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A B S T R A C  T

The complex architecture of bone has been investigated for several decades. Some pioneer works proved an
existing link between microstructure and external mechanical loading applied on bone. Due to sinuous network
of canals and limitations of experimental acquisition technique, there has been little quantitative analysis of
three-dimensional description of cortical network. The aim of this study is to provide an algorithmic process,
using Python 3.5, in order to identify 3D geometrical characteristics of voids considered as canals. This script is
based on micro-computed tomographic slices of two bone samples harvested from the humerus and femur of
male cadaveric subject. Slice images are obtained from 2.94 μm isotropic resolution. This study provides a
generic method of image processing which considers beam hardening artefact so as to avoid heuristic choice of
global threshold value. The novelty of this work is the quantification of numerous three-dimensional canals
features, such as orientation or canal length, but also connectivity features, such as opening angle, and the
accurate definition of canals as voids which ranges from connectivity to possibly another intersection. The script
was applied to one humeral and one femoral samples in order to analyse the difference in architecture between
bearing and non-bearing cortical bones. This preliminary study reveals that the femoral specimen is more porous
than the humeral one whereas the canal network is denser and more connected.

1. Introduction

Cortical bone is the part of skeleton which provides mechanical
properties and ensures resistance of bone to fracture. The macroscopic
strength is strongly influenced by the micro-scale matrix which reveals
a heterogeneous medium (Mirzaali et al., 2016; Bala et al., 2016). A 2D
transverse slice of bone shows that tissue is composed of pores, called
Haversian canals, enclosed by a lacuno-canalicular network called ac-
tive osteonal bone (Buenzli and Sims, 2015; Ashique et al., 2017). This
phase can be considered (in the transverse plane) as a circular shape
surrounded by a thin wall (1–5 μm) called cement line. Pioneer work of
Frost (1969) shows a correlation between cortical architecture and
mechanical loading highlighting a remodelling activity named “Bone
Multicellular Unit” (BMU) activity. More recent studies (Cooper et al.,
2007; Hunter and Agnew, 2016; Bala et al., 2016) associated micro-
scopic structure with bone strength, age or gender. Bala et al. (2016)
reported an innovative method to collect 13 young ex-vivo fibula
samples (age: 13.2 ± 3.5) compared with 16 older ex-vivo fibula
samples (age: 75.0 ± 12.9). This study shows a negative correlation
between pore volume fraction and age for both groups. Moreover, a

great structure difference was found between growing children and
adults reflecting the significant impact of BMU activity throughout a
life. Mullins et al. (2007) observed, from a numerical 3D REV (Re-
presentative Element Volume) model of cortical bone, that maximum
stresses were found near the intersections of Volkmann's and Haversian
canals. However, orientation and angle between connected canals don’t
fit with qualitative experimental results (Cooper et al., 2003; Bousson
et al., 2004). Cooper et al. (2016) concluded that since 2000s, micro-
computed tomography became the standard technique for the assess-
ment of cortical architecture. The low resolution scanning (< 10 μm)
offers the possibility to easily quantify vascular canals of ex-vivo sam-
ples. However, so far, little research report 3D geometrical analysis of
tomographic data. In one of the most recent studies, Pratt and Cooper
(2017) provides a 3D analysis of orientation for vascular canals in
vertebrates. Nevertheless, data are limited to orientation and little
number of animal samples. The aim of the paper is to provide a process
to quantify 3D geometrical features for vascular canals in cortical bone.
This method begins by an image processing which takes into account
beam hardening in micro-CT slices in order to use Otsu threshold
method (Otsu, 1979). Hence, generic parameters can be used for several
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Because of brightness difference due to parallelipipedical shape of the
sample (beam hardening artefacts), a global thresholding method can’t
be used. The customised threshold method is based on the Otsu
threshold algorithm (Otsu, 1979). It consists in splitting each image
along the brightness difference axis and independently processes and
thresholds inner and outer portions (Fig. 2). The number of portions is a
user-specified input parameter and has to be chosen according width
dimension of the sample. A short sensitivity study has shown that 5
portions is a suitable value in most cases. Indeed, the brightness of each
kind of portions can be adjusted using a global gamma correction (Eq.
(1))

=P P255*(
255

)x
x γ( 1 )

corrected (1)

