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ABSTRACT

Among the various mechanisms which occur during impact, the strain rate effect plays a significant role on the mechanical
response of layered carbon fibre reinforced polymer structure. In this work, the viscoelastic behaviour of the material is studied to
introduce a strain-rate dependency. To preserve numerical efficiency the generalised Maxwell model, formulated in the strain-
space, is taken as a basis. The non-linear viscoelas-tic behaviour is introduced by coupling the generalised Maxwell model with a
pre-existing intralaminar matrix continuum damage model. The fact that the Maxwell model preserves the explicit scheme of the
damage model leads to an efficient material model for impact simulations. This paper proposes a complete framework to
implement the strain-rate sensitive damage model in an explicit finite element code (for low-speed impact simulations). For this
purpose, the procedure of parameter identification, based on Dynami-cMechanical Analysis, is given. Furthermore, a challenging
experimental procedure on high-speed jack device with a particular attention paid to the consistency of the results is proposed to

validate the devel-oped model.

Keywords: Composite, Textile, Damage, Strain rate, Large strain

1. Introduction

The use of Carbon Fabric Reinforced Polymers (CFRP) in the auto-
motive industry increases significantly because of higher specific
stiffness and strength and higher energy absorption compared to
common metals. However the behaviour modelling, notably through
the finite element method, is essential for their deployment on
mass-product vehicles. This work is included in a wide project dedi-
cated to simulate the behaviour of CFRP under low-speed impact,
such as pedestrian impact, on non-structural components (engine
bonnet, roof, door, etc.). It is focused on the modelling of the strain-
rate sensitivity and its coupling to a pre-existing intralaminar dam-
age model. The reinforcement damage, as well as the interlaminar
matrix damage (so-called delamination) is not considered in the
present study, even though needed for simulation of low-speed
impact on the considered layered CFRP.

To introduce a strain-rate sensitivity for dynamic loading, phe-
nomenological models exist and they describe empirically the
dependence of the elastic modulus (and possibly also the damage
evolution, the failure criterion, etc.) on the strain rate by polynomial
or logarithmic functions [1,2]. However, these models may suffer of

numerical instabilities during finite element analysis due to the
difficulty to obtain a realistic instantaneous strain rate.

In the wide family of the viscoelastic models used to model strain
rate sensitivity of the elastic behaviour, the rheological ones are the
most simple ones. They are based on the combination of two basic
components, a purely elastic spring (Hooke element) and a purely
viscous damper (Newton element), connected in parallel and/or in
series and lead to a linear viscoelasticity. General forms are given by
the two generalised rheological viscoelastic models: the generalised
Kelvin model and the generalised Maxwell model.

The generalised Kelvin model is well-adapted to a stress-space
formulation of a constitutive model since the stress applied to each
sub-element is equal to the total stress applied to the material.
Instead, the generalised Maxwell model is preferred for strain-space
formulations. These models are widely used in the commercial finite
element analysis software but suffer two drawbacks. The first one is
the use of a significant number of parameters. Second, as defined,
these generalised rheological viscoelastic models are linear and
cannot represent the non-linear viscoelastic behaviour of the fibre
reinforced polymers.

Another group is the family of the spectral models. Compared to
the previously mentioned generalised rheological models, the spec-
tral models provide a continuous spectrum of the relaxation times.
The number of parameters to identify is thus reduced without losing
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accuracy for describing the viscous phenomena. By using a Gaussian
description of the spectrum, Maire [3] introduces a spectral model
for the fibre reinforced polymers. Thereafter, Rémy-Petipas [4],
Schieffer et al. [5], Huchette [6], Berthe et al. [7] have gradually
improved the model by introducing thermal effects and damage
coupling. The spectral models expressed as such, however, are suf-
fering substantial computational times in case of explicit simulation
scheme.

Functional formulations are also used to describe time irrevers-
ibility problems. These formulations rely on the basis that the
instantaneous response of a material depends on the loading history.
Thus, the Boltzmann superposition principle can be applied to visco-
elastic stress analysis problems. Initially using a linear creep compli-
ance in the formulation, Lou and Schapery [8] introduced a non-
linear viscoelastic formulation for the fibre reinforced polymers.
This model was successfully used for various unidirectional compo-
sites [9—11] but essentially for creep simulations.

Other authors [12—14] use a functional formulation of the gener-
alised Maxwell model introduced by Simo and Hughes [15] to model
the behaviour of polymers or composites at high strain-rates. They
introduce also a non-linear viscoelastic behaviour by coupling the
damage and the viscoelasticity. This formulation is very attractive by
its computational efficiency, notably in explicit finite element simu-
lations, and its simple implementation. But by using a generalised
Maxwell model as basis it always remains to identify many parame-
ters.

