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A novel two-dimensional model for the thermocapillary instability of a thin liquid film was developed
and validated in the paper. The model incorporates a novel solution for the unperturbed velocity
components and the thin film thickness (based on the boundary layer approach and balance equation)
subject to evaporation under the boundary conditions of either mechanical interaction between the
liquid and vapor phases or stationary vapor above the interphase boundary. A novel model for thermo-
capillary instability in a thin film was developed in frames of the linear perturbation method, i.e. modified
Orr–Sommerfeld equation, taking into account the surface and London–van der Waals forces. The critical
Reynolds number was computed by considering the two-dimensional disturbances, which according to
the Squire’s theorem are more dangerous than the three-dimensional disturbances. For constant surface
tension at the interphase interface, the unperturbed velocity profile is parabolic, and maximum increases,
while the critical Reynolds number decreases with the decreasing capillary number. If the surface tension
at the interphase interface depends on the temperature, the maximum of the undisturbed velocity profile
increases with the decreasing capillary number and increasing modified Marangoni number, which
entails more rapid decrease in the critical Reynolds number. It was also shown that the flow is
destabilized by the increase in the temperature difference between the wall and the vapor, by the
decrease in the absolute pressure and by the increase in the thermal conductivity. To confirm existence
of different flow regimes in the nanofluid film, numerical simulations of capillary flow was performed,
which exhibit qualitative consistence with the stability theory.
1. Introduction

The constant demand for more powerful and smaller device 
dimensions in many industrial sectors, including transportation, 
energy supply and production and electronics, raised heating or 
cooling fluids properties to the rank of ones of the major parame-
ters taken into consideration in designing and controlling such 
devices.

Among those properties is the heat and mass transfer phenom-
ena at the two-phase interface of evaporating meniscus in capillary 
flows witch make much influence on the overall performance of 
the process.

An example of a heat and mass transfer device where three 
phase contact line evaporation occurs are the heat pipes and vapor 
chambers. Contrary to the conventional ‘‘normal-size’’ heat pipe, a
micro heat pipe does not incorporate a wick structure. Instead, a
micro heat pipe makes use of the capillary pressure that arises
due to the sharp-angle corners and forces the condensate to circu-
late back to the evaporator region [1]. Heat pipes are relatively
widely used for cooling purposes in the transport, aerospace and
other applications. A recent review paper [2] provides a number
of the examples of such applications [2]. Quite many studies have
been undertaken in order to develop modeling approaches to pre-
dictions of the thermal performance of micro heat pipes [1,3–5].
Anyway, a deeper understanding of the evaporation processes in
the micro-region is still to be gained in order to develop physically
adequate and accurate methods of simulations and thermal design.

For some complex two-phase heat transfer phenomena, the
detection of triple line is very important for determining the dry
area.

The problem of the evaporation of a liquid along a contact line
recently attracted the interest of many researchers in many indus-
trial applications. Many researches are concentrated on natural



Nomenclature

c specific heat capacity
Ca� modified capillary number, Eq. (22)
G flow rate per unit length, Eq. (34)
Dh latent heat of evaporation
k thermal conductivity
K curvature
_m (outward) evaporative mass flux crossing the interface

M non-dimensional parameter, Eq. (41)
Ma Marangoni number, Eq. (28)
Ma� modified Marangoni number, Eq. (27)
Ma�� modified Marangoni number, Eq. (45)
n the normal to the interface, Eq. (14)
p pressure
Pe Peclet number, Eq. (29)
Re Reynolds number, Eq. (74)
S non-dimensional parameter, Eq. (41)
T temperature
Tt vapor temperature,
Tw wall temperature (reference temperature)
t time
u streamwise velocity component (x-component)
U dimensionless velocity, Eq. (20)
t transverse velocity component (y-component)
W dimensionless velocity, Eq. (21)
x, y, z Cartesian coordinates

Greek symbols
c the surface tension gradient with respect to tempera-

ture, Eq. (9)
d film thickness
d0 initial film thickness
DT temperature difference across the film, Eq. (17)
g dimensionless coordinate, Eq. (19)
j parameter, Eq. (30)
H dimensionless temperature, Eq. (17)
l dynamic viscosity
q density
r interface surface tension
s boundary stress friction
n dimensionless coordinate, Eq. (31)

Subscripts
0 unperturbed (basic flow) parameters
f 0 perturbed value oft he function f
cap capillary
cr critical value, Eq. (98)
disj disjoining
w wall

Acronyms
2D two-dimensional
evaporation at ambient temperature, but the study of coupled heat
and mass transfer problem when the substrate is heated is also
important for understanding the heat transfer enhancement as
well as contact line dynamics.

Modelling of heat and mass transfer in micro heat pipes is based
on the knowledge of the flow regime conditions. Onset of instabil-
ities, beginning and end of the laminar-turbulent transition is sub-
ject to physical effects of the processes in micro heat pipes, which
are rather different from those macrochannels. Boiling, evapora-
tion and capillary effects are additional factors, which complicate
the models to be used.

As for today, one can mention quite many publications where
different types of the thermocapillary instability were studied the-
oretically. They differ by different approaches and applicability of
their results. In the works [6,7], the instability was investigated
using a non-linear approach with 3D perturbations imposed on
the main flow. This approach resulted in the equations of the
Orr–Sommerfeld type studied to find eigenvalues. Stability analy-
sis of Poiseuille–Benard–Marangoni flow was performed in the
work [6] as applied to a horizontal infinite liquid film that flows
in one direction and is uniformly heated from below. Two limiting
cases were studied here: pure buoyancy effect (Ma = 0) and pure
thermocapillary effect (Ra = 0). As shown in the work [6], critical
Marangoni number and critical Rayleigh number are functions of
the Biot, Reynolds and Prandtl numbers. The work [7] concerns
with the linear instability analysis of thermocapillary convection
in a system with two immiscible liquids separated by an interface
and a constant horizontal temperature gradient set on the inter-
faces. Two types of the instabilities were imposed: (a) streamwise
homogeneous perturbations with zero wave number; (b) spanwise
homogeneous perturbations with zero wave number. In the case
(a), convection took place in the stationary or oscillatory mode,
whereas in the case (b) convection arose in the oscillatory mode
as a traveling wave that spread in the direction of the main flow.
Effects of the Biot number on the unstable modes were also
studied.
DOI : 10.1016/j.ijheatma
A classical linear approach to thermocapillary instability in
annular channel flow with the axial temperature gradient has been
employed in the work [8]. The same direction of the gas motion
and thermocapillary motion produces a destabilizing effect on
the system, whereas the opposite directions of the gas and thermo-
capillary motion can be stabilizing or destabilizing subject to the
gas flow rate.

