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has been newly implemented in
shear locking, very common a
damage. The present model is 
Because of similarities of the p
represent a realistic behaviour f
e crack lips. Thus, after calculation of the stresses applied to the crack lips, a friction law
r to represent the hysteresis loops during cyclic loading. Moreover, the possibility of 
the textile simulations for large shearing, is introduced with its effect on the matri

d to simulate various fabric preforms (woven or non-crimp) under cyclic in-plane shear
l phenomena which occur in each investigated materials, the present model is able t
ry pre-forms investigated.
1. Introduction

In these last decades, the use of carbon fabric reinforced ther-
moplastics (CFRP) in the automotive industry increased very
significantly. The high specific stiffness and strength, the great
energy absorption as well as the reduced manufacturing cost of
these materials widely encourage their diffusion.

Previously limited to small runs (premium vehicles, racing), last
advances in highly productive manufacturing process lead to the
use of CFRP for high volume automotive production. Therefore, the
behaviour understanding and modelling of these materials become
essential for their implementation into the design loop, needed for
the deployment on mass-produced vehicles. This article is focused
on the non-linear behaviour introduced by the intralaminar matrix
damage. As a consequence, the reinforcement damage, the strain-
rate dependency as well as the interlaminar matrix damage (so-
called delamination) are not considered in the present study.

Although not considered in this paper, the modelling of these
last phenomena are on-going research topics. The strain-rate
sensitivity can be introduced through phenomenological models
DOI : 10.1016/j.comp
[25,62], spectral models [13,66] or functional formulations
[29,49,68,72,75]. Energetic fibre failure criteria have been proposed
by Hill [30] and Tsai and Wu [71], but by coupling the different
failure mechanisms the prediction is highly enhanced
[2,25,37,51,57,60,74]. The propagation of the reinforcement damage
can be regulated through non-local models [7,33,56,69], limitation
of the damage rate [3,42,43] or by means of a smeared crack
formulation [16,17,24,59] Regarding the delamination, the cohesive
laws for fibre reinforced polymers have been, and still are, widely
studied [4,15,27,34,48,53,58]. Another solution is the formulation of
layered theories and specific finite elements dedicated to the
simulation of laminated materials [6,8e11,23,38,39,47,63,64,67].

However, even if they contribute to the global behaviour of a
CFRP structure, they are limited in case of in-plane quasi-static
loading. The material model in its complete form is made up
modules dedicated for each physical phenomenon. In this paper,
the focus is only given on the modelling of the intralaminar matrix
damage.

The present model is established within the framework of the
Continuum Damage Mechanics (CDM). It was first introduced by
Kachanov [35] and Rabotnov [61] by considering the damage as a
distributed defects through defining thermodynamic state vari-

ables. These variables are categorised as observable (ormeasurable)
state variables e such as strains, stresses or temperature e or
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internal state variables (not directlymeasurable)e such as damage.
Thereafter, Lemaitre [46] introduced the concept of equivalence

principle which gave a physical interpretation of damage variables.
This idea is based on the definition of an effective stress tensor. It
may be interpreted as the stress leading to the same amount of
deformation by replacing the damaged material by a hypothetical
virgin one.

Originally set for isotropic materials, such as metals, the use of
CDM for anisotropic and composite materials was introduced by
Chaboche [18] and Ladeveze and LeDantec [43]. The damage vari-
ables are given in null-, second- or fourth-order tensor forms. In
case of privileged damage directions, scalar variables are sufficient
to well-described the crack influences on the material behaviour.
On the other hand, when the damage direction depends on the
loading direction second- or fourth-order tensor forms are used.

Besides, it is important to take into account the unilateral
character of damage. The closure of the crack, given by the stress
state applied to it, leads to the recovery (partial or total) of the
initial stiffness of the material. This unilateral character may be
easily introduced thanks to the use of the Macaulay brackets for the
stress normal to the crack orientation [1,43]. However, it leads to an
incorrect behaviour in case of multi-axial loading [19]. Two ap-
proaches were then proposed by Chaboche:

� The first one consists of closing the diagonal terms of the stiff-
ness tensor [20]. As a result, the initial shear stiffness is not
recovered. Physically this may be seen as crack closure with a
perfect slippage of the lips.

� The second approaches [21] leads to the complete recovery of
the initial stiffness. By comparison to the previous one, it may be
seen as an infinite friction between crack lips. In order to do so,
an additional internal variable, the stored strain, is added to the
model. It may be seen as representative of the position of the
lips at closure. By definition it ensures the continuity at closure,
but leads to discontinuities at re-opening when closure and
opening do not occur at same loading configuration.

After a given loading/unloading then followed by a relaxation,
permanent strains are observed and are imputed to the presence of
damage. It can be explained by a release of residual stresses
inherent to the manufacturing process and because of different
thermal dilatations between the constituents [65,66], but also by
friction effects and microscopic plasticity of the matrix in the vi-
cinity of the cracks [1,43,50]. Schieffer et al. [66] models these
permanent strains by means of residual strains evolving linearly
with damage, whereas Ladeveze and LeDantec [43], Abisset et al.
[1], Maim et al. [50] use a plastic formulation.

Regarding the modelling of the frictional microcracks, various
micromechanical studies have been proposed in last decades. Based
on Kachanov [36], these models proposed by Gambarotta and
Lagomarsino [26], Basista and Gross [12], Krajcinovic and Fanella
[41], Sumarac and Krajcinovic [70] are stress-based formulated and
most of them do not follow a thermodynamic approach which
allow an easy connection with macroscopic models. An interesting
approach is proposed by Andrieux et al. [5] to model two-
dimensional frictional sliding micro-cracks in a strain-space
which follows the thermodynamic approach. Various authors
have extended this framework such as Halm and Dragon [28],
Wrzesniak et al. [73], Zhu et al. [76], Pense et al. [55] through
different homogenisation techniques. However these methods are
extremely complex to be implemented and coupled with pre-
existing material models.

Further works took interest in micromechanical considerations
such as the diffuse matrix damage or the fibre/matrix decohesion. A
crack density, based on the stress and an energy balance, is
DOI : 10.1016/j.composi
introduced to take into account the ply thickness on the kinetics of
damage [44,45]. Huchette et al. [32] integrated this microscopic
crack density in a viscoelastic formulation to provide the latter
additional non-linearity.

Marcin [52] adapted and extended the micromechanics based
CDM model proposed by Chaboche and Maire [21] to the fabric
reinforced materials. While remaining within the mesoscopic scale,
he introduced a coupling between in-plane loading and damage
normal to the thickness direction.

For the present work, the constitutive relation derived from
Marcin's formulation is recalled Section 2. An adaptation of the
stored strains to take into account the friction mechanisms inside
the composite materials is formulated. This formulation allows a
simple and efficient coupling with the Onera Damage Model.
Hence, these friction mechanisms are strongly linked to the dam-
age evolution and the model is able to represent the hysteresis loop
during cyclic loading. The possibility of a shear locking for textile
preforms is then added to the model. This shear locking leads to a
damage mechanism which is added to the previous formulation.
Section 4 concerns the identification of the model parameters.
Finally the model, and particularly the friction mechanisms, is
validated through simulations of quasi-static cyclic in-plane shear
tests.

