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Review Article
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In today’s scenario, numerous studies have shown a great interest on 3D woven structures like 3D warp interlock fabric as a fibre
reinforcement for composite material to provide a better impact than 2D laminated fabrics with unlinked structures in the
thickness. (e impact energy absorption capacity depends on different and independent parameters, including the shape and
speed of the projectile, the type of fibrous structure (geometry), the type and nature of the threads (raw material, linear density,
and twisting value), and the type of impregnation of the composite material. As part of our research work on hard impact
protection solutions, the interest of textile composite structures, in particular those integrating 3D warp interlock fabrics, has been
revealed. Based on the result, protection solutions with such fabric structure revealed larger dynamic deformation capacity for
absorbing the impact energy as compared with not only a ceramic material facing a 12.7mm ammunition (mass 43 g) at 610m/s
but also those solutions made with metallic materials facing a FSP (diameter 20mm, mass 54 g) at 630m/s and 1600m/s. For each
of these different threats, a specific type of composite material has to be used. (ese composite material solutions are mainly
defined to respond to the appropriate mode of impact behaviour.

1. Introduction

Numerous research studies have been carried out in the field
of modelling and simulation of forming 3D warp interlock
fabrics [1–5], as well as in the field of the characterization of
geometrical and mechanical properties [6–12]. Other re-
search studies have also revealed their main interest in terms
of impact behaviour [13–26]. Indeed, the mode of dynamic
behaviour of the fibrous structure in the composite material
is highly dependent on the initial velocity of the projectile.
When the deformation rate of the material is much higher
than its reaction capacity for a very short period, the fabric
provides almost no projectile resistance and a shear-like
failure mode in the thickness occurs.

(is velocity threshold of the fibrous material within a
composite material subjected to an impact seems difficult to
estimate due to the different impact resistance affecting
parameters such as the shape and speed of the projectile, the
type of fibrous structure (geometry), the type and nature of
the yarns (raw material, titration, and torsion), and the type
of impregnation.

It is also noticed that the 3D warp interlock fabrics have
technical and economic advantages over other reinforcements
which could replace laminates in applications where they are
no longer suitable [9, 10, 12, 14, 17, 23, 27–29].

However, the fabric has also exhibited some disadvan-
tages while manufacturing and specific architecture de-
signing [30–33].

Based on our and different research results, a dedicated
section has been added in this paper in order to highlight all
the advantages and disadvantages of the mentioned fabrics
[8, 15, 16, 34, 35]. Based on the review, it is now possible to
identify the advantages and disadvantages of not only the
manufacturing process but also the architecture of the 3D
warp interlock fabrics which correspond to a large number
of possibilities of assembly of warp and weft yarns [36].
Moreover, detailed experimental observations on 3D woven
composites have also indicated that the fabric geometry
plays a dominant role on their mechanical properties and
associated failure mechanisms [22]. Based on these obser-
vations, one of the most interesting characteristics of 3D
warp interlock fabrics remains the modularity of their
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architectures and the precise location of stuffer warp yarns
inside the structure which leads to an optimal value of the
mechanical properties [20].

A targeted bibliographic analysis complemented by our
research [8, 15, 16, 34, 35] allowed us to cross check and
confirm the results obtained on the mechanical properties of
the 3D warp interlock fabrics. Due to their specific con-
solidation mode in the thickness, these structures have also
interesting mechanical properties [37]. Moreover, 3D warp
interlock fabrics increase resistance to delamination [38] and
impact resistance [39]. Some research studies have also
revealed improved properties of resistance to crack propa-
gation, damage tolerance, and dimensional stability [40].

2. Definition of 3D Warp Interlock Fabric

Recently, our research work has provided a general defi-
nition of 3D warp interlock fabric in order to take into
account all the endogenous parameters of the 3D woven
structure [41]. To better introduce our different research
results based on these 3D warp interlock fabrics, a short
description and general representation of the main pa-
rameters will be outlined.

2.1. Description of 3DWarp Interlock Fabric. In general, the
weaving process creates surfaces which are obtained by the
perpendicular cross-linking of warp yarns (X axis) and weft
yarns (Y axis) [42, 43]. According to the definition given by
the standard AFNOR NF G 00-001, a 2D fabric is a planar
structure formed by the perpendicular cross-linking of two
perpendicular yarns performed on a weaving loom [44–46].