Despite this, this last model is chosen as viscoelastic model in the
present work by its attractiveness for impact simulations thanks to
its explicit scheme. An explicit suitable damage model for the intra-
laminar damage of fabric reinforced polymers [16] is coupled with
the viscoelastic model. The coupling, by its original formulation, pre-
serves the explicit schemes of both viscoelastic and matrix damage
model, while introducing non-linear viscoelasticity. Hence, the
numerical efficiency of the complete model is preserved. In addition,
the present paper suggests a complete framework dedicated to the
implementation of the strain rate sensitivity to a given intralaminar
damage model in an explicit finite element code. The identification
procedure of the viscoelastic parameters is explained, the formula-
tion in a discrete strain space for the finite element method is pro-
vided and finally, the challenging validation procedure is detailed.

In Section 2, the linear generalised Maxwell model is described,
with the application of the Boltzmann superposition principle to
obtain the constitutive equation. Then, a coupling with a matrix
damage model [16] is proposed in the second section. Moreover, in a
third section, the formulation of this model in the finite strain frame-
work is discussed. The implementation of this newly formulated
model into an explicit finite element code is given afterwards. The
next section presents the parameter identification through straight-
forward Dynamical Mechanical Analysis. Finally, the model is vali-
dated by an experimental test campaign carried out on a high-speed
hydraulic jack facility. The details of these tests are provided in a last
section, with a particular attention to the scale effect, critical in the
damage analysis of the fabric reinforced polymers due to substantial
side effects.

2. Formulation of the constitutive model
2.1. Functional formulation of the generalised maxwell model

The generalised Maxwell model relies on the combination of only
two basic elements: a spring called a Hooke element, and a dumper
called a Newton element. By arranging these elements in series and
in parallel according to a scheme given by the generalised Maxwell
model, the model is able to describe the increase of the stiffness of
polymers at increasing strain rates.

Fig. 1. Generalised Maxwell model.

To approach the real dynamic mechanical spectrum of the fibre
reinforced polymers, the various relaxation times are introduced by
using N Maxwell elements, made up a Hooke element and a Newton
element in series, in parallel of the Hooke element (Fig. 1).

The strain € applied to the generalised Maxwell model is equal to
the strain applied to each branch (g; being the strain of the jth
branch):

e=gi=g +¢  Vje[l,N], (1)

where the subscripts e and v are respectively relative to pure elastic
and viscoelastic parts. The total stress is the sum of the stress applied
to each branch:

N
6=0.+) 0 2)
=
where the subscript j indicates the properties of the jth Maxwell ele-
ment. The stress at time t is then determined through the superposi-
tion theorem and is given by:

N

t

o(t)=0 o + Zco - exp <—;> , (3)
=] 1

with T; :ij the relaxation time of the jth Maxwell element and leads

to the relaxation modulus which is defined by: (Fig. 2)

N t
E(t)=E E;- exp(——
0= 35 p(-5): @)
with E; the elastic modulus of the jth Maxwell element. This expres-
sion of the relaxation modulus follows the form of Prony series.

To simplify the resolution of the differential equations, a single
strain increment was considered as loading of the viscoelastic model
and the relaxation stress response was described by introducing a
relaxation modulus (Eq. (4)). But the response of the viscoelastic
model has to be determined for random loading cases. The Boltz-
mann superposition principle suggests that the response of a mate-
rial to a strain increment is independent of responses due to strain
increments which have been previously initiated. Thus, let o(t) the
stress at time t due to a strain increment Agy applied at a time &
previous to t. By considering for example two strain increments, the
total stress at time t can be obtained by superposition as follows:

o(t) = o(t)+ o)
E(t—¢&p)-Agy +E(t—&,) - As,.
In a more general case, the total stress at time ¢ is obtained by sum-

ming the effects of an infinite number of perturbations and is given
by:

)

€o

0 t

Fig. 2. Strain and stress histories of the Maxwell model in a relaxation test.
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By replacing the relaxation modulus by the form of Prony series
(Eq. (4)) obtained for a generalised Maxwell model, the total stress

becomes:
o) - [ E<t—é>-d3(§)df
- / E, . 9€C) ¢
- exp( 125 0 @)
N
= Eo-e(t)+ > li(t)
A
with
-] ol 59) Sl

Ii(t) represents the stress at time ¢ on the jth Maxwell element of the
generalised Maxwell model. It is coherent with the previous consti-
tutive equation of the Maxwell element as the stress vanishes for an
infinite time.

