
HAL Id: hal-03450929
https://uphf.hal.science/hal-03450929v1

Submitted on 14 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic and Configurable Electronic Informer to
Assist the Evaluation of Agent-Based Interactive

Systems
Chi Dung Tran, Houcine Ezzedine, Christophe Kolski

To cite this version:
Chi Dung Tran, Houcine Ezzedine, Christophe Kolski. A Generic and Configurable Electronic In-
former to Assist the Evaluation of Agent-Based Interactive Systems. Computer-Aided Design of User
Interfaces VI, Proceedings of the 7th international conference on Computer- Aided Design of User
Interfaces (CADUI 2008), Jun 2008, Albacete, Spain. pp.251-263, �10.1007/978-1-84882-206-1_23�.
�hal-03450929�

https://uphf.hal.science/hal-03450929v1
https://hal.archives-ouvertes.fr

In V. López-Jaquero, F. Montero Simarro, J.P. Molina Massó, J. Vanderdonckt (Eds.), Computer-Aided Design of
User Interfaces VI, Proceedings of the Seventh International Conference on Computer-Aided Design of User

Interfaces, CADUI 2008, Albacete, Spain, June 11-13, 2008. Springer 2009 ISBN 978-1-84882-205-4

A generic and configurable electronic informer

to assist the evaluation of agent-based

interactive systems

Chi Dung TRAN, Houcine EZZEDINE, Christophe KOLSKI

LAMIH–UMR CNRS 8530, University of Valenciennes and Hainaut-Cambrésis, Le mont Houy,
F-59313 Valenciennes Cedex 9, France

{ChiDung.Tran,Houcine.Ezzedine,Christophe.Kolski}@univ-valenciennes.fr

Abstract The evaluation of user interactive systems has been an active subject of

research for many years. Many methods have been proposed but most existing

evaluation methods do not take the specific architecture of an agent-based interac-

tive system into account and nor do they focus on the coupling between the archi-

tecture and evaluation phase. In this article, we propose an agent-based architec-

ture of interactive systems that is considered as being mixed (it is both functional

and structural). Based on this architecture, we propose a generic and configurable

model of an evaluation tool, called “electronic informer”, designed to assist evalu-

ators in analyzing and evaluating interactive systems with such architecture.

1 Introduction

Nowadays, in spite of the existence of several methodologies for the development

of interactive systems, designing, developing and assessing, in terms of utility and

usability (Bastien and Scapin 1995; Nielsen 1993; Shneiderman 1998) an agent-

based interactive system is still a difficult task. It is therefore necessary to provide

methods, models and evaluation tools to make it easier.

The section 2 of this paper presents a brief state of the art concerning the architec-

tures for traditional interactive systems as well as for agent-based interactive sys-

tems. The section 3 proposes an architecture that is both functional and structural.

By using this architecture as a basis, in the section 4, we propose a generic and

configurable model of an evaluation tool called “electronic informer”; its aims at

assisting the evaluation of interactive applications of this architecture. The last

section is used for our experiment and the conclusion.

2

2 Interactive system architectures

 Architecture of an interactive system supplies the designer with a generic struc-

ture from which he/she can build an interactive application. It is a set of structures

that include: components, the outside visible properties of these components and

the relations between them (Coutaz and Nigay 2001). Researchers have proposed

several architecture models over the past twenty years. These architecture models

recommend the same principles, based on the separation between the functional

core of system (application) and the human-machine interface. This separation

makes modifications easier; it allows modifying the interfaces without affecting

the application. Two main types of architecture can be singled out: (1) functional

models, such as Seeheim (Pfaff 1985), Arch (Bass et al. 1991) and (2) structural

models, such as PAC proposed by J. Coutaz (Coutaz 1987), and its variations,

AMF (Tarpin-Bernard 1999) or MVC (Goldberg 1983) and its variations.

 The functional model split an interactive system into several functional compo-

nents. For example, the Seeheim model is made up of 3 logical components

(Presentation, Dialogue Controller, Application Interface); the Arch model defines

a functional breakdown of an interactive system into 5 components in which: both

the presentation and interaction components are a decomposition of the presenta-

tion of the Seeheim model, the functional kernel component, the domain adapter

component and the dialogue controller component. The functional models enable

to separate system analysis-design difficulties by decomposing into different

modules. Nevertheless, the functional models show some disadvantages. First,

they do not define the internal structure of modules and the communication be-

tween them. Second, Arch and Seeheim provide canonical functional structures

with big grain, the functionalities are mixed in the too macroscopic components

(Tarpin-Bernard 1999); they are useful as a structural framework for a design or a

rough analysis of the functional decomposition of an interactive system (Trabelsi

et al. 2004). These decompositions are generally not enough to complex applica-

tions. These inconveniences make functional systems inadaptable to complex ap-

plications in general and to industrial supervision systems in particular.

