{
(A + Bεn

p)

(
1 + C ln

.
ε
.
ε0

)}
(4)

The value of reference strain rate
.
ε0 was 0.005 s−1. Four parameters (A, B, n, and C)

were required in the fitting stress–strain curves, using Equation (4). To determinate A, B,
and n values, for a value

.
ε = 0.005 s−1, Equation (4) was transformed into:

σ = (A + Bεn
p) (5)

From Equation (5), parameters A, B, and n were then computed from the σ-ε curves
obtained at the reference strain rate (

.
ε = 0.005 s−1). Parameter C was acquired from the

fitting curves with other values of
.
ε. JC constitutive model parameters are shown in Table 3.
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Table 3. Johnson–Cook (JC) constitutive model parameters of the samples.

Parameter A (MPa) B (MPa) n C

Ti-IP 433 2016 1.323 0.020

Ti-MM-360 ks 590 1562 1.043 0.010

Ti-6Al-4V-IP 997 1537 0.992 0.011

Ti-6Al-4V-MM-90 ks 1080 1561 0.976 0.013

Ti-6Al-4V-MM-180 ks 1217 1880 1.173 0.013

3.4.2. Modified Johnson–Cook Model

More recently, Wang et al. [46] performed experimental tests to study the mechanical
behaviors of Mg-Al-4Y alloys. They found that the JC model results led to a significant
variation from their experimental data. Hence, they proposed a modified model (MJC),
providing improved results. The MJC model [46] formula is:

σ =

{
(A + B1εp)

(
1 + C1 ln

.
ε
.
ε0

)
+ B2

(
1 + C2 ln

.
ε
.
ε0

)
ε2

p + (D + ln εp) ln
.
ε
.
ε0

}
×
(

1− (
T − Tr

Tm − Tr
)

m)
(6)

where A, B1, B2, C1, C2, D, and m are material coefficients having the same meaning
as in the Johnson–Cook model. We, therefore, implemented this model with a very slight
variation. Indeed, given that all our compression tests were performed under RT, we
have neglected the influence of temperature (softening effect). Equation (6) was therefore
simplified to:

σ =

{
(A + B1εp)

(
1 + C1 ln

.
ε
.
ε0

)
+ B2

(
1 + C2 ln

.
ε
.
ε0

)
ε2

p + (D + ln εp) ln
.
ε
.
ε0

}
(7)

Notice that when
.
ε0= 0.005 s−1, Equation (7) simplifies to:

σ = A + B1εp + B2ε
2
p (8)

A two-order polynomial fitting of the σ-ε curves leads to the value of A, B1, and B2.
Considering

.
ε = 16 s−1, C1, C2, and D parameters were calculated.

The final parameter values A, B1, B2, C1, C2, and D obtained are shown in Table 4.

Table 4. Modified Johnson–Cook constitutive model parameters of the samples.

Parameter A (MPa) B1 B2 C1 C2 D

Ti-IP 400 1426 −260.5 0.036 0.648 −2.563

Ti-MM-360 ks 590 1539 −509.3 0.023 0.353 1.135

Ti-6Al-4V-IP 954 2155 −1923 −0.01 0.132 29.182

Ti-6Al-4V-MM-90 ks 1023 2268 −1776 −0.08 −0.037 134.697

Ti-6Al-4V-MM-180 ks 1109 2224 −1713.3 −0.003 0.238 23.35

Experimental results and computed flow stress by the Johnson–Cook model com-
parisons are shown in Figure 7. It can be seen that this model was not well adapted to
our experimental data points for strain rates of 0.3 s−1 and 16 s−1. However, for a strain
rate of 0.005 s−1, the correlation was much more pronounced. The results of the model
and the best experimental line are drawn in Figure 8; most recovered data points for the
two highest strain rates (0.3 s−1 and 16 s−1) were not sufficiently close to the best line.
Therefore, the conventional JC model cannot be selected.
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stress and computed ones are shown in Figure 9. We can see that this model fitted well 
with our experimental points. As shown in Figure 10, the predicted flow stress from the 
modified JC model versus the experimental flow stress was close to the line with a slope 
equal to one. The difference was more pronounced at a low level of stress regarding the 
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ing the Ti-MM-360 ks. 
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(c) Ti-6Al-4V-IP, (d) Ti-6Al-4V-MM-90 ks, and (e) Ti-6Al-4V-MM-180 ks.