The Boltzmann integral is able to be applied to problems in three-
dimensions. Consequently, by analogy with the previous uni-axial
approach, the scalar values can be replaced by their tensor forms.
Hence the total stress at time t results in:

N
O=Cq :&(t)+ > Ji(t) 9)
=
where
ot _
yO- [ ¢ exp (—%) Eae (10)

C» and C; are respectively the fourth-order long-term stiffness
tensor and the jth fourth-order viscoelastic stiffness tensor.

2.2. Viscoelasticity coupled with the matrix damage

The non-linear behaviour of the fibre reinforced polymers is now
introduced through the coupling of the present viscoelastic model
with an intralaminar matrix damage model.

The damage model, based on the Onera Damage Model [5,17—-19],
has been extended by Treutenaere et al. [16]. By considering privi-
leged direction of matrix cracks, the model is able to consider the
effect of the damage on the stiffness and physical phenomena due
to the displacements of the crack lips. Crack closure effects (such as
initial stiffness restoration), microscopic plasticity in the vicinity of
the cracks leading to residual strain and friction mechanisms are
examples of physical phenomena taken into account. The resulting
constitutive relation is defined as follows:

o=C:(e—£0)—CO: (' +&5—£9) (11)

where C and C° are both fourth-order tensors which characterise
the stiffness of the material.

While C° denotes the elastic stiffness tensor of the material, C
represents the effective (damaged) stiffness tensor, evolving with
the damage. £° represents the strain state where the cracks close off.
It is due to the difference between the coefficients of thermal

expansion of the matrix and of the reinforcement which creates
residual stresses during the manufacturing and temperature varia-
tion.

Following the appearance of damage, the strains do not recover
potentially their initial state when the stresses are relaxed. Some
phenomena close to the cracks and which occur at a microscopic
scale such as micro-plasticity or debris inside gaps may prevent a
complete closure. These permanent strains are called the residual
strain and are noticed g'. Their evolution is linearly dependant of the
damage emergence.

The stored strain €° can be regarded as representative of the posi-
tion of the crack lips after closure. Therefore, this internal variable is
used to introduced the energy stored but also dissipated by friction
mechanisms during the damage emergence.

From this constitutive relation, it is convenient to define the
driving strain g". Physically it may be considered as the strain of
the material reduced of the strains due to the crack lips sliding. By
the following constitutive equation:

( £0)-C0: (g7 +&°-¢£9) (12)

1O
\M

the dr1v1ng strain is thus given by:

—£0) g0 (13)
Then, the coupling between the functional formulation of the vis-

coelastic model and the interlaminar damage model is carried out

by using the effective stiffness tensor C as long-term stiffness tensor

of the generalised Maxwell model and by applying the driving strain

&h. Therefore, the constitutive equation of the strain-rate sensitive
damage model for the fabric reinforced polymers results in:

§h :§7g71 :(=:0

(et &

o =C:gh(t)+ > L) (14)
=1

where

l](t):[ C; exp(—t;—f) :dsdég)dé (15)

3. Extension of the constitutive viscoelastic model in finite strain

The formulation of a viscoelastic model in a total Lagrangian
framework have been studied extensively [15,20]. In previous work,
Flory [21] introduced the volumetric and deviatoric multiplicative
split. It relies on the hypothesis that the viscoelastic volumetric and
deviatoric responses are fully uncoupled. Kaliske [22] proposed an
efficient formulation which separates the relaxation tensor, inde-
pendent of the deformation, and the nonlinear elastic material ten-
sor, expressed according to an hyperelastic formulation. It makes
easier the parameter identification by fully uncoupling the elastic
and the viscoelastic terms.

In this work, the damageable viscoelastic model is extended in
finite strain by replacing the engineering strain tensor € and engi-
neering stress tensor o by respectively the Green-Lagrange strain
tensor E and the second Piola—Kirchhoff stress tensor 3. This
assumption was made for two reasons. Firstly, the maximal shear
strain is less than 40% for the studied materials. Thus, the spurious
softening which appears for compressive loading does not occur.
Moreover, due to the small displacements in the fibre directions, the
volumetric part of the strain tensor during the problematic large
shearing can be neglected. The decomposition of the behaviour in
volumetric and deviatoric components is therefore not essential.
Also, in a layered composite structure under impact loading, pure
large shear strain neither occurs in all plies and the structure will
fail at small strain values.
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Finally the constitutive relation in the finite strain framework is
given by:

;:Q:zh(t>+lej1;"<t>. (16)
with }

ro-=[ ¢ ew (—t;—f) 9B Bae (17)
and

E'=E-C1:C: (E"+E-E°)-E° (18)

4. Implementation in an iterative scheme

The numerical implementation of the viscoelastic model coupled
with the matrix damage model into a finite element code is carried
out by the calculation of the stress at time t,,; with the knowledge
of the strain at time t, and the time increment At 1 = ty,q —ty:

N
2 =300 (tar1) + Y 1M (tar)- (19)
j=1

The long-term stress 2 oo (t,.1) is directly obtained by the explicit
formulation of the matrix damage model. It therefore remains to
determine the different viscous stress Lf‘(tn“). Using the previously
established Boltzmann heredity integral and the additive properties
of the integrals, the viscous stress at time t,,,; becomes:

= [ e (-5 dE"(£) 4.