The structural models aim at a finer breakdown by using structural compo-

nents, and in particular those said to be distributed or agent approaches, suggest

grouping the functions together into one entity, the agent. The agents of this type

of architecture are then organized in a hierarchical manner according to principles

of composition or communication. For example, a MVC agent is made up of three

facets: Model, View and the Controller. The PAC model defines an agent using

three facets: the Presentation, the Abstraction and the Control. The decomposition

into many autonomous and cooperative entities enables to accelerate the feedback

of system to the user. This advantage is very useful to the supervision applications

that can be highly interactive; in consequence, the intensive dialogue between the

user and the application can slow the system down. In spite of this advantage, the

structural models have also following disadvantage: the number and the role of

3

agents are not made clear. Moreover, the designer of a supervision application can

have difficulty in following the global interface because the interface is distributed

in many facets “Presentation” of agents. The functional models can solve this

problem because they provide only one “Presentation” component to represent the

interface.

Our approach is intended to be mixed as its principles borrow from both types

of model; it is both functional and structural.

3 Agent-based architecture proposed as a mixed model

The mixed model is a combination of these two above mentioned models in order

to exploit advantages of each of them. The agent-based architecture proposed

(Grislin-Le Strugeon et al. 2001) has to be considered as a such mixed model. We

suggest using a division into three functional components recommended in the

Seeheim model which we have called respectively: interface with the application

(connected to the application), dialogue controller, and interface or presentation

(this component is directly linked to the user). Each of these components can be

broken down further in a structural approach in the form of agents. These compo-

nents are built like three multi-agent systems and they are considered as working

in parallel, at least, at a theoretical point of view.

Fig. 1. Our agent-based architecture

The application agents, manipulating the field concepts of the application, can-

not be directly accessed by the user. One of their roles is to ensure the real time

transmission of the information necessary for the other agents to perform their

task. The interface agents are in direct contact with the user (they can be seen by

the user) through the associated user interface events. These agents co-ordinate be-

tween them in order to intercept the user commands and to form a presentation

that allows the user to gain an overall understanding of the current state of the ap-

plication. The control agents in the Dialogue Controller component provide ser-

vices for both the application and the interface agents in order to guarantee coher-

ency in the exchanges emanating from the application towards the user, and vice

versa. Their role, in particular, is to link the two other components together by dis-

tributing the user commands to the application agents concerned, and by distrib-

uting the application feedback towards the interface agents concerned. All these

agents communicate amongst themselves in order to answer the user actions. Each

4

agent of this architecture associates with a set of services that are the actions that

this agent can execute. The communication between agents is realized by the in-

vocation between services of agents. This architecture as well as its events (user

interface events, services) has been formally described before proposing a generic

and configurable “electronic informer”, designed to assist evaluators in analyzing

and evaluating interactive systems of this architecture.

4 Proposition of an electronic informer adapted to agent-based

interactive systems

An "electronic informer" is a software tool that ensures the automatic collection,

in a real situation, of users’ actions and their repercussions on the system. The col-

lection of information is done in a discreet and transparent way for the user, who

must not at any time feel hampered by the presence of the informer. This is an ad-

vantage of such a tool. Objective data collected through interactions can be treat-

ed, analyzed and shown in a synthetic shape to the evaluator. This facilitates the

analysis of the results. At this moment, many evaluation tools have been proposed

but they have some disadvantages and limitations: (a) The current evaluation tools

do not take into account the specific architecture of an agent-based interactive sys-

tem (Trabelsi et al. 2004) and there are rarely propositions concerning the cou-

pling between the architecture and evaluation phase. (b) The current electronic in-

formers often contain some stages like collecting interaction data, and then

retrieving these data to realize some analysis such as counts, summary statistics,

detecting patterns, etc., and finally visualizing analysis results in a synthetic shape

to the evaluator. For example, the tool WET (Etgen and Cantor 1999) collects on-

ly interaction data between user and the interface without any later analysis, the

tools RemUSINE (Paterno et Ballardin 2000), WebRemUSINE (Paganelli and

Paternò 2002) realize some analysis such as calculations, summary statistics con-

cerning tasks executed and Web pages visited by the user and then, then visualize

analysis results to the evaluator in terms of diagrams, WebQuilt represent se-

quences of visited Web pages in terms of an interactive directed graph (Hong et

al.2001). After tools show analysis results, in order to identify problems of the us-

er interface and propose useful suggestions for improvement, the evaluator must

interpret these analysis results by himself without any indications or assistances.