As shown in Figs. 2 and 3, it is essential to apply additional filters to
the thresholded image. Actually, dummy pixels are still visible out of
bone matrix and near pores. These dummy pixels are created from local
brightness differences which affect the threshold result. To reduce
noise, morphological filter followed by a hierarchical filter are applied.
The first one consists in removing isolated pixels (Gonzalez and Woods,
2008) on the thresholded image by applying subsequently an erosion
and a dilation. The second one is applied after edge detection and keeps
only contours which the parent is the sample contour (Fig. 3). Actually,
the OpenCV function used to detect contours returns several outputs.
One of these outputs indexes the parent of every contour. Hence, every
contour located inside a canal pore or outside of the bone sample can
easily be identified and removed. Contours are sorted according their
area value. Therefore, it is possible easily identify the sample contour
from pore contours (Fig. 3). One advantage of the above-described
process is that it avoids the use of a qualitative global threshold value
and generic values can be set: five portions per image applied with 0.5
gamma correction on inner portions give the best results.

2.3.3. 3D link detection & canals construction
Previous studies have reported a 3D interpretation of the cortical

porosity using the skeletonisation algorithm (Pratt and Cooper, 2017;
Cooper et al., 2003). However, these results focus only on few geo-
metric features (orientation or length). In this study, a new 3D inter-
pretation is proposed. The next step of the algorithm is the 3D link
detection step between consecutive images (Fig. 1). Indeed, from the
detected contours, moments (Bradski and Kaehler, 2011) are computed
in order to obtain the area value of the contours (M00 moment), and to
obtain the contour centroid coordinates (Eq. (2)).
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Centroid coordinates are written ctdx, ctdy, and ctdz for x, y and z
axes, respectively. Eq (2) shows that ctdx and ctdy are computed from
contour moments. z coordinate is induced by longitudinal scanning.
Hence, from these data, the contour's equivalent diameter can be
computed. So as to create a 3D link between inter-slice contours, con-
dition specified by Eq. (3) should be reached.
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In other words, this condition means that the projected distance
between contour j1 from the ith image and contour j2 from the (i+ k)th
image (left term on Eq. (3)) must be less than the equivalent diameter
computed from the upstream contour, Dmi j, 1, to be considered as a 3D
link (see Fig. 1 for schematic interpretation). k is a user-specified
parameter which represents the number of images to compare until link
detection. Isolated contours are not considered further. Due to high
resolution scanning, only canals with over five segments are considered
(to reduce residual noise and edge-effects).

samples and qualitative choice of threshold value is avoided. 14 geo-
metrical features are computed for each canal. According to current 
knowledge, this study is the first one to provide the quantification of 
connectivity features. Opening angle, defined as the angle between two 
connected canals, can be useful as input of microscopic numerical 
models of cortical bone. These experimental results will improve the 
understanding of bone architecture and will be useful as input data for 
the Human virtual modeling. In Section 2, the script is step-by-step 
described. A validation script for canals and connectivity features is also 
detailed. In Section 3, the absolute error is quantified and two bone 
samples are analysed in order to study cortical bone architecture dif-
ferences.

2. Materials and methods

2.1. Specimens and sample preparation

One humerus and one femur samples were extracted from a 72 
years-old male cadaveric subject (1.75 m, 70 kg) provided by the body 
donation bank Anatomy Laboratory. Care was taken to reduce bone 
drying by using a body embalming procedure (methanol, distilled 
water, glycerine and phenol solution) two days maximum post-mortem. 
Particular attention was paid to the extraction method and especially 
the location of the extraction site in the diaphysis. Indeed, throughout 
this paper, samples are denominated according the international no-
menclature and the anatomic description of the diaphyseal side. Hence, 
the two samples are named 501HAMP and 501FAMP2 because they 
were extracted from AnteroMedial Proximal side of the corresponding 
diaphysis, respectively. Surgical and precision saws were used to obtain 
60 × 10 × 1 mm segmental specimens oriented along the longitudinal 
axis of the diaphysis. These specimens were designed for tensile test 
(Bry, 2015).

2.2. Micro-CT scanning

Both samples were scanned using SkyScan 1172 high resolution 
desktop micro-CT (80 kV, 100 μA, rotation step: 0.25 degrees) at 2.94 
μm isotropic voxel size. All micro-CT slices images are reconstructed 
using Nrecon 1.7.04 software. Due to high resolution, only 3 mm were 
scanned. Five hours scan times per sample were necessary to obtain 
1021 slices images along the longitudinal axis.