Considering the modified JC model, the correlation between our experimental flow
stress and computed ones are shown in Figure 9. We can see that this model fitted well
with our experimental points. As shown in Figure 10, the predicted flow stress from the
modified JC model versus the experimental flow stress was close to the line with a slope
equal to one. The difference was more pronounced at a low level of stress regarding the
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Ti-6Al-4V-MM-180 ks and Ti-6Al-4V-MM-90 ks samples and a high level of stress regarding
the Ti-MM-360 ks.
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Figure 10. Predicted flow stress from the modified Johnson–Cook (MJC) model versus experimental flow stress of (a) Ti-IP,
(b) Ti-MM-360 ks, (c) Ti-6Al-4V-IP, (d) Ti-6Al-4V-MM-90 ks, and (e) Ti-6Al-4V-MM-180 ks.
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3.4.3. Accuracy Analysis

Two constitutive models were considered in this work. The JC and MJC models’
predictability was evaluated considering the average absolute relative error (AARE) and the
correlation coefficient (R). R corresponds to the strength of the linear relationship between
two series of data, while AARE was considered to determine models’ predictability data
series, defined as follows.

R =
∑i=N

i=1 (σi
e − σe)(σi

p − σp)√
∑i=N

i=1 (σi
e − σe)

2∑i=N
i=1 (σi

p − σp)
2

(9)

AARE(%) =
1
N ∑i=N

i=1

∣∣∣∣∣σi
e − σi

p

σi
e

∣∣∣∣∣× 100 (10)

where σi
e and σi

p are respectively the experimental data and computed results. σe represents
the average of σi

e while σp is the average of σi
p. N represents the total number of points

considered in this work. As an example, Li et al. [56] succeeded in comparing three
constitutive models with the experimental values regarding a SnSbCu alloy thanks to these
parameters. Computed R and AARE values are shown in Table 5, for the JC model, and
Table 6, for the MJC model.

Table 5. Computed correlation coefficient (R) and average absolute relative error (AARE) values
considering the Johnson–Cook constitutive model of the samples.

Parameter R AARE (%)

Ti-IP 0.97 3.22

Ti-MM-360 ks 0.97 3.52

Ti-6Al-4V-IP 0.91 2.95

Ti-6Al-4V-MM-90 ks 0.87 5.29

Ti-6Al-4V-MM-180 ks 0.88 9.67

Table 6. Computed R and AARE values considering the modified Johnson–Cook constitutive model
of the samples.

Parameter R AARE (%)

Ti-IP 0.98 1.42

Ti-MM-360 ks 0.98 1.83

Ti-6Al-4V-IP 0.98 0.43

Ti-6Al-4V-MM-90 ks 0.97 0.87

Ti-6Al-4V-MM-180 ks 0.98 0.56

The highest R value of the modified model (MJC) was 0.98. The smallest value of R was
0.87 and was obtained with the JC model for the Ti-6Al-4V-MM-180 ks alloy. Considering
all the samples, the R value was always higher with the MJC model than the JC one. The
AARE of the JC model was again always the highest compared with the MJC one. This
meant that the modified model (MJC) could satisfactorily track the flow behavior of the
harmonic and non-harmonic Ti and Ti-6Al-4V alloys and anticipate the flow stress at
different strain rates and strain ranges.

4. Conclusions

Homogeneous and harmonic structure-designed Pure Ti and Ti-6Al-4V alloys were
studied in this work. The initial microstructure and mechanical properties were inves-
tigated via room temperature compression tests at 0.005 s−1, 0.3 s−1, and 16 s−1. A m
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odified Johnson–Cook model was compared with the well-known Johnson–Cook model.
The results were as follows:

• As expected, due to the mechanical milling process, the grain size of the Ti and
Ti-6Al-4V alloys decreased significantly.

• Vickers hardness of the samples increased as the grain size decreased.
• Harmonic microstructures displayed better mechanical properties in terms of com-

pression and Vickers hardness at the investigated strain rates compared to homoge-
neous ones.

• The 0.2% offset yield strength (σ0.2) increased with the strain rate.
• Strain rate sensitivity (SRS) exponents of the harmonic and homogeneous samples

were relatively close.
• Compared to the classical Johnson–Cook (JC) constitutive model, the proposed modi-

fied Johnson–Cook (MJC) model was more adapted to the experimental data as con-
firmed by the correlation coefficient (R) and average absolute relative error
(AARE) parameters.

• Further; parameters of the MJC flow stress model were determined.
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