The instability analysis conducted by Benselama et al. [9,10]
involves the instabilities arising in the streamwise direction,
whereas it makes sense to take into account the instabilities arising
in both directions, i.e. streamwise and orthogonal to the wall.
Another drawback of the studies performed in these works is the
use of the perturbation technique rather than the analytical solu-
tion to model the main flow and heat transfer.

A series of works is devoted to direct numerical modeling of
thermocapillary instability. For instance, Benard–Marangoni insta-
bility was studied in the work [11] using the Volume of Fluid (VOF)
method. This approach employed to model (a) thermocapillary
migration of a droplet in a fluid, (b) thermocapillary convection
in a liquid layer, and (c) Marangoni convection due to Benard–
Marangoni instability demonstrated a fair agreement with experi-
ments. The methodology of VOF was employed in the work [12] for
numerical simulations of Marangoni convection of binary fluids in
a closed microcavity. For simple fluids, surface tension reduces at
higher temperatures, which causes thermal Marangoni convection
forcing the liquid to move out from hot regions that leads to film
dryout. In binary fluids, the Marangoni convection arose due to
concentration gradients. In self-rewetting fluids, surface tension
increases at higher temperatures above a critical value, therefore
Marangoni convection pushes liquid towards hot regions, which
helps avoiding the film dryout. Direct modeling of the short- and
long-wave modes of Marangoni instability was performed in the
work [13]. It was demonstrated that convection cells result in
short-wave instability, whereas long-wave instability leads to the
film rupture. Authors of the investigation [14] focused on the direct
modeling of hydrodynamic stability of thermocapillary flow in a
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finite-size liquid bridge heated from above and placed in a passive
gas environment. Here critical Reynolds numbers and the wave
number were determined as the function of the Biot number.
Different aspects of the thermocapillary instability have been stud-
ied using the direct numerical modeling approach also in the works
[15–17].

Thermocapillary instability has been studied also experimen-
tally, whereas the most interesting results from our point of view
are presented in the works [18–21].

Different effects of the thermocapillary instability on the
parameters of the main fluid flow and heat transfer were studied
in the works [19,22–24].

In the light of the literature review made above the objectives of
the present work were:

(1) To develop a novel 2D model for the thermocapillary instabil-
ity of a thin liquid film including an analytical solution for the
unperturbed velocity components and the evaporating thin
film in the transition region under the boundary conditions
of (a) mechanical interaction between the liquid and vapor
phases and (b) stationary vapor above the interface.

(2) To develop a novel model for the problem of the thermocap-
illary instability in a thin film based on the linear perturba-
tion method with account for the surface and London–van
der Waals forces. The instability analysis will be performed
using the respectively modified Orr–Sommerfeld equation.
The resulting solution will be analyzed in order to elucidate
effects on the critical Reynolds number of the different influ-
encing physical parameters, such as the capillary and
Marangoni numbers.

2. Governing equations

The 2D unsteady fluid flow and heat transfer of an incompress-
ible fluid is described by the following governing equations:
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We are going to consider the region where the flow can be pre-
sented as a thin film (Fig. 1). In frames of the thin film approach
Eqs. (1)–(3) for the steady flow can be reduced to following form

l
d2u

dy2 ¼
dp
dx
;

d2T

dy2 ¼ 0: ð5Þ
Fig. 1. Schematic of the thermocapillary flow and heat transfer.
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Here

p ¼ pcap � pdisj; ð6Þ

where pcap is the capillary pressure, and pdisj is the disjoining
pressure.

The capillary pressure is determined by the Young–Laplace
equation, which can be expressed as follows [9]

pcap ¼
d2d

dx2

rðTÞ

1þ dd
dx

� �2
� �3=2 ¼ KrðTÞ; ð7Þ

where K is curvature, the expression

rðTÞ ¼ r0 � cðT � TwÞ; ð8Þ

determines the interface surface tension. Here r0 is the reference
surface tension at this reference point, and the parameter c > 0
(the surface tension gradient with respect to temperature)

c ¼ �@r
@T

����
Tw

: ð9Þ

is assumed to be constant.
Eq. (8) demonstrates that surface tension decreases with the

increasing temperature finally tending to zero as the temperature
approaches its critical value [25]

The disjoining pressure

pdisj ¼ �
A

d3 ; ð10Þ

expresses the London–van der Waals molecular interactions [9],
whereas A is the dispersion constant associated with the
vapor–liquid-solid substrate system.

In this work we consider either of two types of the boundary
conditions. The first of them reflects the mechanical interaction
between two phases:

u ¼ 0; T ¼ Tw at y ¼ 0; ð11Þ
@u
@y
¼ s

l
kn
@T
@y
¼ Dh _m at y ¼ d; ð12Þ

and second states that the vapor is stationary:

u ¼ 0 kn
@T
@y
¼ Dh _m at y ¼ d; ð13Þ

In Eqs. (11)–(13), the normal to the interface is defined as

n ¼ 1

1þ ðdd=dxÞ2
� �1=2 : ð14Þ

The boundary condition (12) was formulated by Nusselt [26],
and since then it has been widely used in studies of film
condensation of stationary or moving vapor. For stationary vapor
the boundary stress friction is zero s = 0, for moving vapor s can
be determined from the friction coefficient, e.g. from the data of
[27], like it was done by Nusselt [26]. Both these variants of the
boundary conditions were used in the works [28,29] for modeling
of condensation and boiling of a nanofluid over a flat surface. The
boundary conditions s = 0 and s – 0 will be also employed in this
paper, and the unperturbed velocity profile to be obtained on the
basis of the condition (12) will take into account both of them.
Condition (13) was also used by Ellion [30] in the study of film
boiling.
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3. Steady solution for the case of mechanical interaction
between two phases