2.3. Algorithm

This part of the article describes the algorithm step by step in the 
same order as the processing. Fig. 1 illustrates the five main steps. First, 
the image processing and contours detection are detailed, especially the 
threshold method. Second, the 3D link detection and canal construction 
are explained. Third, connectivities are detected and each canal is split 
at each intersection. Finally, canals are smoothed in order to compute 
more realistic canal and connectivity features.

2.3.1. Python version
The algorithm was carried out using Python 3.5 with OpenCV 3.2 

(Bradski and Kaehler, 2011) for image processing and contours detec-
tion. Statistical data were obtained using Scipy 0.19 (Jones et al., 
2001), Numpy 1.13 (van der Walt et al., 2011) and Pandas 0.20.1 li-
braries and plotted via Matplotlib 2.0.0 (Hunter, 2007).

2.3.2. Image processing
The first step of the algorithm is to read the slice images using 

OpenCV library and convert them into greyscale images (Fig. 1). In 
order to minimise noise effects, an adaptive threshold method was 
developed coupled with several filters. A bilateral filter is first applied 
to the raw picture. This filter is based on a blur algorithm but has the 
advantage to preserve edges of an image (Durand and Dorsey, 2002).
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3. D connectivity detection
Previous works done by Cooper et al. (2003) have shown that the

cortical bone has a highly connected architecture. However, it is im-
portant to consider connectivity in order to obtain representative sta-
tistical values. Therefore, in this study, canals have to be split at each
connectivity. At this stage in the proceeding, a set of canals is available
(Fig. 4a). Nevertheless, these canals aren’t necessarily split at each
connectivity and can pass through several connectivity (see Fig. 1).
Thus, an automated script is used to detect connectivity. Firstly, it
consists in iterating each contour from each canal in order to detect the
end of another canal inside the contour. If the end of a canal is inside
the contour, the first canal is split at this point (Fig. 1). This first
iteration splits all the canals at connectivities by detecting the end of
another canal inside the contour. Then a second iteration performs the

same test for each canal's end in order to detect connectivity.

2.3.4. 3D canals smoothing
In order to reduce the occurrence of jaggies on wire centroid line,

canals are smoothed. Indeed, oriented canal can be perceived as a set of
longitudinal segments with occasionally oriented segments (see Fig. 1,
black wire line on Canals Smoothing scheme). To reduce this phe-
nomenon, the algorithm detects the first point of every longitudinal
segment so as to create a new wire line. This new wire line (Fig. 1, blue
wire line on Canals Smoothing scheme) goes through on previously
detected point. Other points are in-plane projected on the new wire line
in order to keep z coordinate.

Fig. 1. Global overview of the algorithm.
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2.3.5. 3D canals and connectivities features
Thanks to numerous available data, considerable features can be

computed. In order to standardise these features, a standard nomen-
clature (partially inspired by Parfitt (1988)) is employed. As a matter of
fact, segment and canal features are preceded by Seg and Ca, respec-
tively. According to the wire interpretation, each canal is considered as
a set of segments which link two consecutive contours (see Fig. 4a and
b). Hence, each feature is first computed from segments. Then, from
segment features, canals characteristics are computed (Table 1).

Orientation. Orientation is derived in two stages. The first stage
consists in considering 3D orientation using Euler angles. It comprises
two consecutive rotations from the image plane (Fig. 4c). The first ro-
tation, Theta (θ), represents the rotation about →y axis. The second ro-

tation, Psi (ψ), represents the rotation about ′
→
x . In addition, considering

cylindrical porosity, the normal of the red plane is collinear to the

longitudinal axis of the cylinder (Fig. 4c). From this Euler angles, a
second orientation system can be set (Fig. 4d). The main advantage of
this orientation over the Euler's one is only one angle is useful to de-
scribe either the longitudinal orientation (angle x) or transverse or-
ientation (angle y). Thereby, according to its mathematical formula (see
Table 1), x ranges from 0 deg (longitudinal orientation) to 90 deg
(transverse orientation). Likewise, y ranges from±90 deg (collinear
with →y ) to 0 deg (collinear with →x ).