% T Cod¢
_ /Otn . exp< tn+ Agm —f) : dEdhég) e (20)
+ /t IGH G- exp G%) :%ég)dé

Using the multiplicative of the exponential, the viscous stress at time
t,q is expressed in function of the viscous stress at the precedent
increment:

Atnﬂ
7= exp (‘T> A (t)

o ta1 =&\  dE"(§)
o) e
Since the problem discretisation relies on the transition between dif-
ferential values and discrete times by the following relation:

(21)

dEM . EM(tyq)—E"(tn)

——= lim 22
dt Aty —0 Atﬂ+1 ' ( )

and by integrating the previously established viscous stress at time
tni1 (Eq. (21)), the exact regressive formula for the current value of
the viscous stress quantities is given by:

Atnﬂ
17— exp (77}) A (t)

1-exp <7%> =
- N 7. (Eh(tnﬂ)*ﬁh(tﬂ))'

Therefore, this viscoelastic model is set by N families of viscoelas-
tic stiffness tensor Cj;, related to a relaxation time t; provided as
parameter. The viscoelastic tensor is given by using Voigt notation
by:

Algorithm 1 Computation of the viscoelastic stresses.

Step 1. Calculation of the driving strain E" (Equation 13).

Step 2. Loading of the previous configuration 1}”(1‘,") and Eh(z‘,,,)A

Step 8. Calculation of the actual viscoelastic stress 1_77'(1&,,,“) (Equation 23).
Step 4. Storage of the actual configuration 1_;"'(15,,,“) and Eh(t,,H)A

Step 5. Addition of the actual viscoelastic stress to the infinite stress (Equa-

tion 19).

ES, 0 0 0 0 0
0 E5 0 0 0 0
o o gy 0o 0 0 24
=/ 0 0 0 GS 0 0
0 0 0 0 G O
0o 0 0 0 0 G

)

where Ej and G\'I(?k) are parameters of the model.

The strain-space formulation of this viscoelastic model is very
efficient in an explicit scheme because of the limitation of internal
equilibrium loop. By using the strain field provided in finite element
code in the material coordinate system and the viscoelastic stress
at the previous time step, the actual viscoelastic stresses are
updated. The details of the implementation procedure are given in
Algorithm 1.

5. Identification procedure of the material parameters
5.1. Experimental procedure

The identification of the viscoelastic parameters is done by
means of Dynamic Mechanical Analysis (DMA). Since the viscoelastic

10 mm
>
| |
10 mmI Lo
110 mm
Fig. 3. DMA specimen geometry.
€ €0
|
|
|
|
|
10 t
o T
g0
t

Fig. 4. Sinusoidal strain input and stress response of a visoelastic material.
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constants are not dependent of the strains, they are determined
through the study of small amplitude tensile experiments. The mate-
rial remains in the elastic part and the identification of the normal-
ised relaxation modulus can be determined without damage
correction.

These tests are carried out at room temperature on an electro-
magnetic device (Instron E3000) whith a 3 kN load cell. The speci-
mens are cut using the water-jet technique and their shape and
dimensions are shown in Fig. 3. No heels are used since the deforma-
tion remains small and in order not to distort measurements. The
distance between the clamps was set to 10 mm.

The Dynamic Mechanical Analysis are carried out by means of
small amplitude cyclic tensile experiments. The cyclic deformation
is introduced by the application of an imposed sinusoidal displace-
ment with an angular frequency w and an amplitude €. In a perma-
nent regime, the stress response of the material is sinusoidal with
the same angular frequency as the one imposed for the strains. How-
ever, the stress output is not in phase with the strain input (Fig. 4).

By the ratio of stress and strain the complex modulus E*, which is
consequently frequency dependent, is obtained:

E* (i) = 29 exp(i5). (25)
€o

By considering the split of the complex modulus given by:

E'=F +iE, (26)

the storage and the loss modulus are thus defined by:

, O

E =y cos($), (27)
”70'0

E %0 sin(d). (28)

The loss angle §, defined as the ratio between the loss modulus and
the storage modulus, namely:
E

is representative of the viscous ability of the material. When the loss
angle is null the material is purely elastic, whereas when & tends
towards Z the material is purely viscous.