As consequence, evaluation results depend on the ability and experience of the

evaluator very much. (c) The current tools working with guidelines often read

source code of the user interface to determine that whether their static presenta-

tions (color or size of the text fonts, position or size of the button...) violate a set

of predefined guidelines. They do not take into account of interactive behaviors of

the application in terms of interactions between user and interface or between

components of the application for the evaluation. (d) Some current "feedback

quality agents" are only softwares used to gather data about what were happening

5

in the application whenever it crashes. The "feedback quality agents" only gather

technical information about the context, state of the application when it had prob-

lem such as OS Version, Processor Type, Display Type, register, functions were

called just before the failure, etc. And then, these data are sent to the development

team to help them identify problems, the cause of the crash more readily and then,

improve the future version of the application. “Feedback quality agents" can per-

mit the user to report what he/she was doing when the failure appears to the de-

velopment team. These tools only take into account of the context and state of the

application when it had problem, as consequences, assistances in evaluating of in-

teractive applications are limited compared other tools like electronic informers or

tools working with guidelines.

We propose a generic and configurable model of an “electronic informer” to

remedy these limitations. The first version of an electronic informer has ever been

studied and developed (Trabelsi et al. 2004). However, it is not a generic tool but

only a specific one. This first specific tool aims at evaluating a specific agent-

oriented applicative application that is intended to manage the passenger infor-

mation on a public transport system in a project called SART (SART 2007). It

cannot be used to evaluate other agent-oriented applications because it depends on

the number of agents, the structure and the contents of such systems. Furthermore,

it also shows some inconveniences and shortcomings. We solve such problems by

proposing and developing a generic and configurable model of an “electronic in-

former” made up of 7 main modules (Figure 2). Our tool takes into account of the

architectural specificities of interactive applications of the proposed architecture.

In particular, our tool collects interactions between the user and the interface

agents in terms of occurred user interface events and interactions between agents

themselves in terms of executed services to evaluate interactive applications. After

analyzing collected data, this tool provides the evaluator with an open list of de-

termined criteria which can be ergonomic criteria or quality attributes. These crite-

ria are associated to analysis results to give to the evaluator clear indications and

assistances in interpreting analysis results in order to identify problems of the ap-

plication based on these criteria and then, he/she can propose useful suggestions to

the designer for necessary modifications to improve the application. These associ-

ations should be automated as much as possible in the future version of this tool.

Module 1 (M1): This module can run in background to collect events that ap-

pear (occurred user interface events and executed services) from all agents of the

concerned interactive system and save them into a database which will be exploit-

ed by other modules. This module 1 and evaluated application can be in the same

or other place. That means the evaluation can be done remotely. The module 1 and

the other modules do not communicate directly each other. The data collection and

its treatment are separated. As a result, the module 1 can be modified without af-

fect the other modules and vice versa.

M2: this module enables the evaluator to associate events in intermediate level

(user interface events and services) with each task. Several events in intermediate

level can be realized to obtain a certain task. For example, the user interface

6

events Image_Vehicule_Click, TabDriver_click, TextBoxMessage_OnChange and

buttonOK_Click can be associated with the task “Send a message to the driv-

er/voyagers” of the system intended to supervise the passenger information on a

public transport system in the SART project.

Fig. 2. Generic and configurable model of the electronic informer proposed

M3: processing collected data of a chosen agent (interface, control and applica-

tion agents) or all the agents in a certain period of time and showing results in

forms understandable for the evaluator. Here are examples of calculations and sta-

tistics: response time for interactions between services; time for a certain user in-

terface event (time for typing a text box…); time for completing a service and a

task; the percentage of services accomplished and furthermore, of tasks accom-

plished, the error’s percentage, the percentage of services and furthermore, of

tasks achieved per unit of time, the ratio of failure or success for interactions be-

tween services, the ration of failure or success for each or all the tasks, the ration

of appearance of each user interface event of a certain interface agent, the percent-

7

age of execution for each service of a certain agent, and so on. The results are

showed in table or graph form (figure 3, 4).