2. Continuum matrix damage model

This work relies on a closed version of the Onera Damage Model
MicroStructure (ODM_MS) proposed by Marcin [52]. Although the
model has to describe the physical mechanisms, it is intended to be
used in an industrial environment. Hence, the ODM_MS being
based at the mesoscopic scale and formulated in the strain-space
(ideal for an implementation for finite element analysis), it was
well suited for basis of the complete material model.

The matrix damage modelling is based on the assumption that
the preferred damage directions at the mesoscopic scale corre-
spond to the directions of reinforcement. This assumption is
confirmed by basic experimental observations on two different
fabric preforms after an in-plane shear test (Fig. 1).

Moreover, this model is able to depict the effects of the crack
closure on the recovery of the initial stiffness. For this purpose the
internal variable so-called stored strain, representative of the po-
sition of crack lips at closing, is used. However, as depicted by
Chaboche and Maire [21], the re-opening may lead to stress dis-
continuities that may be critical for the stability of finite element
analysis. A further development was to introduce friction effects
but was never followed up.

Yet, these friction mechanisms are fundamental for structural
simulations with complex loading, notably in case of positive/
negative shear switchover. Consequently, an efficient and
Coulomb-based friction formulation is introduced in the present
model and is described in Section 2.8 relative to the stored strains.

Another important improvement is the consideration of the
shear locking which is specific to textile preforms. The effect of the
shear locking on the damage kinetics are also considered and is
given Section 2.9.

2.1. Finite strain framework

Given the strong anisotropic behaviour induced by the rein-
forcement of the fabric composite plies, it is essential that the
formulation may be able to follow the directions of anisotropy for
large displacements and moderate strains. As a result, the base (or
undeformed) and the current (deformed) configurations of the
material cannot be assumed identical. This hypothesis is the basis
of the small displacement and small deformation theory, making it
tesb.2016.12.019 2



Fig. 1. Global overview of cracks following an in-plane shear loading on various fabric reinforced polymers by observation of the external surface.
not applicable. Consequently, it is essential to extend the model in
finite strain to ensure that the objectivity and the directions of
anisotropy are well-assessed.

With few exceptions, Lagrangian (or Material) coordinates are
used to describe the deformations of a solid. This approach facili-
tates the formulation of material constitutive models since the
position and the physical properties of solid particles are described
according to a reference position of these material particles and
time. The choice of the reference configuration to express the strain
and the stress quantities leads to strongly different formulations for
the model.

Let dX
!

be a position vector which describes material points in
the undeformed configuration. Thematerial points in the deformed
configurations are now described by dX

!
. The change of the mate-

rial points is defined by the function xi ¼ miðXI ; tÞ which leads to
the definition of the deformation gradient tensor F:

d x!¼ F$dX
!

with FiJ ¼
vxi
vXJ

: (1)

From now, a distinction should be made between the tensors
expressed according to the base configuration or the current
configuration. In the total Lagrangian formulation, the reference is
assumed to be the base configuration at each step of the iterative
scheme used in finite element analysis.

The variation of the scalar product according to the material
vectors in the base configuration is defined with:

d x!$d x!� dX
!
$dX
!¼ 2$dX

!
$E$dX

!
(2)

where E ¼ 1
2 ðFTF� IÞ is called Green-Lagrange strain tensor.

Now, the stresses have to be evaluated according to the base
configuration too. d f

!
is a force which acts on the current body and

is the only one measurable from the experiments. Let d f
!

0 be a
virtual force, seen as the equivalent of d f

!
which may act on the

base configuration. d f
!

0 has no physical existence and is the
transposition of d f

!
in the base configuration:
DOI : 10.1016/j.comp
d f
!

0 ¼ F�1d f
!
: (3)

Hence, a stress tensor integrally based on the base configuration
can be defined through the relation:

d f
!

0 ¼ S$N
!
$dS0 (4)

with S the second Piola-Kirchhoff stress tensor (PK2) and S is
symmetric.

The incremental objectivity is ensured by the use of total
Lagrangian tensors. Moreover, by referring all calculations on the
base configuration, the directions of anisotropy are well-assessed
throughout the shearing.

However, a problem potentially arises for large deformation by
using a total Lagrangian formulation link to the scheme of the small
deformation theory:

s ¼ C : ε⇔S ¼ C : E: (5)

In case of constant components for the stiffness tensor, a soft-
ening behaviour occurs for moderate compressive loading. To
overcome this limitation, extended hyperelastic models based on
invariants of strain tensors are developed [14,22,31,54]. But the
present model is based on a model which is initially formulated by
following the scheme of the small deformation. For obvious reasons
of development time, the main body of the model given by the
literature had to be kept. Accordingly the model validity is checked
for the operating environment by verifying that the strain softening
is not reached in compression. Because of the small deformations
until failure in the fibre directions, this condition is respected.

A couple reasons ensure the possibility to simply extend the law
which were formulated in small strains/small displacements to a
total Lagrangian formulation. Firstly, the fabric reinforced plastics
sustain moderate shear strains before failure. Obviously, the strain
in the fibre directions raises no concern, knowing that the longi-
tudinal strains remain small. Secondly, the problem arises for single
shear strain of plies stacked in the same direction. De facto such
ositesb.2016.12.019 3



levels of shear will not, in practice, be reached as a result of
multiaxial loading and of earlier failure.
2.2. Constitutive relation

The model is formulated in strain-space to ensure a good effi-
ciency for FEA by using the Helmotz free energy as thermodynamic
potential:

j ¼ 1
2r

�
jm þ j0 � jr � js

�
(6)

with

8>>>>>>><
>>>>>>>:

jm ¼
�
E� E0

�
: ~C :

�
E� E0

�
j0 ¼

�
E� E0

�
: C0 : E0 þ E0 : C0 :

�
E� E0

�
jr ¼

�
E� E0

�
: C0 : Er þ Er : C0 :

�
E� E0

�
js ¼

�
E� E0

�
: C0 : Es þ Es : C0 :

�
E� E0

�
(7)

with the thermodynamic potentials jm related to the matrix
damage, j0 related to the initial state of the material, jr related to
the residual strains induced by microscopic plasticity of the matrix
and js related to the stored strains representative of the position of
the crack lips. Then the constitutive relation is obtained by deri-
vation of this thermodynamic potential and is given by:

S ¼ r
vj

vE
¼ ~C :

�
E� E0

�
� C0 :

�
Er þ Es � E0

�
: (8)

S and E are respectively the second Piola-Kirchhoff stress tensor
and the Green-Lagrange strain tensor (see Section 2.1). ~C and C0 are
both fourth-order tensors which characterise the stiffness of the
material. While C0 denotes the elastic stiffness tensor of the ma-
terial, ~C represents the effective (damaged) stiffness tensor,
evolving with the damage. E0 represents the strain state where the
cracks close off. It is due to the difference between the coefficients
of thermal expansion of the matrix and of the reinforcement which
creates residual stresses during the manufacturing. The residual
strain Er and the stored strain Es are defined in Sections 2.6e2.8.