The experiments were conducted at nine frequencies between
0.01 and 30 Hz. It was not possible to test materials for higher fre-
quencies with the actual facility since the machine limitations were
reached.

tan(8) = (29)

5.2. Identification of the viscoelastic constants

By using the constitutive relation between the infinitesimal
strain and the infinitesimal stress for an uni-axial model (Eq. (6))
and the definition of an input sinusoidal strain in a complex form,
the complex modulus is given by:

=Jo" E(t)- exp(Hot)dt. (30)

E(t) is the linear relaxation modulus coming from the generalised
Maxwell model and is formulated in terms of the Prony series (Eq.
(4)). Consequently, and after decomposition of the complex modulus
in real and complex parts, the storage and the loss modulus are
therefore expressed as:

(wT))
E. +§ :E 1 31
1+ (07))* G

E'(w Z iy (32)

1+ (a)rj)

N couples of viscoelastic stiffness E; and relaxation time t; are
identified such that the average square deviation between the

predicted moduli (by using Eqs. (31) and (32)) and the measured

storage E;,, and loss E¢,, moduli at M frequencies wy such as:

2 2
E'(wr) E"(ax)
rEl:Jlltl;l ; |: Eexp ]> * E/E/XP 1> :| (33)

is minimum.

5.3. Identification of the intralaminar matrix damage parameters

Because the matrix damage is only acting on the long-term stiff-
ness tensor (Section 2.2) and not on the viscous terms, and as the
viscous stiffness tensor and the relaxation times are identified in the
elastic part of the behaviour, the coupling between the viscoelastic
model and the intralaminar damage model does not affect the iden-
tification procedure of both models.

As a consequence, the intralaminar matrix damage parameters
need to be evaluated after the identification of the viscoelastic
parameters with the same procedure as described in Treutenaere
et al. [16]. Nothing change, except the initial (visco)elastic parame-
ters now provided by means of DMA.

6. Evaluation of the material model
6.1. Investigated materials

This section describes the ability of the material model to predict
the dynamic behaviour of Carbon Fabric Reinforced Polymers made
up with three various fabric preforms, namely a bi-axial non-crimp
fabric (see Fig. 5), a 3K plain-weave woven (see Fig. 6) and a 12K
plain-weave woven (see Fig. 7). The matrix material is an epoxy

(a) Front side (b) Back side

Fig. 5. Overview of the non-crimp fabric preform.

(a) Front side (b) Back side

Fig. 6. Overview of the 3K woven textile preform.

Fig. 7. Overview of the 12K woven textile preform.
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Table 1
Viscoelastic parameters of the damageable viscoelastic model for the
various fabric preforms. Gj§,, are expressed in MPa and t;in's.

Parameters NCF 3K woven 12K woven
T 100 100 100
Git) 351.19 325.46 164.55
T 17.78 17.78 17.78
Gy 137.30 23.59 87.50
T3 3.16 3.16 3.16
Gili 174.22 103.30 155.00
T4 0.562 0.562 0.562
Gz 207.20 73.68 126.70
Ts 0.1 0.1 0.1
Gilia) 122.60 84.74 109.6
T6 0.018 0.018 0.018
GEliz) 120.58 76.05 159.72
77 0.00316 0.00316 0.00316
Gl 81.42 39.93 247.36
4500
4000 TR x =
gssoo . x : =
<3000 =
0 &
= 2500 — 2]
<. £
ézooo — 2
%1500 -
21000 3
w0
500 — -
+ +
0 T T T o T T
-3 -25 -2 —-15 -1 —-05 0 0.5 1 1.5 2
Log|f(Hz)|

Identified storage modulus
Measured storage modulus  x

Identified loss modulus
Measured loss modulus  +

Fig. 8. Storage and loss modulus of biaxial non-crimp based composite.

3500
3000 -
= —

<
= 2500 HE
~ =
Z 2000 o
: E
2 1500 — g
£ 1000 2
S s
@ 500 o

+ + + + + +
0 T T T \ T T Tt

T
-3 =25 -2 -15 -1 =05 0 0.5 1 1.5 2
Log|f(Hz)|

Identified loss modulus

Identified storage modulus
Measured loss modulus  +

Measured storage modulus  x

Fig. 9. Storage and loss modulus of 3K woven based composite.

resin coming from the polymerisation of the EPIKOTE™ 05475 by
using the curative EPIKURE" 05500.

The parameter identification of the viscoelastic model is carried
out by using seven Maxwell elements. The optimisation procedures
were carried out thanks to the commercial software Matlab® to min-
imise the Mean Square Error between the numerical and the experi-
mental discrete relaxation spectra. As the storage modulii are much
higher, and consequently being more influential on the mechanical

Table 2
Intralaminar matrix damage evolution parameters of the damage-
able viscoelastic model for the various fabric preforms — Part I.