Length. Concerning length, two different features are computed: real
and apparent length. The first one represents the centroid wire line
length by summing all the segments length and the second one re-
presents the height difference between segments ends for segment
features (Seg. aLe) and distance between first and last point of canals for
canal features (Ca. aLe). Segment apparent length is useful to compute
segment volume whereas canal apparent length is used for canal 3D
aspect ratio computing.

Fig. 2. Image thresholding step. This step fol-
lows the bilateral filter but precedes the mor-
phological filter. The figure shows the example
with five portions along the width of the
sample with 0.5 gamma correction on inner
portions (no gamma correction on outer por-
tions). Inner and outer portions are green and
red surrounded, respectively. This figure was
generated from the raw image, without ap-
plying any filter so as to note threshold effi-
ciency.

Fig. 3. Comparison between contours from the filtered image (Image A) and contours from the raw image (Image B). Same threshold parameters are set (5 portions
with 0.5 gamma correction on inner portions). Sample contour is highlighted in red. Images A and B have 126 and 248 contours, respectively.
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Surface and equivalent diameter. As specified above, surface value is
obtained from contour moments using M00 moment. Therefore,
equivalent diameter can be computed using Eq. (4). Segment features
are obtained by averaging contour values (Fig. 4b and Table 1) and
canal assessment is the average of segments characteristics.

= M
π

Dm 4*
eq

00

(4)

The novelty of this methodology is that it takes into account 3D or-
ientation. Actually, assuming oriented cylindrical porosity, apparent
surfaces perceived by slice images (elliptical shape) are larger than
cylindrical transverse surfaces (circular shape). Consequently, directly
computing equivalent diameter from slice images leads to biased re-
sults. Hence, apparent and real surfaces are related according Eq. (5).

= xReal surface
Apparent surface

cos( )
(5)

Volume and volume fraction. In order to obtain global volume frac-
tion of the sample, usually called BV/TV, segment volume is computed
from multiplication between apparent length and surface (Table 1).
Then, each segment volume is summed to obtain canal volume. BV/TV
is computed from the ratio between total canal volume and sample
volume

=
∑ =BV/TV

Ca . Vol
Sample volume

i i1
N

(6)

2D & 3D aspect ratio. Two types of aspect ratio are computed for this
purpose. 2D aspect ratio is obtained by dividing the width and length
from bounding rotated rectangle of contour. In case of oriented cy-
lindrical canals, 2D aspect ratio equals to cos(x). Thus, it would be of

Fig. 4. Canal interpretation. The canal wire
line is a set of segments which link 2 inter-
frame contours. (a) the canal wire-line con-
nects each canal centroids indexed from 1 to n
(n− 1 segments). (b) This figure shows that
each segment can link 2 contours (written ctr)
spaced from k images. k is a user specified
parameter (see Eq. (3) and explanations for
more details). (c) The orientation is computed
from Eulerian angles (θ and ψ). Black color is
set for image plane. Green and red colors are
set for intermediate plane and transverse plane
of canal, respectively. Hence, the normal to the
red plane represents the orientation of the
canal. (d) A second orientation is computed
from Eulerian angles (Table 1). This orienta-
tion is reduced to a longitudinal (x angle) and
transverse orientation (y angle) relative to
image plane coordinate system.

Table 1
Mathematical definition of canals features. Seg and Ca prefixes are related to Segment and Canal, respectively. All canal features are computed from segment features
except for the apparent length and 3D aspect ratio which have either a different definition or aren’t defined. Sample volume is obtained using the same formula for
canal volume applied to contours of each slice which have the highest area value.

Features Notation Segment features Canal features

ψ ψ = − −
−

ψSeg. tan ( )y y
z z

1 2 1
1 2
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−ψ ψCa. Seg .

N i
N

i
1

0
1

θ θ = − −
−

θSeg. tan ( )x x
z z

1 1 2
1 2

= ∑ =
−θ θCa. Seg .