However, a 3D warp interlock fabric is composed of
several layers, which are linked in the thickness by binding
warp yarns as represented in Figure 1.

2.2. Main Parameters of 3D Warp Interlock Fabric.
Several yarn arrangements can be made, and they provide a
large amount of 3D structure [21]. Like 2D fabrics, a 3D
warp interlock fabric is a woven reinforcement that contains
binding warp yarns not only in both directions of the plane
(warp and weft) but also a third type of yarn evolving in the
thickness which brings cohesion to the whole reinforcement.
Unlike 2D fabrics which vary based on only weave diagram,
the 3D warp interlock fabrics could offer different woven
architectures based on several parameters including the
number of layers, type of binding warp yarns, type of stuffer
warp yarns, etc. It can be also observed that the 3D warp
interlock fabric is reinforced in 3 directions by which each
group of threads ensures a precise function within the
structure [35]. (e schematic representation of a 3D warp
interlock structure (Figure 2) illustrates the role of each yarn
involved in its architecture [47].

(1) (e surface warp yarns (weaver surface) are in-
tegrated in the woven structure when it requires
a different aspect of each face of the fabric with a
more or less precise roughness. (ese threads have

no great influence on the mechanical properties of
the fabric; they have rather an “aesthetic” role.

(2) (e weft yarns are perpendicular to the warp yarns
and inserted at each shedding operation on a
weaving machine. (ese yarns determine the
number of layers of the 3D warp interlock structure
and contribute essentially to the transverse me-
chanical properties of the multilayered fabric.

(3) (e binding warp yarns can bind the different layers
of the fabric in the thickness. (ese yarns essentially
contribute to maintain the cohesion of the whole
woven structure with respect to their density in the
multilayer structure and thus provide interlaminar
resistance.

(4) (e stuffer warp yarns are also positioned on the
weaving machine and contribute to the longitudinal
mechanical properties of the multilayer fabrics.

3. Advantages/Disadvantages of 3D Warp
Interlock Fabrics

Based on the different parameters which define a 3D warp
interlock fabric, several research papers have found some
specific mechanical properties and highlight their advan-
tages and disadvantages compared to other textile structures.

3.1. Advantages of 3D Warp Interlock Fabrics. As pointed
out by Tong et al. [21], we also confirm that high perfor-
mance yarns can be inserted into these multilayer woven
structures without any major degradation using appropriate
process parameters and loom devices. (e insertion could
also be made more easier as weft yarn and/or reinforcing
warp yarn are straightly located into the textile structure and
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Figure 1: Geometric view of multilayer woven structures linked
into the thickness by binding warp yarn.
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Figure 2: Schematic view of a 3D warp interlock fabric.
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help increase the strength in the two directions of the 3D
warp interlock fabric. (ese same authors also emphasize the
ease of implementation of a 3D fibrous reinforcement to form
a composite material inside a mould [21] due mainly to their
monolithic, compacted, and integrated architecture [23, 48].
In 3D warp interlock fabrics, the layers are interconnected by
binding warp yarns and thus provide a stronger cohesion,
which allows to directly produce a thick reinforcement [22].
No set of fine reinforcements is then necessary to assemble
together [49] while maintaining the ability to transit the resin
more rapidly than in 2D fabrics of equivalent thickness [50]. In
addition, several authors have also highlighted the possibility
of making complex preforms close to the shapes of the final
piece (near-net shape) [20] from 3D warp interlock fabrics,
minimizing cutting and assembly needed for 2D fabric folds
[21].(is helps to reduce the cost of materials and labour time
[51] but also avoids using the vacuum resin impregnation
process [29, 52] using thermoplastic yarns [53]. In addition,
the possibility of making 3D warp interlocks fabrics using
more or less adapted “traditional” weaving machines makes
their production inexpensive compared to other technologies
for manufacturing complex 3D structures [36].

According to several studies on 3D warp interlock ar-
chitecture [10, 47, 54], the presence and control [23] of a
binding warp yarn (from 1 to 30% by volume) [50] ensure
better mechanical properties of the 3D woven structures
compared to the 2D stitched fabrics not only in the plane of
the structure but also by the increase of the rigidity prop-
erties and tenacity in the thickness [55].