Parameters Units NCF 3K woven 12K woven
E9=ES MPa 61,062 46,589 49,212
o] =y MPa 277,722 147,722 286,678
Va1 / 0.13 0.10 0.05
G, MPa 3000 3000 3000
25 MPa 0 1013 784
ek / 0 0.173 0.126
by =b, / 0 0 0
dl‘f:;‘r::) = da(z] / 0 0 0
Yoy = Yo / 0 0 0

nm __ y,nm
I8 0 0

1 = P2
d;{‘{) d‘cfz'] / 0.590 0.673 0.476
yéfg]) = yérﬁr,‘z) / 0.004 0.004 0.004
Y&y =Y / 0.735 0.876 0.032
pim = pim / 0.260 0.107 0.416
dtﬁ?m§> / / 0 /
ViR, / / 0 /
y§(3> / / 0 /
5" / / 0 /
Table 3

Intralaminar matrix damage evolution parameters of the dam-
ageable viscoelastic model for the various fabric preforms —

Part II.

Parameters Units NCF 3K woven 12K woven
hile(l) = hi?(Z) / 0 0 0
hﬂ:](l) = h]rﬂ[Z / 1 1 1
Rty = M / 0 0 0
7 / / 0386 0.220
Yo / / 5.128 5.483
Yea) I / 49.387 22.740
ps / / 1.738 1.465
M) / / 1 /
&= / 0 0 0
& / / 0 /

Table 4

Intralaminar matrix damage friction parameters of the damage-
able viscoelastic model for the various fabric preforms.

Parameters Units NCF 3K woven 12K woven
m$ = md / 0.004 0.016 0.005

my' =my / 26.115  6.129 19.220

mj / / 0.164 0.063

my / / 100.00 61.12

e =ed / 0.01 0.01 0.01

af = af /0 0 0

ed / 0.01 0.01 0.01

response, than the loss modulii, the choice was done to better fit the
evolution of the storage modulii.

The results of the parameter identification of the viscoelastic con-
stants of the various CFRP are provided in Table 1 and Figs. 8 and 9.

The drop in loss modulus for frequencies greater than 10 Hz is
not representative of the pure viscoelastic behaviour of the materi-
als. In this frequency range, the specimens suffer from important
self-heating. As a consequence, the identification could start to be
not conservative for moderate high frequency. In order to precisely
identify the viscoelastic parameters for frequencies reached in
pedestrian impacts, the identification procedure still needs improve-
ment. An investigated approach is to use the time-temperature
equivalence to artificially reach higher strain-rate by cooling the
material.
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10 mm
25 mm

Shear stress

Shear strain

(a) Biaxial non-crimp fabric

10 mm
25 mm

Shear stress

Shear strain

(b) 3K woven fabric

Fig. 10. Highlighting of the scale effect by the evolution of the specimen responses on tensile tests at 45° according to the fibre direction. Two different specimen widths have

been tested: 10 mm and 25 mm.

The re-evaluated matrix damage parameters [16] are given in
Tables 2—4.

The frequency range used for these DMA tests corresponds
approximately to strain-rate from 1e s to 20 s7'.

6.2. Tensile tests at different strain rates with standard specimens

In order to evaluate the ability of the model to represent the
strain rate sensitivity of the CFRP, dynamic loading tests have been
carried out at various strain rates. A hydraulic high speed device
(Instron 65/20) with a 30 kN load cell is used for these tests. In order
to ensure as much as possible a constant strain rate, the device is fit-
ted with a piston system (Fig. 12). The piston stroke is used as slide
during the acceleration phase of the hydraulic jack. At the end
stroke, the translation speed, which reached a constant value, is
transmitted to the piston.

Usually, specimens with reduced dimensions are used for
dynamic testings. The dynamic facilities are not able to sustain the
same maximal amount of force as the static ones. For this purpose,
the specimen width is reduced to limit the specimen area. Further-
more, at constant loading speed the strain rate is artificially
increased by reducing the specimen length.

Berthe [23] has shown that in case of fabric reinforced materials,
the specimen length had to be at least two times greater than the
specimen width. However the fabric reinforced polymers force to
maintain a minimal width in order to present enough representative
volume elements due to the roving size. An other aspect of the fabric
reinforced polymers is critical in the choice of the coupon width:
these materials show important edge damage and reduce the effec-
tive cross-section. If the ratio between the effective-cross section
and the initial cross-section of the specimen is not at least those pro-
vided by standard coupons, the results become non-representative
of the real material behaviour (Fig. 10).

Despite all the technical drawbacks, the dynamic specimens are
designed to be identical to the coupons used for the standardised
quasi-static in-plane shear tests (Fig. 11), which correspond to ten-
sile tests at 45° according to the material direction, and are cut using
the water-jet technique. Because of the original specimen dimen-
sions for dynamic tests, none suitable clamping device were existing.