M4: generating Petri Nets (PNs) to describe activity process of agents and us-

ers in the system from collected data. Indeed, it describes process of interactions

between services of different agents and process of activity of user (in terms of us-

er interface events) to realize a certain task. We call them “observed” PNs. Gener-

ated PNs brings evaluators visual views of all real activities of the user and the

concerned system and can be used for comparison purposes later. The left part of

the figure 5 and the figure 6 illustrates generated PNs describing the activity pro-

cess to realize the task “Send a message to stations” of the application that super-

vises the vehicles of urban common transport in the SART project. The generated

PNs are described by PNML (Petri Net Markup Language) and are opened by the

tool Renew version 2.1. In the figures 5 and 6, eviuM,N-I stands for user interface

event M of the interface agent N, sM,N-I(A) stands for service M of the interface

(application) agent N.

Fig. 3. One of screen pages of M3: UI events occurred in the interface agents in table form

M5 (figures 5 and 6): comparing PNs generated above with theoretical PNs

that system designer has intended. This comparison assists the evaluators in de-

tecting use errors; for ex., one can perceive that the user has done useless manipu-

lations or chosen a non-optimal way to realize a task. These comparisons can also

be used to assist the evaluator in learning habits of users or in evaluating and

comparing the ability of different users to use a system.

8

Fig. 4. Two screen pages of M3.

(A) The results of the realizations of tasks in graph form.

(B) Some calculations (the ratio of successful tasks, average response time, confrontation

between real and predicted time to realize tasks, and so on).

For ex., the fig. 5 tells the evaluator about the way chosen by the user to realize

the task among three ways predicted by the system designer. The fig. 6(A) let the

evaluator know that the way chosen by the user 1 is optimal but the one chosen by

the user 2 is not. The fig. 6(B) let the evaluator perceive two problems: (1) the us-

er 3 realized unsuccessfully the task because of an error of the service s2,3-I. This

9

service must invoke the service s1,2-A but in fact, the service s1,2-A is not execut-

ed. One can also perceive this problem by comparing generated PNs of user 2 with

theoretical PNs that system designer has intended. (2) the user 4 executed an use-

less manipulation through the UI event button_Cancel_Click (red arrow on the fig-

ure). As a result, the UI event Window_Properties_Station_Hidden was triggered and

the user 4 had to execute the manipulation through the event Image_Station_Click

again.

Fig. 5. Comparing generated PNs of user 1 (left side) with PNs intended by designer

(right side) to realize the task “Send a message to stations”

M6: the evaluator must interpret analysis results to evaluate agent-based user

interactive systems as mentioned above. M6 is responsible to assist the evaluator

in doing that. As a result, the evaluator can criticize concerned system and give

useful suggestions to the designer for necessary modifications to improve it. M6 is

not an expert system but a tool to assist the evaluator in evaluating concerned sys-

tem by providing him/her with an open list of criteria which can be ergonomic cri-

teria or quality attributes. These criteria must respect some principles: (1) they aim

at evaluating 3 different aspects of agent-based interactive systems: user interface,

user ability to manipulate systems, some non-functional properties such as re-

sponse time, reliability, so on. (2) These criteria must be evaluated completely or

partially using the data collected and processed by the other modules. In other

words, the evaluator has to be able to interpret the data collected and processed by

the other modules to evaluate the systems based on these criteria. In the future, the

electronic informer can be combined with other methods to evaluate more enough

and exactly such criteria.

10

Fig. 6. Confrontation between PNs to realize the task “Send a message to stations”

(A) Comparing generated PNs of user 1 (left side) with PNs of user 2 (right side)

(B) Comparing generated PNs of user 3 (left side) with PNs of user 4 (right side)

11

(3) The list of criteria is open and modifiable. The evaluator has to be able to add

new criteria or modify the old criteria. He/she can use the criteria from available

sources or determine the criteria by himself/herself. (4) The criteria can be generic

or specific for the evaluated application. For example, the criteria such as “re-

sponse time”, “complexity”, “immediate feedback” are generic and can be used to

evaluate all the agent-based interactive systems but the criteria such as “Does the

regulator find easily the necessary vehicle?”, “Does the regulator find easily the

necessary station?” are specific for the agent-based interactive system in the

SART project. These specific criteria influence much the satisfaction of user of

this system. The figure 7 illustrates this module. Each criterion is composed from

4 parts: title; definition; interpretation (explain to the evaluator how to use the

collected data as well as its analysis results to evaluate this criterion); evaluating

this criterion (according to this criterion, the evaluator enters his/her critiques for

the system and suggestions to fix it). Because of lack of place, it is not possible to

describe in detail this module in the paper.