Thereafter, the Voigt notations are used to denote the second
Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor.
Both tensors are indeed symmetric and can be reduced to first-
order tensors in order to simplify the establishment of the consti-
tutive relation. Thus the previously mentioned second Piola-
Kirchhoff stress tensor:

S ¼
2
4S11 S12 S13
S21 S22 S23
S31 S32 S33

3
5 (9)

can be reduced to the second Piola-Kirchhoff stress vector:

s! ¼ ½ s1 s2 s3 s4 s5 s6 �T
¼ ½S11 S22 S33 S23 S13 S12 �T:

(10)

In the same way, the Green-Lagrange strain tensor:

E ¼
2
4 E11 E12 E13
E21 E22 E23
E31 E32 E33

3
5 (11)

can be reduced to the Green-Lagrange strain vector:
DOI : 10.1016/j.composi
e! ¼ ½ e1 e2 e3 e4 e5 e6 �T
¼ ½ E11 E22 E33 2E23 2E13 2E12 �T:

(12)

Please note that e!r
; e!s

and e!0
are the respective Voigt nota-

tions of the strain Green-Lagrange tensors Er;Es and E0, and are
determined in the same manner as e! (Equation (12)). The shear
components of e!0

are considered null and the Green-Lagrange
strain at crack closure is thus defined with Voigt notations by:

e!0 ¼
h
e01 e02 e03 0 0 0

iT
(13)

where e0i are parameters of the model.
Hence and by using the newly introduced stress and strain

vectors, the constitutive relation can now be defined as follows:

s!¼ ~C $ e
!� C0$

�
e!r þ e!s � e!0�

(14)

with

e
!¼ e!� e!0

; (15)

C0 the elastic second-order stiffness tensor and ~C the effective
second-order stiffness tensor. C0 and ~C are respectively defined in
Sections 2.3 and 2.4.
2.3. Elastic stiffness tensor

As a first step, the purely elastic behaviour of a fabric layer is
described thanks to the elastic stiffness and compliance tensors,
respectively C0 and S0 ¼ ðC0Þ�1. In view of the architecture of the
preforms with two orthogonal directions of reinforcement, the
layers have orthotropic behaviours.

As a result in the material coordinate system of each preform
previously defined, the compliance tensor takes the form:

S0 ¼

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
E1

�n21
E2

�n31
E3

0 0 0

�n12
E1

1
E2

�n32
E3

0 0 0

�n13
E1

�n23
E2

1
E3

0 0 0

0 0 0
1

G23
0 0

0 0 0 0
1

G13
0

0 0 0 0 0
1
G12

1
CCCCCCCCCCCCCCCCCCCCCCCA

: (16)

Among the twelve coefficients introduced in these last tensors,
three groups can be distinguished:

� Ei, the elastic modulus along the axis i,
� Gij, the shear modulus of a plane normal to the axis i in the di-
rection j,

� and nij, Poisson's ratios reflecting the deformation in direction j
under imposed displacement in direction i.

Whereas the elastic shear modulus Gij are considered constant,
the elastic behaviour in the directions of reinforcement is non-
linear. It is imputed to both yarn flattening and intrinsic non-
linear elasticity of carbon fibres, explained by the rotation of
tesb.2016.12.019 4



graphite crystallites toward the fibre direction [40]. The elastic
modulus E1 and E2 are hence function of the strain by following the
relations

Ei ¼ E0i þ ai$ei; i2f1;2g: (17)

where E0i and ai are material parameters.
Symmetry of stiffness and compliance tensors is used to reduce

the number of parameters. The elastic behaviour can be fully
described by nine independent elastic coefficients and three Pois-
son's ratios are arbitrarily taken to be dependent of the others. They
are obtained from the relation:

nij ¼ nji$
Ei
Ej

with i2f2;3g; j2f1;2g and isj: (18)
2.4. Effective stiffness tensor

The damage is introduced by adding additional compliance to
the elastic compliance tensor S0, and as first step in the establish-
ment of the model, only the matrix damage is considered. The
effective compliance tensor is thus defined as ~C ¼ ð~S Þ�1 with
~S ¼ S0 þ DSm. The additional compliance tensor due to the matrix
damage is given by:

DSm ¼
X
i

hmi dmi Hm
i (19)

where Hm
i is the compliance tensor associated with the damage

variable dmi . This model uses three damage variables, two corre-
sponding to the damage along the directions of reinforcement
while the last one is used to describe the out-of-plane damage. hmi
represents the crack closure index which varies from 0 (closed
crack) to 1 (opened crack). It is defined by the following relation:

hmi ¼

8>>>><
>>>>:

1 if Dei � ei
1
2

�
1� cos

�
p

2
ei þ Dei
Dei

��
if � Dei � ei � Dei

0 if ei � �Dei

:

(20)

Dei depicts a strain tolerance between a state where all cracks
are closed and a state where all cracks are open. This dispersion
being closely tied to the number of cracks, Dei is set dependent to
the crack ratio by the relation:

Dei ¼
�
1þ ami $dmi

�
De0i (21)

where ami and De0i are parameters of the model.
In order to describe separately the different fracture modes the

compliance tensor Hm
i is split into both compliance tensors:

Hm
i ¼ Hnm

i þHtm
i : (22)

Hnm
i depicts the additional compliance due to normal loading to

the crack (mode I) and Htm
i the additional compliance due to

tangent loading to the crack (mode II and III). They are defined by
DOI : 10.1016/j.comp
Htm
1 ¼

0
BBBBBB@

hImð1ÞS
0
11 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1
CCCCCCA
; (23)

Htm
1 ¼

0
BBBBBBB@

hImð1ÞS
0
11 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 hIIImð1ÞS

0
55 0

0 0 0 0 0 hIImð1ÞS
0
66

1
CCCCCCCA

(24)

and Hnm
2 ;Hnm

3 ;Htm
2 and Htm

3 are obtained by index permutations.
hImðiÞ;h

II
mðiÞ and hIIImðiÞ are parameters of the model.

2.5. Damage evolution

By following the same approach than the additional compliance
tensor, two driving forces affect the evolution of each damage
variable: the normal ynmi and the tangential ytmi to the damage
directions and are defined by

8>><
>>:

ynm1 ¼ 1
2
eþ1 C

0
11e

þ
1

ytm1 ¼ 1
2

�
eþ4 C

0
44e

þ
4 þ b1e

þ
6 C

0
66e

þ
6

� (25)

where ynm2 ; ynm3 ; ytm2 and ytm3 are obtained by index permutations
and b1; b2 and b3 are material parameters. The thermodynamic
forces so defined are dependent of the effective strain tensor Eþ,
which corresponds to the positive part of the spectral
decomposition:

Eþ ¼ P$

0
@ hEIi 0 0

0 hEIIi 0
0 0 hEIIIi

1
A$PT (26)

where EI; EII and EIII are the eigenvalues of E and P the trans-
formation matrix formed by the eigenvectors. Lastly eþi are the
components of e!þ

, namely the Voigt notation of Eþ.
From these thermodynamic forces the damage criterion is

defined as follows:

Fmi ¼ f nmi

�
ynmi

�þ f tmi
�
ytmi
�� dmi � 0 (27)

with f the cumulative distribution function of Weibull:

f xi ¼ dxcðiÞ$

2
6641� exp

0
BB@�

0
B@
� ffiffiffiffiffi

yxi
q

�
ffiffiffiffiffiffiffiffiffi
yx0ðiÞ

q 

ffiffiffiffiffiffiffiffiffi
yxcðiÞ

q
1
CA

px
i

1
CCA
3
775 (28)

where dxcðiÞ; y
x
0ðiÞ; y

x
cðiÞ and pxi are material parameters with “x” tak-

ing the value “nm” or “tm”.