50 mm

25 mmI |
Y

1 IIIIII?F *

I 1
250 mm

Fig. 11. Tensile specimen geometry.

Thus, as part of that work, a new clamping system has been
designed. Three requirements specifications were formulated:

e to clamp standardised specimens;

e to apply homogenised clamp pressure in order to avoid a prema-
ture failure in the heels;

e to reduce the mass as much as possible in order to limit the iner-
tial effects.

The adopted design solution consists of a prismatic clamping. The
Computer-Aided-Design-based digital mock-up is shown Fig. 12. By
screwing the external parts, namely the screw and the hood, the
screw applies a pressure through the chocks on the clamp bottom
surfaces inclined at 30°. Also, a pressure is applied by the hood on
the clamp top surfaces. Hence, it results that homogeneous compres-
sive forces are applied to the specimen heels.

According to experimental observations the strain rate sensitivity
occurs mainly for shear loading in the material coordinate system
(since the viscoelasticity of the resin is negligible when compared to
the pure elastic stiffness of the fibres [24]) and due to the limitations
of the hydraulic high speed device, only tensile tests at 45° according
to the fibre directions are carried out. Except the speed loading, these
dynamic tests are similar to the NF EN ISO 14,129 standard used to
determine the in-plane shear properties of the composite materials.
They are carried out at room temperature and at 3 speed loadings
(1.7, 41 and 1000 mm s!) which correspond to approximate equiva-
lent strain rates of 1 102, 3 107" and 6.5 s~. Three coupons per speed
loading are used to evaluate the repeatability of the results.

The results were conclusived as no heel fracture occurred. A
moderate self-heating of the specimens has been observed at
1000 mm s!. For higher strain rates, the comparisons between
experiments and simulations with non-thermal dependant models
should be treated with caution.

hood —‘/—0/ |
screw

Fig. 12. Prismatic/screwing clamping system for dynamic tensile tests.
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6.3. Comparison of the numerical model with the experiments

The present damageable viscoelastic model is implemented in
FORTRAN 90 in a user material subroutine as described Section 4
for the explicit finite element code LS-DYNA". Belytschko-Tsay shell
elements with reduced integration are used for CFRP sections.

As validation procedure, the dynamic tensile tests (presented
Section 6.2) and the quasi-static cyclic tensile tests (0.033 mm s1)
at 45° according to the material direction, used to evaluate the in-
plane shear properties, are simulated. Note that the cyclic tests are
used to identify the matrix damage parameters. The hysteresis loop
are due to both phenomena: friction of crack lips and viscoelasticity.
however after parameter identification, the model predicts that
most of the dissipated energy is due to the friction mechanisms. The
tensile tests at 45° are used as validation tests of the viscoelastic
part of the whole model since they are the most sensitive to the
matrix viscoelasticity. Before comparing the numerical results with
the experimental tests, some audits of the numerical model were
carried out. Because of the sudden acceleration of the test device in
dynamic loading case, the eigenfrequencies of the system are excited
which can lead to a parasite noise in the measured response. Thus, a
modal analysis of the system (high speed jack piston, clamping
device, specimen and load cell) was made. The results demonstrate
that the low eigenfrequencies (3.1 and 6.7 KHz) which may distort
the force measurements are due to the mass of the clamping devices,
the stiffness of the specimen and the piston. Thus, unlike the simula-
tions of the quasi-static tests, the model simplification by applying
directly the loading rate on the central parts of the specimen need to
be verified. A first simulation of dynamic tensile loading at 45°
according to the material direction at 1000 mm s, which includes
the piston, the clamping devices and a bi-axial non-crimp fabric
specimen, has been carried out. The vibration predicted by the
modal analysis occurs and leads to a slightly noisy response as
expected. Another simulation have been carried out, but this time by
imposing the measured strain-rate on the part of the specimen
between the extensometer. The longitudinal displacement is there-
fore constrained with the measured values and the transverse dis-
placement is free. After verification of the mesh convergence which
occur with only one element since the deformation is homogeneous
in this area, the force response of both simulations are then com-
pared and the results are shown (Fig. 13). Note that the displace-
ments are obtained by using a virtual extensometer in the middle of
the specimen. Thus, the results are well compared in an area which
is homogeneously deformed. The noise on the force response of the
full device is not representative of the material behaviour. Therefore,
and since the results are significantly close, the model reduction is

16000 ‘ ‘
Full device
14000 |-Specimen only —— |
12000 -
—~ 10000 -

8000 -

Force (N

6000 -
4000 -
2000 H -

0 ! ! ! ! !
0 0.5 1 1.5 2 2.5 3

Displacement (mm)