This case corresponds to the boundary conditions (11), (12). The
integration of system (5) with account for Eqs. (7) and (8) and
under the boundary conditions (11), (12) gives

u ¼ sy
l
þ � dd

dx

� �
9Ayð2d� yÞ

6ld4

þ
3yð2d� yÞr0 þ _mcDhyð3d2 � y2Þk�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdd=dxÞ2

q
6lð1þ ðdd=dxÞ2Þ

5=2

3 � dd
dx

� �
d2d

dx2

!2

þ 1þ dd
dx

� �2
!

d3d

dx3

0
@

1
A; ð15Þ

H ¼
_mDhy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdd=dxÞ2

q
kDT

; ð16Þ

where

H ¼ Tw � T
DT

; DT ¼ Tw � Tt: ð17Þ

The generalized unperturbed velocity profile (15) obtained with
allowance for the condition (12) incorporates both conditions s = 0
and s – 0.

The dimensionless velocity profile looks as

U ¼Wgþ 3þ ðCa�Þ�1
� �

g� g2

2

� �
þMa�

2
g� g3

3

� �
; ð18Þ

where

g ¼ y
d
; ð19Þ

U ¼ uld2

A � dd
dx

� � ; ð20Þ

W ¼ sd3

A � dd
dx

� � ; ð21Þ
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dx

� �2
� �5=2
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dx
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dx
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d2d

dx2
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dx
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!

d3d

dx3

0
@

1
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ð22Þ

Ma� ¼DTcd3aDh
kA
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1þ dd
dx
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� �2

�dd
dx

� � 3 �dd
dx

� �
d2d

dx2

!2

þ 1þ dd
dx

� �2
!

d3d

dx3

0
@

1
A:
ð23Þ

The dimensionless velocity (21), which serves as the scaling
velocity, arises in a natural way while non-dimensionalising the
expression (15) for the velocity profile.

Thus the mathematical model of the main fluid flow involves
two important similarity criteria: the capillary number Ca⁄,
Eq. (22), and the modified Marangoni number Ma⁄, Eq. (24). The
capillary number represents the relation between effect of viscous
forces and surface tension, which acts across the interface between
the liquid and the gas or between two immiscible liquids. The
Marangoni number represents the relation between thermally
dependent surface tension forces and viscous forces. Hence
Marangoni number also takes into account the dependence of the
surface tension on the temperature. We will use further several
definitions of the Marangoni number, such as Ma, Ma⁄ and Ma⁄⁄
DOI : 10.1016/j.ijheatma
(see Nomenclature), arising from the different mathematical forms
of the solutions derived below.

Here we used following equation for the mass flux of the vapor
[15]

_m ¼ aDT; ð24Þ

where a is constant.
Eq. (24) can be justified by the following physical reasoning and

mathematical derivations. If we accept that in the heating region
Tw ¼ const and Tt ¼ const, than in accordance with Benselama
et al. [9]

_m ¼ aðTw � TtÞ þ bðpl � ptÞ: ð25Þ

Here [10]

a ¼ 2am

2� am

M
2pRTt

� �1=2 ptMDh

RT2
t

!
;

b ¼ 2am

2� am

M
2pRTt

� �1=2 Vlpt

RTt

� �
; ð26Þ

where R is the universal gas constant, M is the molar mass, Vl is the
molar volume of the liquid.

With respect to the second term, it can be shown that
pl � pt � r

R. The curvature varies weakly over the length of the con-
tact line, therefore the value pl � pt is constant. Besides, the phase
transition occurs at the constant pressure, i.e. pl � pt. Therefore,
the second term in Eq. (25) is vanishingly small, which reduces
Eq. (25) to Eq. (24). Neglecting the second term in Eq. (25) is not
crucially important in the instability model. The mass flux of the
vapor _m can be incorporated in the dimensionless parameters with
account for the second term in Eq. (25). It will not affect the profile
of the unperturbed velocity and, accordingly, the criteria of
instability.

The form of the Marangoni number Ma� in Eq. (23) is different
from its traditional definition. The dimensionless complex denoted
here as the Marangoni number was obtained in a natural way in
course of non-dimensionalising of the relation for the velocity pro-
file (15). This complex was denoted as the Marangoni number,
because it is close to the classical definition of this parameter.
Denoting this complex in a different way would have introduced
a new dimensionless parameter, which we tried to avoid. A rela-
tion between the modified Marangoni number Ma� and its classical
definition presented in [9] gives the following relation

Ma� ¼ DTcdcq
lk|fflfflfflfflffl{zfflfflfflfflffl}
Ma

kld2

cqdA|fflffl{zfflffl}
Pe�1

aDhd
k|fflffl{zfflffl}
j
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dx
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� �2

� dd
dx

� �

3 � dd
dx
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d2d

dx2

!2

þ 1þ dd
dx

� �2
!

d3d

dx3

0
@

1
A; ð27Þ

where

Ma ¼ DTcdcq
lk

; ð28Þ

Pe ¼ cqdA

kld2 ; ð29Þ

j ¼ aDhd
k

: ð30Þ

Parameter j was introduced by [10]. As one can see from
Eq. (27), all these three parameters can be replaced by one cumula-
tive parameter that is more convenient while analyzing the results.