N i
N

i
1

0
1

x x Seg. x= cos−1(cos(ψ) * cos(θ)) = ∑ =
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1

0
1

y y = − −ySeg. tan ( )ψ
ψ θ
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cos( ) * sin( )
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0
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Real Surface rS Seg. rS= Seg. aS * cos(Seg. x) = ∑ −Ca. rS Seg . rS
N

N
i

1
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Apparent Diameter aDm =Seg. aDm *Seg. aS
π
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π
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Volume Vol Seg. Vol= Seg. aL * Seg. aS = ∑ −Ca. Vol Seg . VolN
i0

1

Volume Fraction fVol =Seg. fVol Seg . Vol
Sample . Vol
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interest to investigate this correlation between 2D and 3D features. 3D
aspect ratio provides the general shape of the canal. Indeed, based on
the straight cylindrical shape assumption for canals, this quantitative
relation distinguishes flat shape porosity(< 1) from rod-like shape
porosity(> 1).

Connectivity features. Connectivity detection provides possibilities
for computing features. Actually, three geometric characteristics are

carried out for canal intersections which links three canals at most
(Table 2). The first feature, called opening angle, stands for the angle
between linear fitting vector of outgoing canals (Fig. 5). The aim of this
measure is to determine the statistical distribution in order to poten-
tially link stress concentration with tight connectivity. Second and third
features lend morphological information to intersections. RrDm(0,12) ex-
presses the ratio between outgoing canals diameter sum and incoming
canal diameter. If the ratio equals to 1, this means that the entire of the
incoming canal diameter is split into 2 canals. Similarly, RrDm(1,2) ex-
presses the diameter fraction between outgoing canals. If the ratio
equals to 1, canals have the same diameter.

2.4. Algorithm validation

Due to original 3D interpretation of cortical porosity, an error es-
timating is required. For this purpose, a Python script was carried out
by creating dummy slice images based on geometrical inputs using
OpenCV library. Indeed, this algorithm assumes a parallelepipedic
sample crossed by a user-specified number of oriented cylinder (Fig. 6).
Orientation is specified by Euler angles. Cylinder diameter and position
on the first slice image are indicated (Fig. 6b). The number of images
depends on the resolution required by user and sample length. Ellipse
position on the ith image is determined from Eq. (7).

⎧
⎨
⎩

= −

= +

x x i θ

y y i

*tan( )

*
i

i
ψ
θ

0

0
tan( )
cos( ) (7)

3. Results and discussion

3.1. Script validation

In order to validate the algorithm processing, a set of images was
generated. Sample length, width and thickness were 1.5, 10 and 2mm,
respectively. A 2.94 μm resolution was chosen to obtain 510 images.
One cylindrical porosity with a diameter of 1.0 mm goes through the
sample oriented along ψ=70 deg and θ=25 deg Eulerian angles.
Results are summed up in Table 3. This table is quite revealing in
several ways. First, although the highly oriented canal, process is able
to detect and predict its geometric features with an acceptable average
error of 2.04%. Second, BV/TV can accurately be predicted from the

Table 2
Mathematical definition of connectivity features. Conn prefix is used for
each characteristic.

→
Ui is obtained from the linear fitting of centroid wire

line of the ith canal.

Features Connectivity features

α
= −

⎯ →⎯⎯ ⎯ →⎯⎯

⎯ →⎯⎯ ⎯ →⎯⎯αConn. | cos ( )|U U

U U
1 1 . 2

1 . 2
RrDm(0,12) = +RConn. rDm(0,12)

Ca1. rDm Ca2 . rDm
Ca0 . rDm

RrDm(1,2) =RConn. rDm(1,2)
max(Ca1. rDm, Ca2 . rDm)
min(Ca1. rDm, Ca2 . rDm)

Fig. 5. Connectivity scheme. Arrows represent canals mean vectors
→
Ui .

Fig. 6. Schematic representation of validation proceeding. The image on this figure was generated using the same input parameters as those used to obtain results
outlined in Table 3.
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canal volume fraction. Highest errors are obtained from the real sur-
face, real diameter and 3D aspect ratio. These differences can be ex-
plained by the fact that these features accumulate inaccuracy from
other characteristics. Indeed, for instance, real surface is obtained from
the product of the apparent surface and cos(x). Therefore, real surface
cumulates errors of both features. One of the possibilities to reduce
inaccuracy is to decrease scan resolution in order to have better edge
description or to directly compute these features from raw image.

3.2. Canals features

As specified above, two specimens, obtained from same male sub-
ject, were analysed and compared. Mean values and standard deviation
of canals features are summarised in Table 4. Likewise, histograms and
box plots of canals features are shown in Fig. 8. Fig. 7 reflects the highly
connected network of cortical vascular canals.