Depending on the architecture and the evolution of
binding warp yarns, different internal behaviours can be
observed [56]. (e surface warp yarns of the 3D warp in-
terlock fabric provide a protective skin and play an im-
portant role in the evolution of the damage [57]; on the other
hand, it makes them noticeably more sensible to damage
compared to metal alloy laminates [58].

Similarly, the 3D warp interlock fabrics can be char-
acterized by their greater ease and efficiency to apply within
a mould because of their initial 3D shape and cohesion in
thickness during draping, which will result a better surface
quality of the woven preform [29]. (e forming behaviour
of the 3D warp interlock fabrics has been also measured
during our moulding and folding research tests [59, 60].
Finally, a symmetrical armour in the thickness to stabilize
the internal consumption of yarns between them has been
recommended [34]. Such conclusions were also verified
during the design of 3D warp interlock structures in terms
of distribution of dynamic constraints resulting from a
ballistic impact.

Binding in the thickness of the 3D warp interlock fabrics
provides additional consolidation [61] to the different scales
of the woven structure: at the local level, by interlacing the
warp yarns with the reinforcing warp and weft threads of
fabric layers together, and at the global level, by maintaining
the cohesion between the layers of the 3D woven structure.

3.1.1. Delamination Resistance Property. In many studies
[20–23], the delamination resistance of 3D woven structures

is ensured by reinforcement in the thickness particularly
through binding warp yarns.

(e delamination resistance of the 3D warp interlock
fabrics could be decomposed on a macroscopic scale for the
woven structure and on a mesoscopic scale for the yarns. On
the macroscopic scale, the failure mode can be decomposed
into tension in the direction of the thickness (main stress of
the binding warp yarns between the layers) and into type II
mode shear between fabric layers (propagation of the main
stress given by the binding warp yarns to the different fabric
layers). At the mesoscopic scale, the local mode of rupture
can be linked to plane shear at the cross-linking point where
the binding warp yarns and the reinforcement warp threads
of each fabric are interlaced (local loading of the warp and
weft yarns of each fabric independently).

In the work of Tong et al. [21], the delamination of 3D
fabrics is characterized by the failure modes I (tearing of the
binding yarns) and II (shear failure) in comparison with
stacked and unbonded 2D fabrics in the thickness
(Figure 3).

In the research study of Tong et al. [21], it has been also
shown that the mode I resistance of the 3D warp interlock
fabric is greater than that of the 2D fabrics delamination
resistance. It has been also influenced mainly by the fibre
content in the structure, the elastic modulus of the fibres,
and their resistance to fracture. (us, when the de-
lamination begins to propagate between the composite
plies, different areas can be observed. (e first corresponds
to the breaking of the binding warp yarns and the sepa-
ration of the woven layers, whereas the second only rep-
resents the separation of the woven layers without breaking
of the binding warp yarns. Finally, the third would initiate
the propagation of the crack between layers at a speed given
by the resistance parameters of the binding warp yarns
(Figure 4) [21].

However, depending on the geometry of the woven
structure, the interlaminar shear behaviour shows the effi-
ciency of the 3D warp interlock fabrics with angle type
bonding with respect to other binding types and the reduction
of delamination in type II rupture mode (Figure 5) [54].

3.1.2. Impact Resistance Property. According to various
studies [20–26], 3D warp interlock fabric reinforced com-
posite has got a great emphasis compared to 2D fabric
laminates for the impact resistance.

Based on our investigations, it is also found that the
damaged area of the impact zone increases with the initial
velocity more significantly in a UD-based composite than
3D warp interlock fabric composite as indicated in Figure 6
[20]. (e results also confirmed that weaker damaged area
was observed in 3D warp interlock fabric reinforcements
and unidirectional laminates as compared to stacked 2D
fabric reinforcements [62]. (is leads to a higher impact
damage tolerance of 3D structural composites compared to
2D laminate composites [63].

Besides, the ability of limiting the damage area has
provided the 3D warp interlock fabric a better ballistic
performance when subjected to multiple impacts [64–66].
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(is also confirms that the reinforcement in the thickness of
a 3D material gives a better bending resistance after impact
by decreasing the delamination and limiting the damage area
due to the impact. Moreover, an increase of postimpact
compressive strength has been observed for 3D warp in-
terlock fabrics as compared to 2D fabrics (Figure 7) [21].