To model the instability, it is sometimes convenient to
introduce the new variable
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n ¼ 2g� 1: ð31Þ

Using this variable, the profile (15) can be rewritten as

U ¼ 1
2

Wðnþ 1Þ þ 1
8

3þ ðCa�Þ�1
� �

ð3� nÞðnþ 1Þ

þ 1
48

Ma�ðnþ 1Þð11� n2 � 2nÞ: ð32Þ

The modified capillary Ca� and Marangoni Ma� numbers include
derivatives of the different orders from the film thickness respect
to the longitudinal variable x. This is not convenient for the insta-
bility analysis. Then let us try to exclude these derivatives, with the
functions of the coordinate x themselves still remaining in Eqs. (22)
and (27). For this purpose, one can use the mass balance equation
[9,29]

� dG
dx
¼ _m; ð33Þ

where flow rate per unit length is

G ¼ q
Z dðxÞ

0
udy: ð34Þ

Substitution of Eq. (15) into Eq. (34) gives

G ¼ q
l

sd2

2
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dx
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d3 8kr0 þ 5 _mcDhd
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0
@
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1
A: ð35Þ

An attempt to integrate Eq. (33) with account for Eq. (35) did
not succeed in deriving an exact analytical solution. However, to
obtain the instability criteria in frames of our approach, we do
not need a strictly justifiable exact solution for the film thickness,
because it in no way affects the shape of the unperturbed velocity
profile (32). That is why let us make a simplifying assumption that
the film thickness is only weakly dependent on the shear stress
friction s at the boundary between the liquid and vapor phases,
as well as on the curvature effects. Given this assumption, one
can neglect the first and the third terms in the velocity profile
(35). The result is

G ¼ �dd
dx

� �
Aq
ld

: ð36Þ

Taking into account Eq. (36), one solve Eq. (34) in the following
form

d ¼ d0 exp �
_mlx2

2Aq

� �
; ð37Þ

where the initial film thickness d0 can be set equal to the diameter
of the capillary.

Using Eq. (37) and eliminating x, one can obtain the following
expressions

� dd
dx
¼

ffiffiffiffiffiffiffi
MS
p

; ð38Þ

3d2 � dd
dx
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d2d

dx2

!2

¼ ð1� SÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
9M5S
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; ð39Þ
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dx
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dx3 ¼ ð1þMSÞð3� SÞ
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M3S

p
; ð40Þ

where
DOI : 10.1016/j.ijheatmasst
M ¼
_mld2

qA
S ¼ 2 ln

d0

d

� �
: ð41Þ

Taking into account Eqs. (38)–(40), one can rewrite Eqs. (23)
and (28) as

ðCa�Þ�1 ¼ r0d
2
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ð1� SÞ2
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Ma� ¼DTcdcq
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Using the notations of the authors of the work [9], one can

demonstrate that M ¼ _mld2

qA �
_m

qu�
d
l�, where u� and l� are the charac-

teristic scales of the longitudinal velocity and the length. At low
values of overheating, the evaporative mass flux crossing the inter-
face _m is smaller than the term qu�, whereas d=l� � 1. Therefore,
we one can assume that M < 1. Expanding further Eqs. (42) and
(43) in the series with respect to parameter M brings

ðCa�Þ�1 � r0d
2

A
ð3� SÞM ¼ Ca�1; ð44Þ
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ð3� SÞM ¼Ma��; ð45Þ

which are valid under the condition

S < 3) d0

d
< 4:8: ð46Þ

Using the continuity equation (3) and taking into account the
boundary condition V = 0 at y = 0, one can derive an equation for
the transverse velocity component in the general form not involv-
ing the aforementioned simplified model, Eq. (37), for the film
thickness
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�3ð3�gÞdd2d

dx2

!
d2 d3d

dx3þ
1
3
ð3�gÞ 1þ dd

dx

� �2
!2

d3 d4d

dx4

1
A

�DTcdcq
lk|fflfflfflfflffl{zfflfflfflfflffl}
Ma

kld2

cqdA|fflffl{zfflffl}
Pe�1

aDhd
k|fflffl{zfflffl}
j

g2

24 1þ dd
dx

� �2
� �3

�dd
dx

� �

12
dd
dx

1þ dd
dx

� �2
!

d2 3 �dd
dx

� �
d2d

dx2

!2

þ 1þ dd
dx

� �2
!

d3d

dx3

0
@

1
A

0
@

þðg2�6Þd3 3�9
dd
dx

� �2
!

d2d

dx2

!3
0
@

þ8
dd
dx

1þ dd
dx

� �2
!

d2d

dx2

d3d

dx3� 1þ dd
dx

� �2
!2

d4d

dx4

1
A
1
A ð47Þ

Assuming that M < 1, one can reduce Eq. (47) to
ransfer.2015.07.063 5



V ¼ g2ðg� 3þ ð12� 5gÞSÞ
ffiffiffiffiffi
M
p

2
ffiffiffi
S
p ð48Þ

or

V ¼ ð1þ nÞ2ðn� 5þ ð19� 5nÞSÞ
ffiffiffiffiffi
M
p

16
ffiffiffi
S
p : ð49Þ
4. Steady solution for the stationary vapor

This case corresponds to the boundary conditions (11), (13). The
velocity profile can be written as

u¼ �dd
dx

� �
9Ayðd�yÞ

6ld4 þ
3yðd�yÞr0þ _mcDhyðd2�y2Þk�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðdd=dxÞ2

q
6lð1þðdd=dxÞ2Þ

5=2

3 �dd
dx

� �
d2d

dx2

!2

þ 1þ dd
dx

� �2
!

d3d

dx3

0
@

1
A: ð50Þ

The dimensionless velocity profile takes the following form

U ¼ 3
2
þ ðCa�Þ�1

2

!
ðg� g2Þ þMa�

6
gð1� g2Þ ð51Þ

or

U ¼ 3
8
þ Ca�ð Þ�1

8

!
ð1� n2Þ þMa�

48
ðnþ 3Þð1� n2Þ; ð52Þ

U00 ¼ � 3
4
þ ðCa�Þ�1

4

!
�Ma�

8
ð1þ nÞ: ð53Þ

Based on the aforementioned simplified assumption regarding
the film thickness and thus neglecting the second term in the
velocity profile (50) responsible for the curvature effects, one can
repeat the derivations from the previous section and finally come
to the following equations

d ¼ d0 exp �2 _mlx2

Aq

� �
; ð54Þ

� dd
dx
¼ 2

ffiffiffiffiffiffiffi
MS
p

; ð55Þ

3d2 � dd
dx

� �
d2d

dx2

!2

¼ 96ð1� SÞ2
ffiffiffiffiffiffiffiffiffi
M5S

p
; ð56Þ

d2 1þ dd
dx

� �2
!