2.6. Residual strain

Following the appearance of damage, the strains do not recover
potentially their initial state when the stresses are relaxed. Some
phenomena close to the cracks and which occur at a microscopic
scale such as micro-plasticity or debris inside gaps may prevent a
ositesb.2016.12.019 5



complete closure.
Following the description given byMarcin [52] for the ODM_MS,

the residual strains are determined by following the relation:

_e!
r
¼ S0$

X
i

zih
m
i
_d
m
i
~C $Hm

i $~C

!
$ e
!

(29)

where zi is a parameter of the model.
However, for further developments dedicated to extend the

formulation of the stored strains (Section 2.8), the evolution of the
residual strains has to be split according to each crack direction and
into two components. The first one corresponds to the evolution
due to opening following a mode I (normal loading) of the cracks
normal to the direction i, mentioned as _e!

r;nm

i , while the second one
corresponds to the opening following a mode II or III (tangential
loading) of the cracks normal to the direction i, mentioned as _e!

r;tm

i .
They are determined by the following relations:

_e!
r;nm

i ¼ S0$
�
zih

m
i
_d
m
i
~C $Hnm

i $~C
�
$ e
!
; (30)

_e!
r;tm

i ¼ S0$
�
zih

m
i
_d
m
i
~C $Htm

i $~C
�
$ e
!
; (31)

and the total evolution of the residual strains are then recovered by:

_e!
r
¼
X
i

�
_e!
r;nm

i þ _e!
r;tm

i

�
: (32)
Fig. 2. Imposed complex displacements for visualisation of the stored strain effect.
2.7. Stored strain

By contrast with the residual strain formulation, the evolution of
the stored strains do not depend on the evolution of the damage
ð _dmi Þ but on the evolution of the crack closure index ð _hmi Þ. It is given
by the relation:

_e!
s
¼ �S0$

X
i

_hmi dmi
~C $Hm

i $~C

!
$ e
!
: (33)

The stored strain was initially introduced by Chaboche and
Maire [21] to ensure the recovery of the initial elastic stiffness after
the damage deactivation. Moreover, it avoids as well a discontinuity
of the ð s!; e!Þ response for complex loading cases. To illustrate the
effect of the stored strains, an example of complex loading case,
which consists of cyclic simple shear and traction/compression, is
applied to a single shell element (Fig. 2).

By looking at the stress response of the model, it appears that
the implementation of the stored strains ensures the continuity of
the shear stress in case of opening or closure of the cracks (Fig. 3).
Fig. 3. Visualisation of the stored strain effect on the continuity of the stress response.
2.8. Introduction of friction mechanisms

Physically, the stored strain e!s
can be regarded as representa-

tive of the position of the crack lips after closure. For this above
formulation, the hypothesis of infinite friction coefficient for closed
crack (no evolution of the stored strain after the crack closure)
makes the model unable to describe a realistic shear behaviour. To
further improve the matrix damage model, an original and mini-
malist way to introduce friction effects at crack lips is presented in
the rest of this section.

First, it is convenient to temporary rewrite the constitutive
equation (14):
DOI : 10.1016/j.composi
s!¼ s!e þ s!m
(34)
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where

s!e ¼ S0 þ
X
i

dmi Hm
i

!�1

$ e
!

(35)

is the stress applied on the healthy zone of a representative volume
element, and

s!m ¼ C0$ e!0 þ
X
i

h�
1� hmi

�
dmi

~C $Hm
i $C0$ e

!� C0$
�
e!r
i þ e!s

i
�i
(36)

is the stress applied on an area which surrounds the closed cracks
normal to the i-direction (Fig. 4). Note that the open cracks are not
considered in this constitutive relation since an open crack is un-
able to carry loads.

Then, to further apply a Coulomb friction law for the cracks, the
normal and the tangential stresses, respectively s!nm

i and s!tm
i ,

which act on the closed cracks are isolated. They are then given by:

s!nm
i ¼ �1� hmi

�
dmi

~C $Hnm
i $C0$ e

!� C0$
�
e!r;nm
i þ e!s;nm

i

� e!0;nm
i

�
(37)

with e0;nmij ¼ dij$e0j where dij is the Kronecker symbol, and

s!tm
i ¼ �1� hmi

�
dmi

~C $Htm
i $C0$ e

!� C0$
�
e!r;tm
i þ e!s;tm

i

�
: (38)

As a result, a criterionwhich states that the cracks are subject to
static friction (�0) or to dynamic friction (>0) is introduced and is
given by:

ssi ¼
�� s!tm

i

��� mi
�� s!nm

i

��: (39)

where mi is a coefficient of friction.
In case of a positive friction criterion, the crack lips start sliding

to recover an equilibrium state. In the present work, the simplest
modelling of the friction effect is considered, and is based on two
hypotheses:

� the dynamic friction coefficient is equal to the static friction
coefficient mi, thus the equilibrium state is recovered when the
friction criterion ssi is null again;

� and the displacement of the lips, to recover the equilibrium
state, is instantaneous.

It leads to the following equation:

ssi þ Dssi ¼ 0; (40)

with Dssi the instantaneous evolution of the friction criterion to
recover an equilibrium state. Since the normal stress applied to a
crack does not evolve during sliding, the instantaneous evolution of
the friction criterion is equal to the norm of the variation of the
Fig. 4. Representative Volume Element and corresponding transmitted stresses of the
area 1 (an healthy area), the area 2 (where the crack are closed) and the area 3 (where
the cracks are open).
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tangential stress applied to the crack:

Dssi ¼
��D s!tm

i

��: (41)

Thus it is now possible to determine D s!
!tm

i , the vector notation
of the variation of the tangential stress applied to the crack, by
following the relation:

D s!tm
i ¼ �ssi $

s!tm
i�� s!tm
i

�� : (42)

Finally, as D s!tm
i is only dependent on the tangential displace-

ment of the crack lips and by using equation (38), the evolution of
the tangential stored strains due to the friction mechanisms are
determined by using the following equation:

D e!s;tm
i ¼ �S0$D s!tm

i : (43)

However from a microscopic aspect the friction coefficient is
dependent on the roughness of the crack lips. And there is defi-
nitely no one unique condition of surface, which leads to introduce
a dispersion on the friction. Instead of considering all closed cracks
together, N families are introduced and the stress applied to the
closed cracks is assumed to be homogeneously distributed on them.
Thus, for a family j of cracks normal to the i-direction, the normal
and the tangential stress, respectively s!nm

ij and s!tm
ij , are given by:

s!nm
ij ¼ �1� hmi

�
dmi

~C $Hnm
i $C0$ e

!� C0$
�
e!r;nm
i þ e!s;nm

ij

� e!0;nm
i

�
(44)

and

s!tm
ij ¼ �1� hmi

�
dmi

~C $Htm
i $C0$ e

!� C0$
�
e!r;tm
i þ e!s;tm

ij

�
: (45)