Fig. 7. Screen page of the module 6

M7: this module enables the evaluator to configure electronic informer to eval-

uate different agent-oriented systems by entering the specific data of the evaluated

system, for example, the Specification of Agents that describes agents, associated

services and so on., the tasks that the user can realize to reach his/her goal and

some other configuration parameters.

5 Conclusion

We have presented a brief state of the art concerning interactive system archi-

tectures, and proposed a mixed architecture as well as a generic and configurable

12

model for assisting the evaluation for agent-oriented interactive systems. An elec-

tronic informer has been proposed and its constitutive modules have been de-

scribed. We intend to combine this “electronic informer” method with other meth-

ods (questionnaire, interview…). That needs to combine data collected from “the

electronic informer” and data collected from the other methods to evaluate more

efficiently such systems. An experiment is planned during the first semester of

2008 at the laboratory LAMIH, University of Valenciennes and Hainaut-

Cambrésis, France with about 5-10 participants. This experiment is the final stage

of the SART project and it will show the advantages as well as inconveniences of

this tool to help us determine the improvements in the future.

ACKNOWLEDGMENTS

The present research work has been partially supported by the “Ministère de l'Education
Nationale, de la Recherche et de la Technologie», the «Région Nord Pas-de-Calais», the FEDER

(MIAOU, EUCUE, SART), the ANR ADEME (Viatic.Mobilité), the PREDIM (MouverPerso).

References

Bass L, Little R, Pellegrino R, Reed S (1991) The Arch Model: Seeheim revisited. Proceedings

of User Interface Developpers’Workshop, Seeheim.

Bastien JMC, Scapin DL (1995) Evaluating a user interface with ergonomic criteria, In: Int.
Journal of Human-Computer Interaction, vol. 7, p. 105-121.

Coutaz J (1987) PAC, an Object-Oriented Model for Dialog Design. In: Bullinger, Hans-Jorg,

Shackel, Brian (ed.), INTERACT 87, 2nd IFIP International Conference on Human-

Computer Interaction, September 1-4, 1987, Stuttgart, Germany, p.431-436.

Coutaz J, Nigay L (2001) Architecture logicielle conceptuelle des systèmes interactifs, chapter 7
of «Analyse et Conception de l’Interaction Homme-Machine dans les systèmes

d’information». In Kolski (Ed.), Paris: Éditions Hermes, pp. 207-246.

Etgen M, Cantor J (1999) What does getting WET (Web Event-logging Tool) Mean for Web Us-

ability? User Experience Engineering Division AT&T Labs Middletown, NJ, USA 1999
Goldberg A (1983) Smaltalk-80, the interactive programming environnement. Addison-Wesley.

Grislin-Le Strugeon E, Adam E, Kolski C (2001) Agents intelligents en interaction homme-

machine dans les systèmes d'information. In: Kolski C. (Ed.), Environnements évolués et éva-

luation de l’IHM, pp. 207-248, Paris: Éditions Hermes.

Hong IJ, Heer J, Waterson S (2001) WebQuilt: A Proxy-based Approach to Remote Web Usabil-
ity Testing. In ACM Transactions on Information Systems, 2001, pp. 263-385.

Nielsen J (1993) Usability Engineering, Academic Press, Boston.

Paganelli L., Paterno F (2002) Intelligent Analysis of User Interactions with Web Applications.

In Proceedings of ACM IUI 2002 (San Francisco, CA, January 2002).
Paterno F, Ballardin G (2000) RemUSINE: a bridge between empirical and model-based evalua-

tion when evaluators and users are distant. Interacting with Computers, 13(2), 229–251.

Pfaff GE (1985) User interface management system. Springer-Verlag.

SART (2007) Système d’Aide à la Régulation de Trafic du réseau de transport valenciennois et

de ses pôles d’échanges. Final report, co-operative project SART, INRETS, France, Dec.
Shneiderman B (1998) Designing the user interface : strategies for effective human-computer in-

teraction. Addison-Wesley.

Tarpin-Bernard F, David B (1999) AMF : un modèle d'architecture multi-agents multi-facettes.

In: TSI, Vol. 18, No. 5, 555-586.
Trabelsi A, Ezzedine H, Kolski C (2004) Architecture modelling and evaluation of agent-based

interactive systems. In: Proc. IEEE SMC 2004, The Hague, October, pp. 5159-5164.

http://www.iuiconf.org/