d3d

dx3 ¼ ð1þ 4MSÞð3� SÞ8
ffiffiffiffiffiffiffiffiffi
M3S

p
: ð57Þ

For this case, Eqs. (44) and (45) are substituted with

ðCa�Þ�1 � 4Ca�1; ð58Þ

Ma� � 4Ma��; ð59Þ

Then the dimensionless velocity profile is

U ¼ 3
2
þ 2Ca�1

� �
ðg� g2Þ þ 2

3
Ma��gð1� g2Þ ð60Þ

or

U ¼ 3
8
þ Ca�1

2

!
ð1� n2Þ þMa��

12
ðnþ 3Þð1� n2Þ; ð61Þ
DOI : 10.1016/j.ijheatma
U00 ¼ � 3
4
þ Ca�1

� �
�Ma��

2
ð1þ nÞ: ð62Þ

The transverse velocity component is

V ¼ tld2

A � dd
dx

� � ¼ g2ð3� 2gÞ
4

4
dd
dx
þ d

d2d

dx2 � dd
dx

� ��1
!

þ r0d
2g2ð2g� 3Þd3

12A 1þ dd
dx

� �2
� �7=2

� dd
dx

� � 3 4
dd
dx

� �2

� 1

!
d2d

dx2

 !3
0
@

�9
dd
dx

� �
þ dd

dx

� �3
!

d2d

dx2

d3d

dx3 þ 1þ dd
dx

� �2
!2

d4d

dx4

1
A

þ DTcdcq
lk|fflfflfflfflffl{zfflfflfflfflffl}
Ma

kld2

cqdA|fflffl{zfflffl}
Pe�1

aDhd
k|fflffl{zfflffl}
j

g2ðg2 � 2Þd3

24 1þ dd
dx

� �2
� �3

� dd
dx

� �

� 9
dd
dx

� �2

� 3

!
d2d

dx2

 !3

þ 8 � dd
dx

� �
1þ dd

dx

� �2
!

d2d

dx2

d3d

dx3

0
@

þ 1þ dd
dx

� �2
!2

d4d

dx4

1
A: ð63Þ

Setting M < 1, one can simplify Eq. (47) as

V ¼ 2g2ð2g� 3Þð1þ 3SÞ
ffiffiffiffiffi
M
pffiffiffi

S
p ð64Þ

or

V ¼ ð1þ nÞ2ðn� 2Þð1þ 3SÞ
ffiffiffiffiffi
M
p

2
ffiffiffi
S
p : ð65Þ
5. Perturbation equations and Squire’s theorem

For the 2D instability analysis, we use the method of the linear
perturbation. Let us present the velocity and pressure as

uðt; x; yÞ ¼ u0ðyÞ þ u0ðt; x; yÞ; ð66Þ

tðt; x; yÞ ¼ t0ðyÞ þ t0ðt; x; yÞ; ð67Þ

pðt; x; yÞ ¼ p0ðx; yÞ þ p0ðt; x; yÞ; ð68Þ

where u0, t0 and p0 are the unperturbed (basic flow) parameters. As
one can see above, the unperturbed velocities (15), (47), (50) and
(63) are in general the functions of longitudinal coordinates x.
However, as shown in [31], in frames of the boundary layer
approach the stability analysis can be performed under assumption
that the basic (i.e. unperturbed) velocities are the functions of the
only transverse coordinate y. We will therefore also assume that
the basic velocity is the function of the transverse coordinate
depending also on the capillary and Marangoni numbers. The veloc-
ity components u0, t0 and the pressure p0 are the perturbed values.

The substitution of Eqs. (66)–(68) in the Eqs. (1)–(3) and further
linearization yields

q
@u0

@t
þ u0

@u0

@x
þ t0

@u0

@y
þ t0

@u0

@y

� �
¼ � @p0

@x
þ l @2u0

@x2 þ
@2u0

@y2

!
; ð69Þ

q
@t0

@t
þ u0

@t0

@x
þ t0

@t0

@y
þ t0

@t0

@y

� �
¼ � @p0

@y
þ l @2t0

@x2 þ
@2t0

@y2

!
; ð70Þ

@u0

@y
þ @t

0

@y
¼ 0: ð71Þ
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Let us rewrite the perturbed velocity through the stream func-
tion as

u0 ¼ @w
@y

; t0 ¼ � @w
@x

; w ¼ ~uðyÞ expðið~ax� ~btÞÞ: ð72Þ

Pressure can be eliminated from Eqs. (69) and (70) using the
classical approach: Eq. (69) is differentiated with respect to y,
and Eq. (70) is differentiated with respect to x. The resulting equa-
tions are subtracted one from the other. Thus, substituting Eq. (72)
into Eqs. (69)–(71) and eliminating the pressure results in the fol-
lowing equation

ðU � cÞðu00 � a2uÞ � U00u ¼ � i
aRe

u0000 � 2a2u00 þ a4u
� �

� iV
a

a2u0 �u000
� �

� iV 0

a
a2u�u00
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

; ð73Þ

In this equation, in analogy to the studies of the instability in
frames of the boundary layer approach [31,32], the unperturbed
velocity profiles are the functions of the dimensionless variable
n ¼ 2g� 1 ¼ 2y=d� 1, which obviously incorporates the film
thickness.

Basic velocities U is defined by Eqs. (33) or (61), and V is defined
by Eqs. (48) or (65) depending on the form of the boundary condi-
tions. Eq. (73) is the modified Orr–Sommerfeld equation, which
includes the effect of the transverse basic velocity. Here the terms
denoted as ‘‘I’’ are the modification as compared to the classical
Orr–Sommerfeld equation; the primes denote the derivatives with
respect to n;

a ¼ ~aðd=2Þ; c ¼ ~b=~a ¼ cr þ ici; u ¼ ~u
A

ld2 � dd
dx

� �
d
2

!,

¼ ~u
A

2ld
�dd

dx

� �� ��
; Re ¼ Aq

2l2d
�dd

dx

� �
; ð74Þ

where cr is the velocity of the propagation of the disturbance wave;
and ci is the parameter that determines the rate of the damping (or
amplification) of the disturbances.