Then, the evolution of the tangential stored strains D e!s;tm
ij is

determined by following the procedure given by equations
(39)e(43). The only difference is the use of a coefficient of friction
mij proper to each group. Finally the total stored strain evolution
due to friction mechanisms is obtained by averaging every move-
ments of crack lips:

D e!s;tm
i ¼ 1

N

XN
j¼1

D e!s;tm
ij : (46)

About the range of the coefficients of friction, a quadratic and
homogeneous distribution on a given interval is carried out. Thus
they are computed by following the relation:

mij ¼
mmax
i
N2 $j2 with j2½0;N � 1�: (47)

However, as for the crack closure index, the distribution of the
friction coefficients is sensitive to the damage. As a result the upper
bound of their range is given by:

mmax
i ¼ �1þmm

i $dmi
�
m0i (48)

where mm
i and m0i are parameters of the model.
2.9. Particularities of the textile preforms

In the particular case of plies made up with textile preforms e

where the yarns are interlaced e the shear locking phenomenon
occurs when the adjacent yarns come into contact. It results a
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significant and progressive rise in the in-plane shear stiffness. In
this model, the shear locking is introduced by using the following
relation:

G12 ¼ G0
12 þ gl12$

D
e6 � el6

E
(49)

where G0
12; g

l
12 and el6 are parameters of the model. Note that the

operator 〈$〉 is called the Macauley bracket and 〈x〉 ¼ x if x>0, and
null in others cases.

Also, it has been proved that the large shearing ability of the
textile plies leads to massive out-of plane damages even for purely
in-plane loading (Fig. 5). Its emergence is due to the opposite di-
rections of rotation of transverse yarns. As a result, the matrix be-
tween both transverse yarns in the crossing area is subjected to
torsion and causes breaking.

Marcin [52] introduced an in-plane/out-of-plane coupling by
using a new thermodynamic force characterising these torsional
modes. Consequently, the out-of plane damage is controlled by the
previously defined normal and tangential forces, and the newly
introducing coupling force:

8>>>>>>><
>>>>>>>:

ynm3 ¼ 1
2
eþ3 C

0
33e

þ
3

ytm3 ¼ 1
2

�
eþ4 C

0
44e

þ
4 þ b3e

þ
5 C

0
55e

þ
5

�

yp3 ¼ 1
2
eþ6 C

0
66e

þ
6

: (50)

The associated damage criterion is then actualised and given by:

Fm3 ¼ f nm3
�
ynm3

�þ f tm3
�
ynm3

�þ f p3
�
yp3
�� dm3 � 0: (51)

But in addition to Marcin's formulation, the in-plane shear
stiffness is considered sensitive to the out-of-plane damage since
the rotation between both transverse yarns is made easier. Thus,
the additional compliance tensor due to tangential loading is
modified to take into account this influence and is now given by:
Fig. 5. Global overview of cracks following an in-plane shear loading on various fabric
reinforced polymers by observation of the cross-section.
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Htm
3 ¼

0
BBBBBBB@

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 hIImð3ÞS

0
44 0 0

0 0 0 0 hIIImð3ÞS
0
55 0

0 0 0 0 0 hpmð3ÞS
0
66

1
CCCCCCCA
: (52)

Therefore, the matrix damage model is able to consider a loss of
the elastic stiffness and to take into account an eventual local
plasticity around the cracks, the friction mechanisms and the shear
locking of the textile preforms. Regarding the friction, the co-
efficients are evolving with the damage value.
2.10. Verification of the thermodynamic consistency

As a result of the addition of the friction mechanisms inside the
material model, the consistency with regards to the thermody-
namic laws needs to be checked.

As the analytical audit of the second law of thermodynamics is
very complex, audits based on extreme cases have be done.

The first one consists of a comparison of the stress response
between the newly formulated material model with an infinite
friction coefficient and the Onera Damage Model MicroStructure
(ODM_MS). Because of the hypothesis of infinite friction for the
formulation of the ODM_MS, the stress responses of both models
have to be equivalent. The displacement which is imposed to a shell
element is the same as the one which was presented Fig. 2. The
results in case of infinite friction are compared Fig. 6 and are
entirely similar.

Rather, the second check consists of a comparison of the stress
response between the newly formulated material model with an
infinite friction coefficient and with an absence of friction at crack
lips. The continuity of the shear stress response is preserved. The
only difference concerns the shear stress evolutionwhen the cracks
are closed. The transmitted shear now corresponds to the stress
which is transmitted by an healthy area of the material. As a
consequence, the shear stress is smaller than in the case of infinite
friction (Fig. 7).

The last check concerns the dissipated energy during crack lips
displacements. This dissipated energy is represented graphically by
hysteresis loop. Due to the clockwise orientation of these loops
during frictionmechanisms, and due to the symmetric behaviour of
the friction mechanisms for positive or negative shear loading
(which leads to recover the same stress state after an unloading/
loading cycle), the dissipated energy is always positive. The second
law of thermodynamics is thus ensured.

It is essential to note that very complex simulations (bulge tests,
Fig. 6. Visualisation of the stored strain effect on the continuity of the stress response.
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Fig. 7. Visualisation of the stored strain effect on the continuity of the stress response.
bending) have been carried out with the whole material model
(viscoelasticity, fibre failure, delamination) and the second law of
thermodynamics has always been verified.
3. Implementation

The aim of the implementation of a material model in a finite
element software is to provide, at the current time step, the stress
at an integration point according to the strain value given by the
element formulation. It is carried out by the implementation of the
developed constitutive model in an incremental loop.

In an explicit scheme, the computation time is conditioned by
the efficiency of the material model. It is thus essential to limit as
much as possible the internal loops. By using a strain-space
formulation, the explicit scheme (stress obtained from the strain
without iteration) is maintained. Thanks to the strain field provided
by the finite element software in the material coordinate system,
the thermodynamic forces are determined, leading to the damage
evaluation. The crack closure indexes are evaluated and then the
residual and the stored strains are computed by means of an in-
cremental scheme. Note that the total Lagrangian framework helps
to maintain the model efficiency by avoiding the use of complex
algorithm to ensure the objectivity. Once the damage values, the
crack closure indexes, the residual and the stored strains are
determined, it is possible to calculate the stress thanks to the
constitutive relation. The details are given in Algorithm 1.

Algorithm 1. Stress update algorithm with the matrix damage
evaluation

Step 1 Calculation of the effective strain e!þ
(Equation (26)).