Textile composites are one of the current solutions used
not only to respond to high-speed impact of vehicles from
various types of projectiles, conventional or improvised, but
also to minimize the total weight of the armour [67, 68]. (e
fibrous materials used in composite material must absorb
some of the kinetic impact energy and allow and maintain

the integrity of the shielding protection solution through
their damage.

In the prospective study of Madhu Bhat [69], the future
combat tank armouring solutions will be composed of
multimaterials including passive and/or active defence
functions in front of various high-speed fragment and/or
shock wave threats.

(us, as part of our research, various composite textile
solutions alone or along with ceramics or armoured steels
have been proposed to high-speed perforating bullets or
fragments (FSP) to impact response, such as perforating
bullets or fragments at high speed.

Various research studies have also shown the interest of
coupling different types of materials with different impact
behaviours to provide a hard protection solution. For ex-
ample, in the work of Naik et al. [70], an analytical model
helps to understand the four different stages of a cylindrical
projectile impact on a target composed from its front face to
its rear face of the following:

(i) An E-glass fabric/epoxy composite layer to contain
the ceramic debris generated during the impact

(ii) A layer of alumina ceramic tiles to absorb the kinetic
energy of the projectile by its high value of stiffness
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(iii) An ethylene propylene-diene elastomer layer for
absorbing the shock wave transmitted during the
contact between the projectile and the ceramic
material

(iv) A layer of E-glass fabric/epoxy composite to per-
manently absorb the remaining kinetic energy of the
projectile by its ability to deform upon impact

According to the study, the mechanisms of absorption of
the kinetic energy of the projectile are mainly due to the
punching resistance of the ceramicmaterial and the dynamic
tensile resistance of the composite material, located on the
rear face. (e insertion of an elastomer-type absorber
material makes it possible to reduce the concentration of
localized stresses at the impact point but induces non-
homogeneous propagation of these stresses at the material
interface [71].

Nayak et al. [72] have also studied the influence of
additional layer located on the rear face of UD composite
material, preimpregnated with para-aramid Twaron, on the
very clear improvement of the ballistic performance of the
7.62mm perforating ammunition (AP) to a layer of alumina
ceramic reinforced with zirconium. (e polypropylene
resin-based para-aramid UD composite structure has
resulted higher ballistic limit velocity values than for the
same epoxy resin composite structure, mainly due to its
more important elongation and delamination abilities.

In addition to previous work, Grogan et al. [17] showed
the interest of 3D warp interlock woven structures, based on
S2-glass yarns, inserted between layers of 2D fabrics, and
positioned on the rear face of alumina ceramic tiles, sub-
mitted to the impact of armour-piercing ammunition type
M2 AP at 925m/s. Based on the postimpact target analyses,
the control of delamination and the resulted lower pene-
trations have given better results for 3D warp interlock
fabrics as compared to 2D woven structures alone.

(e intradelamination of Dyneema HB26 high modulus
polyethylene laminates which is consolidated at two pressure
values (165 and 300 bars) was tested against a FSP with
20mm diameter at 950m/s according to the STANAG
standard 2920 [73]. Based on these observations, the in-
fluence of the thickness of the adhesive ply between the two
laminate layers on target performance shows a great effect,
and the result leads to protection for a small thickness value
and perforation for a higher value [74]. Similarly, Cheese-
man and Bogetti [75] have also studied the postimpact
behaviours of composite laminates. Based on their obser-
vations, the impact energy absorption mode is mainly
composed of a shear behaviour in the thickness, localized in
the direct contact zone between cylindrical projectile surface
and laminated structure as well as a mode of intraply de-
lamination type of laminates which is located outside the
zone of contact with the projectile.

3.2. Disadvantages of 3DWarp Interlock Fabrics. During our
research works [15, 34], the yarn damages mainly occurred
not only during weaving [76] because of their yarn-to-yarn
abrasion [58] and the high value of yarn’s density but also

during contacts between the yarn and other elements of
the weaving loom due to their misalignment with warp yarns
[31, 77]. (is has been quantified by a criterion based on the
loss of weight of material [78] throughout themanufacturing
process [79]. Moreover, the main causes of this degradation
[80] have also been identified. (ese control and evaluation
methods allowed us not only to adapt our existing pro-
duction tool and focus on design of our new production
tools but also to minimize the effect of the manufacturing
process on the degradation of yarns during weaving process.