For the 3D instability analysis, let us introduce the following
values

uðt; x; y; zÞ ¼ u0ðyÞ þ u0ðt; x; y; zÞ; ð75Þ

tðt; x; y; zÞ ¼ t0ðyÞ þ t0ðt; x; y; zÞ; ð76Þ

wðt; x; y; zÞ ¼ w0ðt; x; y; zÞ; ð77Þ

pðt; x; y; zÞ ¼ p0ðx; yÞ þ p0ðt; x; y; zÞ: ð78Þ

In this case, the perturbation equations are

q
@u0

@t
þ u0

@u0

@x
þ t0

@u0

@y
þ t0

@u0

@y

� �

¼ � @p0

@x
þ l @2u0

@x2 þ
@2u0

@y2 þ
@2u0

@z2

!
; ð79Þ

q
@t0

@t
þ u0

@t0

@x
þ t0

@t0

@y
þ t0

@t0

@y

� �

¼ � @p0

@y
þ l @2t0

@x2 þ
@2t0

@y2 þ
@2t0

@z2

!
; ð80Þ

q
@w0

@t
þ u0

@w0

@x
þ t0

@w0

@y

� �
¼ � @p0

@z
þ l @2w0

@x2 þ
@2w0

@y2 þ
@2w0

@z2

!
;

ð81Þ
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@u0

@y
þ @t

0

@y
þ @w0

@z
¼ 0: ð82Þ

The perturbation values are

u0 ¼ ~uAðyÞ exp ið~axþ ~cz� ~btÞ
� �

; ð83Þ

t0 ¼ ~tAðyÞ exp ið~axþ ~cz� ~btÞ
� �

; ð84Þ

w0 ¼ ~wAðyÞ exp ið~axþ ~cz� ~btÞ
� �

; ð85Þ

p0 ¼ ~pAðyÞ exp ið~axþ ~cz� ~btÞ
� �

; ð86Þ

Substituting Eqs. (83)–(86) into Eqs. (79)–(82) and excluding
the parameters ~uA, ~wA and ~pA, one can come to the equation

ðU � cÞ t00A � v2tA
� �

� U00tA ¼ �
i

aRe
t0000A � 2v2t00 þ v4tA
� �

� iV
a

v2t0A � t000A
� �

� iV 0

a
v2tA � t00A
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

; ð87Þ

where

v ¼ ðd=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 þ ~c2

q
; tA ¼ ~tA

A

ld2 �dd
dx

� �!,
: ð88Þ

Given the classical Orr–Sommerfeld equation, one can apply the
well-known Squire’s theorem [33]. According to this theorem, for
the 2D flow the 2D disturbances are more dangerous than the
three-dimensional disturbances. In turn, this means that that the
critical Reynolds number can be computed by considering the 2D
disturbances only. It can be demonstrated that Squire’s theorem
remains in force as applied to the present situation. Eq. (86) can
be transformed using the Squire’s transformation

a� ¼ v ¼ ðd=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 þ ~c2

q
; u� ¼ tA;

V�

a�
¼ V

a
; a�Re� ¼ aRe:

ð89Þ

One can obtain the transformed equation based on Eq. (87)

ðU � cÞ u�00 � a�2u�
� �

� U00u� ¼ � i
a�Re�

u�0000 � 2a�2u�00 þ a�4u�
� �

� iV�

a�
a�2u�0 �u�000
� �

� iV�0

a�
a�2u� �u�00
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

: ð90Þ

It is obvious that this equation has the same mathematical form
as the original Eq. (73) with ~c = wA = 0, so that they thus describe
the analogous 2D problems. Since a� P a, it is evident that
Re� 6 Re. Hence, to find the minimum value of the Reynolds num-
ber, it is sufficient to consider only two -dimensional disturbances.

6. Numerical method of solving the eigenvalue problem and
validation of the numerical solution

Two methods are used for obtaining the numerical solution of
the eigenvalue problem for Eq. (63). The first one is the collocation
method [34]. The Galerkin approximation for the amplitude of the
stream function can be written as

u ¼
XN

j¼1

bjf jðnÞ: ð91Þ

For the boundary conditions (11), (12), the trial functions are

f jðnÞ ¼ ð2þ n� 3n2 � n3 þ n4Þ j
; ð92Þ
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Fig. 2. Critical value of Reynolds number vs Ma�� at Ca�1 = idem.
which satisfy the boundary conditions for the perturbed stream
function

n ¼ �1; u ¼ u0 ¼ 0;
n ¼ 1; u ¼ u00 ¼ 0:

ð93Þ

As discussed below (see beginning of Section 6 ‘‘Results and dis-
cussion’’), flow is always stable under the boundary conditions
(11), (12), and it does not make sense to estimate the numerical
inaccuracy in this case. For the boundary conditions (11), (13),
two different sets of the trial functions are employed here with
the purpose to estimate the numerical inaccuracy of the used
methodology. The first set of the trial functions is

f jðnÞ ¼ ð1� n2Þ2n2ðj�1Þ; ð94Þ

whereas the second set looks as

f jðnÞ ¼ ð1� n2Þ2T2jðnÞ; ð95Þ

where T2j are the Chebyshev polynomials of the first kind. These
sets of the trial function satisfy the following boundary conditions
for the perturbed stream function

n ¼ �1; u ¼ u0 ¼ 0;
n ¼ 1; u ¼ u0 ¼ 0:

ð96Þ

In the case where the Chebyshev polynomials are employed to
construct the function u, we used the orthogonal collocation
method. In frames of this method, the residuals are calculated in
the points where the Chebyshev polynomials are equal to zero.
This approach leads to the minimization of the maximum inaccu-
racy [34].

In frames of another approach for the solution of the eigenvalue
problem for Eq. (73), we used CHEBFUN computing environment
[35]. In comparison with the collocation method, this approach
does not require using different trial functions.

Test computations were performed to validate the numerical
code as well as the choice of the basis functions for the first
method. The validation was conducted for the basic Poiseuille flow
[36]

U ¼ 1� n2; V ¼ 0: ð97Þ

This test has demonstrated that for N = 300 the difference in the
critical Reynolds number Recr resulting from using the different
sets of trial functions (specified by Eqs. (94) and (95), respectively)
was less than 1%. The results obtained on the basis of the colloca-
tion method agree well with the results provided by CHEBFUN
computing environment (less than 1%).