Table 4 provides the summary statistics for canal features. High
values of standard-deviations indicate a wide statistic distribution of
the canals features and the non-normal statistical distribution. This
table reveals that the femoral sample is more porous than the humeral
one. This difference could be explained by a different remodelling ac-
tivity which is closely linked with the mechanical stimulus applied to
the bone (Frost, 1969). In spite of the difference of porosity, humeral
sample shows a denser canal network, with a diameter distribution
which declines after a peak at [30, 40] μm (Fig. 8c). Concerning the
femoral sample, the diameter distribution covers a broader band with
34.3% of canals with a diameter over 100 μm (15.6% for 501HAMP).
Cooper et al. (2003) provide the distribution of canal diameters from 2
femoral samples where peaks were reached at [40-80] and [80, 160]
μm, respectively. However, these results differ from some published
studies (Bala et al., 2016; Bousson et al., 2004), where mean diameters
are greater than those reported in the current study. Canals length
distribution shows a similar behaviour for both sample (Fig. 8d). In-
deed, most of canals range below a length of 200 μm. This value is
fewer than the length reported by Cooper et al. (2003) study. However,
a new canal definition is proposed and may differ from this previous
study. Interestingly, length distribution suggests that canals with a
length less than 100 μm should be considered (Pratt and Cooper, 2017;
Farooq et al., 2017). Fig. 8e and f describes 2D and 3D aspect ratio,
respectively. For both of these features, distribution is similar for
humeral and femoral samples. Ca. AR2D distribution expresses that
pore perceived by slice images should be rather considered as elliptic
shape. Indeed, median and mean values about equal to 0.6 which
means that the ratio between apparent and real surfaces equals to 0.6.
This expresses that apparent surface is 40% overestimated and shows
the importance of considering orientation for the surface and diameter
computation. Interestingly, Ca. AR3D distribution shows a peak

Canal features Ca. ψ Ca. θ Ca. x Ca. y Ca. Vol Ca. fVol Ca. rLe Ca. aLe Ca. aS Ca. rS Ca. aDm Ca. rDm Ca. AR2D Ca. AR3D

[deg] [deg] [deg] [deg] [mm]3 [%] [mm] [mm] [mm]2 [mm]2 [mm] [mm] – –
Theoretical values 70.0 25.0 71.9 −81.3 3.8 12.6 4.8 4.8 2.5 0.8 1.8 1.0 0.3 4.8
Computational values 71.7 24.4 73.6 −82.3 3.8 12.7 4.8 4.8 2.5 0.7 1.8 0.96 0.3 5.0
Absolute error 2.47% 2.36% 2.29% 2.55% 1.06% 1.35% 0.09% 0.24% 0.51% 8.43% 0.26% 4.37% 0.73% 4.32%

Table 4
Descriptive statistics for canal features. BV/TV represents the cortical porosity
computed from canal features. Ca. D is obtained from the total number of canals
divided by the sample volume. Other characteristics are summed up using
mean± standard deviation.

Canals features 501FAMP2 501HAMP Units

Volume porosity BV/TV 7.55 4.73 %
Canal density Ca. D 64.02 83.52 mm−3

Ca. x 28.77 ± 14.93 27.29 ± 14.56 deg
Ca. y −5.80 ± 41.71 5.69 ± 43.63 deg
Ca. rDm 84.94 ± 60.93 62.35 ± 38.41 μm
Ca. rLe 146.45 ± 180.62 186.79 ± 210.35 μm
Ca. AR2D 0.57 ± 0.19 0.57 ± 0.20 –
Ca. AR3D 2.39 ± 3.21 4.17 ± 5.50 –

Fig. 7. Three-dimensional rendering obtained from contours detection of 501HAMP sample. 3D surface reconstruction was obtained using Meshlab2016 (Cignoni
et al., 2008). The volume is restricted to a subregion in order to make snapshot more visible.