(e main disadvantages of the 3D warp interlock woven
structures lie in their lack of production and especially not in
sufficient quantities. (us, it does not help to reduce the cost
of manufacturing, and more precisely it wastes time during
preparation and assembly on a weavingmachine.(is makes
the 2D fabrics to be mainly used because of their lower cost
for large quantities to produce as compared to the 3D warp
interlock woven structures [34].

3D warp interlock fabrics have a lower value of fibre
volume fraction than for 2D fabrics or UDs, this fraction
does not exceed 55% [32], rarely reaching 60% [33]. Indeed,
the vacuum zones, caused by the presence of binding warp
yarns in the thickness, will be filled by the insertion of the
resin during the manufacture of the composite.

(e value of Young’s modulus can be reduced by 10 to
35% for some 3D preforms compared to 2D fabrics with a
similar fibre ratio [21]. (is reduction mainly comes from
both warp yarns crimp and yarn damages during weaving
process. However, these results cannot be generalized for all
3D structures. In fact, Young’s modulus can vary and
surpass those of 2D fabrics by increasing the level of fibres in
the woven structure (Figure 8) [21].

(e compressive strength value before impact is lower
for 3D warp interlock fabrics based composites than
unidirectional laminate-based composites (Figure 9) [21].
Such decline comes from the yarns crimp and applied load
on yarns in the thickness direction. (e 3D warp interlock
fabrics have a weak axial compression resistance due to the
cross links between warp and weft yarns and the applied
loads on yarns. (e yarns then rotate under the action of
the load until they become unstable and break. It is in-
teresting to note that composites based on 3D warp in-
terlock fabrics have a more important elastic behaviour in
compression but withstand a lower load than composites
based on 2D fabrics [21].

(us, the fibre ratio in the direction of the thickness does
not influence neither the tensile properties of the different
3D warp interlock fabrics nor compression and shear
properties. For an equivalent fibre ratio, only the structural
geometry seems to have an influence on the compression
and shear properties. In addition, for different fibre levels (4
and 9%), the difference in mechanical properties was not
significant [23].

(e study of stacked 2D fabrics and two orthogonal
binding types of 3D warp interlock fabrics demonstrated
that the modulus and shear strength in the plane of the
fabric have larger values for the stacked 2D fabric material
and consequently for any other types of binding warp yarns
inside the 3D warp interlock fabrics [81].
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(us, the introduction of binding warp yarn into the
thickness of the multilayer woven structure provides strong
anisotropic properties [23] and can reduce certain properties
of the material, such as in-plane hardness, fatigue strength,
in-plane Young’s modulus, and tensile strength. (e in-
troduction of the binding warp yarn into the thickness must
be done appropriately in order to limit the undulations [56],
interfibre friction [58], and the applied tensions during
weaving [82] as well as the loss of strength of the composite
to fatigue [20].

4. Experimental Results on Protective Solutions

Taking into account all these main advantages and draw-
backs of the 3D warp interlock fabrics, we have highlighted
their interesting properties against impact and especially
12.7mm ammunition [83, 84] and fragment simulating
projectile (FSP) at different velocities [34, 35].

4.1. Protective Solution against 12.7mm Ammunition at
610m/s. Laminated structures, used as a backing solution of

a high-resistance ceramic material in order to absorb the
impact energy of a high-speed fragment (FSP) projectile,
have been proposed by Hazell and Appleby-(omas [85]
and by Appleby-(omas and Hazell [86]. In addition, they
recommended paying particular attention to laminated
structures bound in thickness whose impact behaviour can
provide significant responses in terms of resistance to de-
lamination. (us, as part of our research [87–92], we used a
3D warp interlock fabric, as a fibrous reinforcement [93–95]
to form successive layers of thermoplastic composite ma-
terial and to substitute them for unidirectional laminates
based on high modulus polyethylene films. (is solution has
been successively patented [83, 84].