7. Results and discussion

The calculations of the instability criteria for the basic velocity
profiles (32), (49) revealed that all perturbations are damped for
any values of the parameters W, Ca� and Ma�, as well as for M < 1
and S < 3, i.e. in this case the flow is stable. This situation is similar
to the pattern that emerges in the study of the classical boundary
layer when on the borders of the simulated domain the main flow
velocity is not zero. According to the Rayleigh’s second theorem of
stability [36], the velocity of propagation of the neutral distur-
bances cr in the boundary layer is smaller then the maximum
velocity. Obviously, in this case, the conditions where this theorem
holds are not satisfied, and the critical layer (where U = cr) that
serves as the resonator of onset of the perturbations cannot emerge
in the film, i.e. the perturbations do not penetrate into the film.
From the mathematical point of view, this phenomenon can be
explained by the results of the investigations of the instability in
the boundary layer in the presence of a longitudinal pressure
DOI : 10.1016/j.ijheatma
gradient (as in our case) performed by [32]. These studies showed
that in the hydrodynamic instability the curvature of the velocity
profile of the base flow (U00)) plays a significant role. This conclu-
sion is in the agreement with the first Rayleigh theorem of stability
(the so-called point of inflexion criterion), according to which the
velocity profiles which possess a point of inflexion are unstable
[36]. The studies of the instability in the gradient boundary layer
[32] revealed that the approximation of the unperturbed velocity
profiles by the classic four-term Pohlhausen polynomial proved
to be insufficient, since this approximation of the velocity profile
curvature is quite different from the curvature of the real profile.
In this regard, an approximation of the velocity profiles for the
basic flow was performed by [32] on the basis of six-term polyno-
mials, which enabled describing the velocity profile curvature with
an acceptable accuracy. Obviously, such a situation arises also in
our case, where the unperturbed velocity profile in the film subject
to the pressure gradient is described by the third-order
polynomials.

The situation is different for the undisturbed velocity profile
(61), whose form is closer to the classical Poiseuille velocity profile.
As calculations showed, the instability indeed set on in this case.
For the case of Ca�1 ¼Ma�� ¼ 0, the calculations yield the instabil-
ity criterion

Recr ¼ 15393; ð98Þ

which corresponds to the critical wavenumber acr ¼ 1:02, i.e. to the
point of minimum on the neutral stability curve obtained under the
condition of the neutral disturbances ci ¼ 0. The computations have
also shown that the inclusion of the unperturbed transverse veloc-
ity component (65) has little effect on the value of the critical
Reynolds number (less than 1.5%). Additional computations under
conditions of Ca�1 > 0 and Ma�� > 0 confirmed this trend, so that
one can conclude that the transverse velocity component can be
ignored in the instability analysis.

The further calculations of the instability were performed for
the case of Ca�1 > 0 and Ma�� ¼ 0. This case corresponds to the
constant value of the surface tension, i.e. the case where the sur-
face tension does not depend on the temperature. In this case the
unperturbed velocity profile still has the form of the Poiseuille pro-
file, but the maximum value (amplitude) of the velocity increases
with the increasing values of the parameter Ca�1. Because the
unperturbed velocity profile shape is insensitive to the increase
in the parameter Ca�1, the critical wave number acr ¼ 1:02 remains
unchanged. However, due to the increase in the unperturbed veloc-
ity amplitude, the flow becomes less stable, and the critical
Reynolds number decreases monotonically with the increasing val-
ues of the parameter Ca�1 (see Fig. 2 and Table 1).
sstransfer.2015.07.063 8
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Fig. 3. Velocity profile in film at Ca�1 = 1. 1 – Ma�� = 0, 2–5, 3–20.
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Thus one can conclude that the increase in the surface tension
destabilizes the liquid film. A similar trend was also revealed the-
oretically in [9], where asymptotic solutions of different orders
were investigated for the liquid film flow.

In the case where the surface tension depends on the tempera-
ture for Ca�1 > 0 and Ma�� > 0, the undisturbed velocity profile is
distorted. Increasing the parameter Ca�1 leads to increasing the
amplitude (maximum) velocity, and the growth of the parameter
Ma�� causes both the increase in the amplitude and the offset of
the maximum velocity (see Fig. 3) to the outer edge of the film.
In this figure, Umax is the maximal value of the unperturbed veloc-
ity. As shown above, the increase in the amplitude of the unper-
turbed velocity entails the destabilization of the flow. Therefore,
the simultaneous increase in both parameters Ca�1 and Ma��

causes the more rapid decrease in the critical Reynolds number
(see Figs. 2 and 4 and Table 1). Besides, the increase in the param-
eter Ma�� under condition of Ca�1 = idem is accompanied with the
decrease in the critical wavenumber (Fig. 5). Consequently, the
increase in the temperature dependence of the surface tension
causes the flow destabilization and makes the long-wavelength
disturbances more dangerous.

An analysis of the structure of the Marangoni number leads to
the conclusion that, in addition to the amplification of the temper-
ature dependence of the surface tension (c), the flow also is desta-
bilized by the increase in the temperature difference (DT) and the
decrease in the absolute pressure (increase Dh). The nature of the
influence of temperature difference is obvious, as it reflects the
effects of the Rayleigh–Bénard insatiability. The pressure reduction
obviously causes the reduction in hydraulic resistance accompa-
nied with the onset and amplification of the hydrodynamic insta-
bility. The increase in the thermal conductivity results in the
stronger uniformity of the temperature field and thereby weakens
the effects of the Rayleigh–Bénard instability. Therefore, the
increase in the thermal conductivity, with the other parameters
in the Marangoni number being constant, causes the stabilization
of the flow.