Step 2 Calculation of the thermodynamic forces yxi (Equations
(25) and (50)).
Step 3 Calculation of the damage dmi (Equation (28)).
Step 4 Calculation of the crack closure index hmi (Equation (20)).
Step 5 Calculation of the effective stiffness tensor ~C (Equation
(19)).
Step 6 Calculation of the residual strain e!r

by following the
iterative relation:

e!r
tþDt ¼ e!r

t þ S0$
X
i

zih
m
i Ddmi

~C $Hm
i $~C

!
$
1
2
ð e!tþDt þ e

!
tÞ:
Fig. 8. Tensile and in-plane shear specimen geometry.
Step 7 Calculation of the stored strain e!s
due to crack closure by

following the iterative relation:
DOI : 10.1016/j.comp
e!s
tþDt ¼ e!s

t � S0$
X
i

Dhmi dmi
~C $Hm

i $~C

!
$
1
2
ð e!tþDt þ e

!
tÞ:
Step 8 Calculation of the stored strain evolution due to friction
mechanisms D e!s;tm

i (Equations in Section 2.8) and addition to
the previously computed stored strain.
Step 9 Calculation of the stress s! (Equation (14)).

The model is implemented for both solid or shell elements. For
the shell elements, it is possible to use this model under plane
stress assumption. It uses the three-dimensional formulation
described in this work and a stress return algorithm to evaluate the
thickness reduction. Another possibility is to use a two-
dimensional formulation (without consideration of the out-of-
plane strain and stress) but with the possibility to take into ac-
count the transverse shear behaviour of the material.
4. Identification

The parameter identification of the matrix damage model is
done by means of two different experimental tests carried out
independently on the different preforms. These tests are closed to
the standardised monotonic tensile and in-plane shear tests,
respectively the NF EN ISO 527-4 and NF EN ISO 14129 tests, in
order to be easily reproducible in an industrial framework. The
approach consists in eliminating gradually and systematically the
unknown parameters.

These tests are carried out at room temperature on an electro-
magnetic device (Sintech 20D) which ensures 100 kN for the
maximal load capacity and at a speed of 2 mm min�1. The speci-
mens are cut using the water-jet technique and their shape and
dimensions, identical for both tests, are shown in Fig. 8. For tech-
nical reasons, aluminium heels with 1 mm thickness are used.
4.1. Longitudinal and transverse tensile tests

As a first step, the parameters describing the longitudinal and
the transverse behaviours are determined through tensile tests in
the fibre directions (Fig. 9). Some materials, like the ones taken as
example, show an elastic brittle behaviour for longitudinal and
transverse loading. In this case, the standardised NF EN ISO 527-4
test is used as such. Otherwise, in case of matrix cracks appearing
before the final fracture of the coupon (due to the fibre failure), the
tensile loading is increased on a cyclical basis. This last method
allows to quantify the damage evolution and its effect on the me-
chanical behaviour.

Due to small strains at failure and none apparent damage, two
gauges have been used to measure:

� εxx ¼ εðX!Þ the elongation in the centre of the coupon according
to the X

!
direction,

� εyy ¼ εðY!Þ the elongation in the centre of the coupon according
to the Y

!
direction.
ositesb.2016.12.019 9



Fig. 9. Material coordinate system ð 1!; 2
!Þ according to the specimen coordinate sys-

tem ðX!; Y
!Þ for tensile tests.
The force applied to the coupon F ¼ F
!
$X
!

is measured with a
100 kN load cell and then the engineering stress is obtained by:

sxx ¼ F
S0

(53)

where S0 is the initial cross-section of the coupon.
The parameters E01;a1; E

0
2 and a2 are then obtained through

linear regressions of the curves sxx
εxx

¼ f ðεxxÞ from the longitudinal
and transverse tensile tests, whereas n012 is obtained through the
curve �εyy

εxx
¼ f ðεxxÞ from the longitudinal tensile test.
4.2. In-plane shear tests

Once the properties in the longitudinal and transverse di-
rections are determined, the in-plane shear properties are obtained
from a close version of the standardised NF EN ISO 14129 in-plane
shear test. It consists of a tensile test according to an angle of 45�

against the fibre directions (Fig. 10).
In this configuration, the matrix damage is important and leads

to substantial non-linearity in themechanical behaviour. Therefore,
to quantify the level of damage and its effects on the behaviour, the
tensile loading is increased on a cyclical basis.

Due to the large shear strain ability of the fabric preforms, ex-
tensometers are preferred to measure:

� DLxx the relative displacement of both clips, initially set L0xx
apart, of the longitudinal extensometer,

� DLyy the relative displacement of both clips, initially set L0yy
apart, of the transverse extensometer.

The in-plane shear angle is then given by:

g12 ¼ DLxx
L0xx

� DLyy
L0yy

: (54)

The force applied to the coupon F ¼ F
!
$X
!

is measured with a
40 kN load cell and then the engineering in-plane shear stress is
obtained by:
Fig. 10. Material coordinate system ð 1!; 2
!Þ according to the specimen coordinate

system ðX!; Y
!Þ for in-plane shear tests.

DOI : 10.1016/j.composi
s12 ¼ F
2� S0

(55)

where S0 is the initial cross-section of the coupon.
The initial slope of the curve s12 ¼ f ðg12Þ defines the initial in-

plane shear stiffness G0
12. Then the identification of the parameters

associated to the in-plane matrix damage is much more difficult
due to the various coefficients which define the cumulative dis-
tribution functions of Weibull (Equation (28)), but also due to the
interdependence between the damage and the friction mecha-
nisms. Consequently, these parameters are obtained through an
optimisation study to minimise the Mean Square Error (MSE) be-
tween the experimental and the numerical responses F ¼ f ðDLxxÞ.

In the particular case of FRP made up with textile preforms two
optimisation studies are needed due to the important out-of plane
damage after the shear locking. The shear locking angle and the
resulting Green-Lagrange shear strain at shear locking can be
determined through the direct observation of the force-
displacement curve. At shear locking, the material becomes
significantly more rigid and a slight re-hardening appears. Once the
shear angle determined, the same optimisation procedure as
explained above is used on the responses before the shear locking
in order to describe the in-plane damage evolution ðdm1 and dm2 Þ.
Then an additional optimisation study is done on the out-of-plane
damage evolution ðdm3 Þ and the parameter gl12 describing the non-
linearity of the in-plane shear stiffness due to shear locking.

The out-of-plane damage induced by matrix torsion between
both transverse yarns is considered to occur after the shear locking.
It can be understood by the study of the unit-cell deformation of a
textile preform. By means of Digital Image Correlation carried out
during in-plane shear tests, the rotation of the yarns have been
observed (Fig. 11). The yarns start to rotate in the inter-yarn area. As
soon as adjacent yarns come into contact (shear locking), the yarns
start to rotate between them. This second mechanism leads to the
torsion of the matrix between both transverse yarns, and conse-
quently to the out-of-plane damage.

By proceeding in this manner, step by step on simple experi-
mental tests, the global singularity of the solution is preserved and
the parameters maintain a physical relevance. Moreover in case of
balanced fabrics, the number of parameters is considerably
lowered.