(e impact behaviour of successive layers of composite
materials can be decomposed into three stages (Figure 10)
[96, 97], as already pointed out in various research works
[98–101]. At first, the projectile perforates the target and
causes a mode of fracture by punching and transverse
shearing of the first ply A of the 3D warp interlock fabric
composite, which initiates an overall deformation trans-
mitted by a shock wave within the multilayer structure
[102]. In the second step, the second ply B of the composite
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separates from the first ply A by delamination [103, 104] and
thus consumes part of the impact energy of the projectile.(e
mode of rupture becomes a combination between the
transverse shear and the dynamic tensile rupture of the
inserted yarns in the different layers of the 3D warp interlock
fabric. (is generates a transmission of resulted impact waves
in the direction perpendicular to the impact direction of the
projectile, thereby promoting the dispersion zone in the di-
rection of the warp and weft yarns, which increases the
dynamic deformation value of the second composite ply B.
Finally, the third and final ply C of the composite absorbs the
remaining amount of projectile energy through its dynamic
deformation, mainly due to the dynamic tensile strength and
the elongation capacity of the warp and weft yarns inserted in
the 3D warp interlock fabric [105].

Considering this impact behaviour mode, three com-
posite targets have been made with Al2O3 alumina ceramic
tiles coupled to three layers of textile composite based on 3D
warp interlock fabric made with high modulus polyethylene
yarns (Spectra 900) and low-density polyethylene yarns
(Figure 11) [107, 108]. Each of these targets was subjected to
a single impact of armour-piercing ammunition 12.7mm
(43 g) at 610m/s according to MIL-PRF-46103-E Type III
standard [106]. None of the impacted targets were perfo-
rated, and a maximum deformation depth of 25mm in
height was measured postmortem.

(e cross-sectional comparison of the composite targets
allowed us to observe their mode of deformation after
impact. (us, the delamination of the composite plies based
on 3D warp interlock fabric (Figure 12(a)) [94, 95] and a
resulted weight reduction of the target by 10%, for the same
type of impact, compared to the highly degraded target
based on high modulus polyethylene films can be shown
(Figure 12(b)) [93].

4.2. Protective Solution against FSP at 630°m/s.
Subsequently, as part of Lefebvre’s research [34, 109, 110],
we have studied the impact behaviour of different 3D
woven patterns submitted to a FSP impact at 630m/s
according to standard STANAG 4569 [111]. (e pro-
tective solution was based on metallic material on the front
side coupled with 3D warp interlock fabrics (made with
para-aramid Kevlar yarns 29 (3,300 dtex) or Vectran Ar-
omatic Polyester Yarn (2 ×1,650 dtex)) at the back side as
shown in Figure 13.

In this study, three different combinations of composite
materials based on two types of yarns, such as para-aramid
Kevlar 29 (3,300 dtex) yarns and Vectran (2×1,650 dtex)
aromatic polyester yarns, were produced. Two different
infusion processes, namely, epoxy resin at 0.5 bar pressure
for 3D warp interlock fabrics based on para-aramid thread
Kevlar 29 (3,300 dtex) and at 1 bar pressure for 3D warp
interlock fabrics made with Vectran aromatic polyester yarn
(2×1,650 dtex), have been also applied as indicated in
Figure 14 [112].

Combinations of composite materials based on 3D warp
fabric interlock have provided 13 different coupons, each
declined in 3 targets of dimensions 40× 40 cm. (e pro-
tective solutions subjected to the impact of a FSP made it
possible to identify 4 main types of failure (Figure 15).

We have identified protective solutions to FSP impact for
speed limits greater than 630m/s. (e most successful fi-
brous reinforcement of the composite part seems to be an
orthogonal architecture of 3D warp interlock fabric with a
layer-to-layer binding and with a high number of layers of
weft yarns within the structure. We have also observed that
the high volume resin content within the composite
structure limits the deformation of the fibrous reinforcement
and therefore decreases its impact energy absorption

Absorbed
energy

A B C

Figure 10: Decomposition of impact behaviour of the 3 plies A, B, and C of 3D warp interlock fabrics [93].
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capacity [113].(is type of resin also appears to influence the
pattern of impact behaviour of composite structures, as
pointed out by Lee et al. [114]. (ey have also demonstrated,
both for ballistic and fatigue tests, some significant difference
of behaviour for high modulus polyethylene fibres infused
with vinyl-ester resin than with polyurethane resin.