To qualitatively validate the physical model used in the instabil-
ity study, we have performed unsteady numerical simulations of
capillary flow and heat transfer using ANSYS Fluent software. The
simulation has been carried out in a two-dimensional rectangular
computational domain of the size of 1 � 10�5 � 5 � 10�4 m (Fig. 6).
A two-phase VOF-model (Volume of Fluid method) [37] designed
to solve the problems with the phase interface was applied for sim-
ulations. The following boundary conditions were used (Fig. 6):

(1) face 1: a water inlet at with atmospheric pressure and tem-
perature set up (pressure-inlet);

(2) face 2: an adiabatic wall with non-slip velocity conditions;
ransfer.2015.07.063 9



Fig. 4. Critical value of Reynolds number as function of cavity and number
Marangoni number.

Fig. 5. Critical wavenumber vs Ma�� at Ca�1 = idem.

Fig. 6. A schematic of the c

Fig. 7. Onset of the disturbances in

Fig. 8. Dynamics of the behavior of the liquid film in time for DT > 2

DOI : 10.1016/j.ijheatma
(3) face 3: a wall with the temperature Tw and non-slip velocity
conditions;

(4) face 4: a boundary between the phases with the specified
surface tension as implemented in the model;

(5) face 5: pressure-outlet water with the specified atmospheric
pressure and temperature;

(6) face 6: pressure-outlet vapor with the specified atmospheric
pressure and temperature;

(7) face 7: an outflow, zero derivative of the velocity.

Fig. 6 depicts the configuration of the two-phase medium ‘‘wa
ter–vapor’’ at the initial moment of time. To perform a
grid-independence study, three sizes of the grids have been vali-
dated in the simulations: a coarse grid with the discretization size
of 1.0 � 10�6, a fine grid with the discretization size of 2.5 � 10�7 m,
and a very fine grid with the discretization size of 1.0 � 10�7. The
grid sized were 4400 cells, 70,400 cells and 440,000 cells, respec-
tively. The velocity and temperature distributions for the fine
and very fine grids differed from each other by not more than
0.5%. Therefore, the fine grid has been chosen for all subsequent
simulations. Convergence was reached, if the residuals were smal-
ler than 10�6 for the continuity and momentum equations and
10�9 for the energy equation.

Simulations demonstrated that at small values of the tempera-
ture difference across the film DT < 1	, the liquid film developed
steadily with no visible disturbances. For large values of
DT > 2:4	, noticeable disturbances arose in the film (Fig. 7).
These disturbances escalated with time and lead to the disruption
of the film. The dynamics of the behavior of such a film in time is
shown in Fig. 8.

Although direct comparisons of the numerical simulations with
the theoretical data of the instability analysis performed above,
since the parameters used in the instability model cannot be deter-
mined from the numerical simulations. However, qualitatively the
results provided by the numerical simulations and the instability
analysis agree fairly well. Indeed, both approaches suggest exis-
tence of the fluid flow regimes with the stable and unstable film
omputational domain.

the liquid film for DT > 2:4	 .

.4�: (a) 0 s; (b) 9.5 � 10�6 s; (c) 3.75 � 10�4 s; (d) 4.205 � 10�4 s.
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development depending on the temperature difference across the
film.

Thus, in view of the applications in micro heat pipes, both the
traditional instability and numerical CFD simulations enable
undertaking an analysis to help estimate stability of the liquid film
development.
8. Conclusions

The paper presents a novel 2D model for the thermocapillary
instability of a thin liquid film. The model includes a novel solution
for the unperturbed velocity components and the thin film thick-
ness in the transition region subject to evaporation under the
boundary conditions of (a) mechanical interaction between the liq-
uid and vapor phases and (b) stationary vapor above the interphase
boundary. The unperturbed velocity and temperature profiles for
the basic flow were obtained in frames of the boundary layer
approach. The expression for the film thickness was derived on
the basis of the mass balance equation.

A novel model for the problem of the thermocapillary instability
itself in a thin film was developed based on the linear perturbation
method taking into account the surface and London–van der Waals
forces. The unperturbed velocity profiles and the equation for the
film thickness were used for the instability analysis performed
using the modified Orr–Sommerfeld equation. The Squire’s theo-
rem, which was proved to be valid for the considered problem,
has demonstrated that for the 2D flow the 2D disturbances are
more dangerous than the three-dimensional disturbances. This is
why the critical Reynolds number was computed by considering
only the 2D disturbances.

The analysis of the results obtained based on the aforemen-
tioned novel model for the thermocapillary instability problem
enabled elucidating the effects of the important non-dimensional
parameters, such as the capillary number Ca and the modified
Marangoni number Ma��, on the critical Reynolds number.

For case of the constant surface tension independent of the tem-
perature, i.e. at Ca�1 > 0 and Ma�� ¼ 0, the unperturbed velocity
profile exhibits a parabolic form. The increase in the parameter
Ca�1 results in the increased value of the velocity at its maximum
and does not affect the unperturbed velocity profile shape and the
critical wave number acr ¼ 1:02, though causes the monotonic
decrease in the critical Reynolds number.

For the case where the surface tension depends on the temper-
ature (Ca�1 > 0 and Ma�� > 0), the maximum of the undisturbed
velocity profile increases together with the parameters Ca�1 and
Ma��, whereas the increase in the parameter Ma�� shifts the maxi-
mum velocity towards the outer edge of the film. Simultaneously
increasing parameters Ca�1 and Ma�� entail more rapid decrease
in the critical Reynolds number, while the increase in the parame-
ter Ma�� for the same value of Ca�1 is accompanied with the
decrease in the critical wavenumber. Consequently, the increase
in the temperature dependence of the surface tension causes the
flow destabilization and makes the long-wavelength disturbances
more dangerous.

It was also shown that the flow is destabilized by the increase in
the temperature difference (DT), which reflects the effects of the
Rayleigh–Bénard insatiability via the decrease in the absolute pres-
sure (increase Dh), and subsequent reduction of the hydraulic
resistance, the onset and amplification of the hydrodynamic insta-
bility. The increase in the thermal conductivity leads to weakening
of the effects of the Rayleigh–Bénard instability.

Numerical simulations of the capillary flow and heat transfer
have been performed using ANSYS Fluent software. The calcula-
tions demonstrated existence of the flow regimes with the stable
DOI : 10.1016/j.ijheatmasst
and unstable film development depending on the temperature dif-
ference across the film. These results are qualitatively consistent
with those suggested by the theoretical analysis of the flow
instability.
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