Fig. 13. Comparison of the force responses of a dynamic tensile tests at 45° according
to the fibre direction given by a simulation where the full device is modelled, or by a
simulation where only the coupon is considered.
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Fig. 14. Comparison between the experimental tests and the numerical modelling of
tensile tests at 45° according to the fibre direction at various strain rates for the non-
crimp fabric composite.
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Fig. 15. Comparison between the experimental tests and the numerical modelling of

tensile tests at 45° according to the fibre direction at various strain rates for the 3K
woven fabric composite.
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Fig. 16. Comparison between the experimental tests and the numerical modelling of
tensile tests at 45° according to the fibre direction at various strain rates for the 12K
woven fabric composite.

validated. Therefore, the following simulations will be carried out on
a single specimen.

The results of the dynamic tensile tests at 45° according to the
fibre direction carried out on three various fabric reinforced poly-
mers are given Fig. 14 (bi-axial non-crimp fabric), Fig. 15 (3K woven
fabric preform) and Fig. 16 (12K woven fabric preform). The oscilla-
tions on the numerical response at 1000 mm s are due to the use
of the real displacements of the hydraulic jack given by the experi-
mental tests as input of the simulation. These displacements being
noisy, the resulting responses are noisy too.

Also, it is essential to recall that the coupling between the visco-
elastic model and the matrix damage model is done without addi-
tional parameter. Moreover, the parameters of both modules of the
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model are identified independently: quasi-static cyclic tensile tests
for the matrix damage and Dynamic Mechanical Analysis for the vis-
coelasticity. The viscoelastic parameters lead to an approximation of
the real behaviour of the fabric reinforced polymers at various strain
rate and need to be adapted for a good correlation with the experi-
ments. The Dynamic Mechanical Tests are suffering of several draw-
backs which can lead to the identification of non-representative
parameters of the real strain-rate behaviour. The load capacity of the
device is limited and the investigated materials are very stiff. More-
over, an important self-heating of the specimen occurs during DMA
testing. Because of the epoxy response is temperature dependent,
the identification may be distorted. By keeping in mind this context,
the correlation between the experiments and the numerical model
is good.

Due to a mistake in the calibration of the load cell, no data for the
bi-axial non-crimp fabric material at 1.7 mm s are available. Even
so, the simulation response at this speed loading is plotted Fig. 14.

For the 3K woven fabric, the identification was more challenging.
The quasi-static cyclic tensile tests at 45° according to the fibre
direction used to identify the matrix damage were not carried out in
the same period that the dynamic test campaign. Thus, as seen
Fig. 15, the aging effect leads to a softening of the material and the
experimental response at 1.7 mm s is similar to the 0.033 mm s!
response. A compromise was carried out during the identification
procedure to obtain a acceptable distribution of the stress response
according to the strain-rate.

7. Concluding remarks on the strain-rate dependency

The strain-rate sensitivity of the fabric reinforced polymers is
greatly induced by the viscoelastic behaviour of the resin used as
matrix. Among the various viscoelastic model, the generalised Max-
well model is used in the material law. This model offers the advan-
tages of a very simple implementation into a finite element code,
and most important a proved efficiency for explicit finite element
simulations. Therefore, since the strain-rate dependency is essen-
tially due to the matrix, the viscoelastic model is coupled with an
intralaminar matrix damage model. This coupling is introduced by
the definition of the driving strain, dependent on matrix damage,
which acts on the generalised Maxwell model. The identification of
the generalised Maxwell model is done by widespread Dynamic
Mechanical Analysis. None additional parameter is needed for the
coupling with the matrix damage.

This model is then validated through dynamic tensile tests at 45°
according to the fibre direction by using an high-speed jack device.
A new clamping system have been designed to allow dynamic tests
on standardised coupons. Moreover, this clamping device avoids the
premature failure in the heels. The simulations of the validation tests
show good correlation on the various preforms.

The procedure for parameter identification of the viscoelastic
model suffers of drawbacks. The facility used for DMA have a limited
load capacity. Consequently, the frequency is limited to 30 Hz which
restrained the identification of the viscoelastic spectrum to rela-
tively low strain rates (less than 20 s). However, for simulation of
pedestrian impacts, the strain-rate range needs to be extended to
approximately 100 s'. By using a time/temperature dependence, it
could be possible to identify other parts of the spectrum. Also, this
temperature dependence could be implemented directly in the
viscoelastic model. In the future, another procedure to identify the
viscoelastic parameters, such as creep tests or the SEE method which
consists in plotting a three-dimensional surface given by the stress
response and depending on the strain and the strain-rate, has to be
investigated [25].
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