Table 3
Comparison between theoretical and computing results.
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reached at [0, 1] interval. This means that, according to the new canal
definition, most of canals have a flat three-dimensional shape. No ex-
perimental data was found to compare. Vandenbulcke et al. (2012)
study reports a numerical sensitivity analysis of the void aspect ratio for
the assessment of a multi-scale FE model. However, voids aspect ratio is
much higher than computed experimental data. Fig. 8a and b shows
distribution of longitudinal and transverse orientation, respectively.
These figures are quite revealing in several ways. First, 3D link detec-
tion process is able to detect transverse canal (according Pratt and

Cooper (2017) designation). Second, Ca. x distribution shows that
global longitudinal orientation carries out along an oblique direction
which isn’t normal to transverse plane. This result fits with qualitative
analysis of 3D scatter points obtained from contours detection in the
image processing and with Bousson et al. (2004) study. Third, Ca. y
distribution covers a broader band, which can be interpreted as a
randomly arranged network in the transverse plane. Peak obtained at
[0, 5] deg is explained by residual jaggies.

Fig. 8. Canals features histograms and box-plots of 501FAMP2 and 501HAMP are displayed in blue and green, respectively. Box-plots are horizontally plotted so as to
share x-axis with the above histogram. Box-plots show min and max values (without outliers), 1st and 3rd quartiles with median value. Respective interval is
indicated using [start, step, stop].
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3.3. Connectivities features

Average± standard deviation and statistical distribution of con-
nectivity features are reported in Table 5 and Fig. 9, respectively.

Connectivity density is higher for the humeral sample than femoral
one. This difference can be explained in part by the denser canal net-
work in 501HAMP specimen. However, connectivity features have si-
milar statistical distribution for both samples. Fig. 9a reveals that
connectivities are essentially distributed between 30 and 50 degrees.

RConn. rDm(0,12) distribution (Fig. 9b) appears to be normal with a peak
reached for [0.8, 0.9]. Likewise, RConn. rDm(1,2) has a decreasing dis-
tribution (Fig. 9c) with a maximum attained for [1, 1.5] interval. Both

these results suggest that canals are interconnected where most of
outgoing canals (canals 1 and 2 in Figure 5) have same diameters.
Furthermore, the sum of outgoing and incoming canal diameters have
the same value. These results show that canals are interconnected with
a privileged opening angle whatever the diameter. This conclusion is
consistent with qualitative analysis found in several studies (Bousson
et al., 2004; Cooper et al., 2003, 2007). This work leads to the con-
clusion that canals from same connectivity, have their diameter which
can be closely linked with each other.

4. Conclusions

The purpose of the current study was to provide an original method
to quantify 3D geometrical features for cortical porosity using micro-
CT. This approach lends numerous canals features. This work is the first
known study to quantify geometrical features for cortical connectivity.
Thus, in order to obtain representative data, canals are defined as void
which ranges from connectivity to possibly another one. The validation
proceeding shows that this new method is able to compute accurate
canals features. It also reveals that orientation has to be considered in
order to don’t overestimate the canal diameter. Experimental results
suggest that cortical canals are oriented with an average angle of about
30 degrees relative to the longitudinal axis. Canals are randomly ar-
ranged in the transverse plane. The femoral sample is more porous with
a broader canal diameter distribution whereas the humeral one has a

Connectivity
features

501FAMP2 501HAMP Units

Connectivitiy
density

Conn. D 33.70 43.98 mm−3

Conn. α 38.00 ± 23.50 40.53 ± 21.46 deg
RConn. rDm(0,12) 0.87 ± 0.37 0.85 ± 0.20 –

RConn. rDm(1,2) 2.78 ± 2.34 1.99 ± 1.16 –

Fig. 9. Connectivity features histograms and box-plots of 501FAMP2 and 501HAMP are displayed in blue and green, respectively. Box-plots are horizontally plotted
so as to share the x-axis with the above histogram. Box-plots show min and max values (without outliers), 1st and 3rd quartiles with median value. Respective
interval is indicated using [start, step, stop].

Table 5
Descriptive statistics for connectivity features. Conn. D is obtained from the 
total number of connectivities divided by the sample volume. Others char-
acteristics are summed up using mean ± standard deviation
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denser connected network. Connectivity features reveal similar statis-
tical results for both specimens. However the current investigation was 
limited to two bone samples. It might be interesting to extend this study 
to more bone samples in order to make a more general conclusion and 
correlate results with age, gender or morphological parameters of 
human subjects. Moreover, connectivity opening angle distribution 
would be useful so as to investigate local stress concentration during a 
mechanical loading of bone matrix. This study brings encouraging re-
sults and could be extended to the quantification of bone remodelling 
by detecting BMU activity using geometrical criteria (Buenzli et al., 
2011).
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