The results of the parameter identification are shown in Table 1.
5. Validation of the identification procedure

The present matrix damage model is implemented in FORTRAN
90 in a user material subroutine for the explicit finite element code
LS-DYNA®, the whole model being dedicated to impact analysis and
it requires an explicit finite element solver. In this validation pro-
cedure, shell elements are used with the two-dimensional formu-
lation of the material model. Only a 20 mm long area in the middle
of the experimental coupons is modelled. In this area the macro-
scopic homogeneity of the strain field has been verified bymeans of
digital image correlation, which leads to a mesh convergence with
only one shell element. Note that symmetric boundary conditions
were used on the single shell element model. As a compromise
between accuracy and efficiency, ten families of friction criterion
have been used in this study.

This section presents the results of the identification procedure
which have been presented Section 4 on three various fabric pre-
forms, namely a bi-axial non-crimp fabric (see Fig. 1a), a 3K plain-
weave woven (see Fig. 1b) and a 12K plain-weave woven. The
optimisation procedures were carried out thanks to the commercial
software LS-OPT® to minimise the Mean Square Error between the
tesb.2016.12.019 10



Fig. 11. Local rotations of the preforms obtained through Digital Image Correlation observation during in-plane shear tests.
numerical and the experimental responses. The sampling on the
parameter range is done by using a D-Optimal method and the
optimisation algorithm which has been used is the Adaptive
Simulated Annealing.

As a first step of the validation, a longitudinal tensile test of both
preforms is simulated and the results are compared with the
experimental tests. Because of limited non-linearity for loading in
the fibre directions, the mechanical behaviour is well described.

The in-plane shear behaviour, observed thanks to tensile tests
with an angle of 45� according to the longitudinal fibre direction, is
quite a bit more challenging to model. Although various fabric plies
were tested, the matrix damage model is able to well describe their
large non-linear behaviour as shown Figs. 12e14.

With few additional parameters compared to the previous for-
mulations of the Onera Damage Model, because of the dependence
between the friction mechanisms and the matrix crack density, the
dissipated energy due to the hysteresis cycles can be assessed.
Moreover, in case of positive/negative cyclic shearing this formu-
lation avoids the previous limitations due to the hypothesis of
infinite friction or null friction for the lips of the matrix cracks.

Finally, the use of the finite strain framework as well as the
modelling of the shear locking phenomenon let to maintain the
objectivity and the consideration of the real material orientation.
DOI : 10.1016/j.comp
6. Concluding remarks on the matrix damage

The matrix damage model for fabric reinforced polymers is a
close version of the Onera Damage MicroStructure model. A new
evolution law for the stored strains has been presented. The friction
mechanisms induced by the matrix cracks are now taken into ac-
count in a simple manner. It allows a good description of the shear
behaviour, including the approximation of the dissipated energy
due to the subsequent hysteresis loops.

Because of the large rotation of the yarns for shear loading, the
model is extended in finite strain. The total Lagrangian formulation
is used in order to well track the fibre orientation and ensure the
objectivity. The shear locking is also introduced for the textile
composites.

The procedure for the parameter identification is also provided.
It consists of eliminating gradually and systematically the unknown
parameters. It is done either by direct measurement on the
experimental results, or by optimisation of restrained sets of pa-
rameters in order to keep the singularity and the physical meaning
of the results.

From the numerical point of view, the model is implemented in
the commercial finite element software LS-DYNA®. It is validated
through standardised tensile and in-plane shear experimental
ositesb.2016.12.019 11



Table 1
Parameters for the intralaminar matrix damage model for the various fabric
preforms.

Parameters Units NCF 3K woven 12K woven

E01 ¼ E02 MPa 55,562 46,589 49,212

a1 ¼ a2 MPa 277,722 147,722 286,678
n21 / 0.13 0.10 0.05
G0
12

MPa 3000 4910 3236

gl12 MPa 0 2100 0

el6 / 0 0.17 0

b1 ¼ b2 / 0 0 0
dnmcð1Þ ¼ dnmcð2Þ / 0 0 0

ynm0ð1Þ ¼ ynm0ð2Þ / 0 0 0

ynmcð1Þ ¼ ynmcð2Þ / 0 0 0

pnm1 ¼ pnm2 / 0 0 0

dtmcð1Þ ¼ dtmcð2Þ / 0.6324 0.6745 0.6992

ytm0ð1Þ ¼ ytm0ð2Þ / 0.0041 0.0041 0.0041

ytmcð1Þ ¼ ytmcð2Þ / 2.124 1.729 0.04371

ptm1 ¼ ptm2 / 0.2248 0.097 0.281

dtmcð3Þ / / 0 /

ytm0ð3Þ / / 0 /

ytmcð3Þ / / 0 /

ptm3 / / 0 /

hImð1Þ ¼ hImð2Þ / 0 0 0

hIImð1Þ ¼ hIImð2Þ / 1 1 1.0467

hIIImð1Þ ¼ hIIImð2Þ / 0 0 0

dpcð3Þ / / 0.3253 /

yp0ð3Þ / / 17.9 /

ypcð3Þ / / 20 /

pp3 / / 1.751 /

hpmð3Þ / / 1 /

z1 ¼ z2 / 0 0 0.011
z3 / / 0 /

m0
1 ¼ m0

2
/ 0.00838 0.0498 0.00558

mm
1 ¼ mm

2 / 12.48 4 7.914

m0
3

/ / 0.3 /

mm
3 / / 179.5 /

e01 ¼ e02 / 0.01 0.01 0.01

am1 ¼ am2 / 0 0 0

e03 / 0.01 0.01 0.01

Fig. 12. Reaction force comparisons between the numerical model and the experi-
mental data for in-plane shear tests of the bi-axial non-crimp fabric.

Fig. 13. Reaction force comparisons between the numerical model and the experi-
mental data for in-plane shear tests of the 3K plain weave woven fabric.

Fig. 14. Reaction force comparisons between the numerical model and the experi-
mental data for in-plane shear tests of the 12K plain weave woven fabric.

DOI : 10.1016/j.composi
tests. The simulation results show the good efficiency of the pro-
posed model for fully different fabric preforms, such as non-crimp
or woven.

However, in order to fully simulate the behaviour of layered
fabric composites, additional physical phenomena have to be taken
into account. Such is the case, for instance, viscoelasticity, fibre
failure or intralaminar damage. The newly introduced friction
mechanisms are also as simple as possible (based on Coulomb
criterion) and could be further improved.
Acknowledgments

The present research work has been supported by International
Campus on Safety and Intermodality in Transportation, the Region
Nord Pas de Calais, the European Community, the Delegation
Regionale a la Recherche et a la Technologie, the gs5:Minist�ere de
l'Enseignement Sup�erieur et de la Recherche, the Centre National
de la Recherche Scientifique and TOYOTA MOTOR EUROPE: the
authors gratefully acknowledge the support of these institutions.
tesb.2016.12.019 12



References

[1] Abisset E, Daghia F, Ladev�eze P. On the validation of a damage mesomodel for
laminated composites by means of open-hole tensile tests on quasi-isotropic
laminates. Compos Part A Appl Sci Manuf Oct. 2011;42(10):1515e24. http://
www.sciencedirect.com/science/article/pii/S1359835X11002107.

[2] Aiello G. Utilisation des composites �a matrice c�eramique sic/sic comme
mat�eriau de structure de composants internes du tore d'un r�eacteur �a fusion
[Ph.D. thesis]. 2001.