4.3. Protective Solution against FSP at 1600m/s. In the re-
search work of Nayak et al. [115], image analyses from
an ultrasonic measurement process revealed larger

deformation zones for polypropylene resin and epoxy resin
composite materials, while the same type of fibrous re-
inforcement, such as a para-aramid yarn-based fabric
submitted to different ranges of impact speed of a 7.62 mm
AP perforating ammunition. (is tends to reveal a greater
ballistic impact energy absorption capacity for thermo-
plastic resin-based composite materials than thermosetting
resin.

(us, in the context of Provost’s research [116, 117], we
studied the FSP impact behaviour at 1600m/s according to
the standard STANAG 4569 [111] of a protective solution
based on metallic parts located on the front with different
composite materials located at the opposite back. (ese
composite materials have been made with 3D warp in-
terlock fabrics, based on para-aramid yarns Twaron (3360
dtex) and impregnated with thermoplastic or thermoset-
ting resins.

In the continuity of the work of Lefebvre [34, 118], the
front face of the protection solution was decomposed into two
metallic materials of different thicknesses to maintain a re-
sidual velocity of the projectile at the output of the armoured
metal estimated at 431m/s by numerical simulations [116]
(Figure 16). During the various impact tests by FSP at dif-
ferent speeds, we observed the same impact behaviours of the
metallic parts leading to nonperforation of the composite
backing or a perforation.

By considering the architecture parameters mentioned
in our patents [83, 84], three types of composite backing
were realized, each declined in 3 targets subjected to a FSP
impact to determine the speed limit of perforation. Based on

Metallic part

Projectile

Composite part

Figure 13: Schematic view of the target made with metallic and
composite parts submitted to FSP impact at 630m/s according to
STANAG 4569 standard [111].

(a) (b)

Figure 12: (a) Cross-sectional view of 3 plies of composite structures after impact; (b) Cross-sectional view of the laminated composite
structure after impact.

(a) (b)

Figure 11: Ceramic and textile composite target made with 3Dwarp interlock fabric before impact (a) and after impact (b) with 12.7mmAP
at 610m/s according to standard MIL-PRF-46103E type III [106].
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these observations, the 3D warp interlock fabric architecture
[119] and the thermoplastic resin impregnation show a great
influence on the impact energy absorption capacity of the
final solutions [120].

Moreover, we have also observed different postimpact
deformations of the 3D warp interlock fabric composite
target backing subjected to the different speeds of a FSP
leading to perforations or nonperforations as shown in
Figure 17 [121].

5. Conclusion

As part of the research work on hard impact protection
solutions, we have provided a description of the impact
phenomenon on composite structures based on our own
observations and literature reviews. Clarification of the
impact behaviour of 3D warp interlock fabrics as fibrous
reinforcement of a composite material, derived from liter-
ature research, allowed us to distinguish the different

(a) (b)

(c) (d)

Figure 15: Different failure types of 3D interlock fabrics submitted to FSP impact. (a) Bidirectional failure type. (b) Localized failure type. (c)
Unidirectional failure type without yarn rupture. (d) Unidirectional failure type with yarn rupture.

(a) (b) (c)

Figure 14: Geometric models of 3D warp interlock fabrics used as fibrous reinforcements for composite part of the impacted target.
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influencing parameters of these structures.(ese parameters
have been identified, such as the type and nature of yarns, the
type of resin and its method of implementation, the type of
architecture, the number of layers, and the densities of the
warp and weft yarns. We have also tested different solutions
of hard protection made in two parts, one metallic or ce-
ramic and the other composite, in order to respond to the
different threats and their corresponding impact speeds.

(e first protective solution, made with alumina Al2O3
type ceramic material and fibrous reinforcement impreg-
nated with low density polyethylene resin reinforced with
3D warp interlock fabrics made with high modulus poly-
ethylene yarns (Spectra 900), has responded to the impact of
12.7mm armour-piercing ammunition at 610m/s. (e
second hard protection solution, combining metallic and
composite materials, with fibrous reinforcement impreg-
nated with low density polyethylene resin and based on 3D
warp interlock fabric with para-aramid Kevlar 29 (3300 dtex)
yarns was used to respond to the impact of a FSP up to
660m/s. Another protective solution made with several
metallic parts and composite material, using two fibrous

reinforcements impregnated with low density polyethylene
resin and based on 3D warp interlock fabric made with para-
aramid Twaron (3360 dtex) yarns, has also responded to a
FSP impact up to 1742m/s.
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