[3] Allix O, Feissel P, Th�evenet P. A delay damage mesomodel of laminates under
dynamic loading: basic aspects and identification issues. Comput Struct
2003;81(12):1177e91. http://www.sciencedirect.com/science/article/pii/
S004579490300035X.

[4] Allix O, Ladev�eze P. Interlaminar interface modelling for the prediction of
delamination. Compos Struct 1992;22(4):235e42. http://www.sciencedirect.
com/science/article/pii/026382239290060P.

[5] Andrieux S, Bamberger Y, Marigo J-J. Un mod�ele de mat�eriau microfissur�e
pour les b�etons et les roches. J M�ecan Thor Appl 1986;5(3):471e513. http://
cat.inist.fr/?aModele¼afficheN&cpsidt¼8203892.

[6] Apuzzo A, Barretta R, Luciano R. Some analytical solutions of functionally
graded Kirchhoff plates. Compos Part B Eng Jan. 2015;68:266e9. http://www.
sciencedirect.com/science/article/pii/S1359836814003862.

[7] Balieu R. Mod�ele visco�elastique-viscoplastique coupl�e avec endommagement
pour les mat�eriaux polym�eres semi-cristallins [Ph.D. thesis]. Universit�e de
Valenciennes et du Hainaut-Cambresis; 2012.

[8] Barretta R, Feo L, Luciano R, Marotti de Sciarra F. Variational formulations for
functionally graded nonlocal Bernoulli-Euler nanobeams. Compos Struct Oct.
2015;129:80e9. http://www.sciencedirect.com/science/article/pii/
S0263822315002068.

[9] Barretta R, Luciano R. Exact solutions of isotropic viscoelastic functionally
graded Kirchhoff plates. Compos Struct 2014;118:448e54. http://www.
sciencedirect.com/science/article/pii/S0263822314003675.

[10] Barretta R, Luciano R. Analogies between Kirchhoff plates and functionally
graded Saint-Venant beams under torsion. Contin Mech Thermodyn May
2015;27(3):499e505. http://link.springer.com/article/10.1007/s00161-014-
0385-2.

[11] Barretta R, Luciano R, Willis JR. On torsion of random composite beams.
Compos Struct Nov. 2015;132:915e22. http://www.sciencedirect.com/
science/article/pii/S0263822315005334.

[12] Basista M, Gross D. The sliding crack model of brittle deformation: an internal
variable approach. Int J Solids Struct 1998;35(5):487e509. http://www.
sciencedirect.com/science/article/pii/S0020768397000310.

[13] Berthe J. Comportement thermo-visco-�elastique des composites cmo - de la
statique �a la dynamique grande vitesse [Ph.D. thesis]. Ecole Centrale de Lille;
2013.

[14] Bonet J, Burton AJ. A simple orthotropic, transversely isotropic hyperelastic
constitutive equation for large strain computations. Comput Methods Appl
Mech Eng 1998;162(1e4):151e64. http://www.sciencedirect.com/science/
article/pii/S0045782597003393.

[15] Bouvet C, Rivallant S, Barrau JJ. Low velocity impact modeling in composite
laminates capturing permanent indentation. Compos Sci Technol Nov.
2012;72(16):1977e88. http://www.sciencedirect.com/science/article/pii/
S0266353812003223.

[16] Camanho P, Bessa M, Catalanotti G, Vogler M, Rolfes R. Modeling the inelastic
deformation and fracture of polymer composites. Part II. Smeared crack
model. Mech Mater 2013;59:36e49. http://www.sciencedirect.com/science/
article/pii/S0167663612002128.

[17] Cervera M, Chiumenti M. Smeared crack approach: back to the original track.
Int J Numer Anal Methods Geomech Oct. 2006;30(12):1173e99. http://
onlinelibrary.wiley.com/doi/10.1002/nag.518/abstract.

[18] Chaboche JL. Anisotropic creep damage in the framework of continuum
damage mechanics. Nucl Eng Des 1984;79(3):309e19. http://www.
sciencedirect.com/science/article/pii/0029549384900463.

[19] Chaboche J-L. Damage induced anisotropy: on the difficulties associated with
the active/passive unilateral condition. Int J Damage Mech Apr. 1992;1(2):
148e71. http://ijd.sagepub.com/content/1/2/148.

[20] Chaboche J-L. Development of continuum damage mechanics for elastic solids
sustaining anisotropic and unilateral damage. Int J Damage Mech Oct.
1993;2(4):311e29. http://ijd.sagepub.com/content/2/4/311.

[21] Chaboche J-L, Maire J-F. A new micromechanics based CDM model and its
application to CMC's. Aerosp Sci Technol 2002;6(2):131e45. http://www.
sciencedirect.com/science/article/pii/S1270963802011549.

[22] Charmetant A, Orliac J, Vidal-Sall�e E, Boisse P. Hyperelastic model for large
deformation analyses of 3d interlock composite preforms. Compos Sci Technol
Jul. 2012;72(12):1352e60. http://linkinghub.elsevier.com/retrieve/pii/
S0266353812001790.

[23] Cho M, Kim J-S. Higher-order zig-zag theory for laminated composites with
multiple delaminations. J Appl Mech Oct. 2000;68(6):869e77. http://dx.doi.
org/10.1115/1.1406959.

[24] Cousign�e O, Moncayo D, Coutellier D, Camanho P, Naceur H. Numerical
modeling of nonlinearity, plasticity and damage in CFRP-woven composites
for crash simulations. Compos Struct 2014;115:75e88. http://www.
sciencedirect.com/science/article/pii/S0263822314001846.

[25] Daniel I, Werner B, Fenner J. Strain-rate-dependent failure criteria for
DOI : 10.1016/j.comp
composites. Compos Sci Technol 2011;71(3):357e64. http://www.
sciencedirect.com/science/article/pii/S0266353810004677.

[26] Gambarotta L, Lagomarsino S. A microcrack damage model for brittle mate-
rials. Int J Solids Struct Jan. 1993;30(2):177e98. http://www.sciencedirect.
com/science/article/pii/002076839390059G.

[27] Greve L, Pickett AK. Delamination testing and modelling for composite crash
simulation. Compos Sci Technol 2006;66(6):816e26. http://www.
sciencedirect.com/science/article/pii/S0266353804003549.

[28] Halm D, Dragon A. An anisotropic model of damage and frictional sliding for
brittle materials. Eur J Mech - A/Solids 1998;17(3):439e60. http://www.
sciencedirect.com/science/article/pii/S0997753898800545.

[29] Heil C, Cardon A, Brinson H. The nonlinear viscoelastic response of resin
matrix composite laminates. Tech. rep. DTIC Document; 1984.

[30] Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proc Roy
Soc Lond Ser A Math Phys Sci 1948;193(1033):281e97. http://www.jstor.org/
stable/97993.

[31] Holzapfel GA, Gasser TC. A viscoelastic model for fiber-reinforced composites
at finite strains: continuum basis, computational aspects and applications.
Comput Methods Appl Mech Eng 2001;190(34):4379e403. http://www.
sciencedirect.com/science/article/pii/S0045782500003236.
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