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based on the numerical solution of momentum, energy andmass transport equations in
as shown that increased nanoparticle concentration enhances heat transfer.
1. Introduction

Adding nanoparticles to a pure fluid significantly increases heat
transfer; an overview of the arising physical phenomena and their
quantification is elucidated in the reviews of Wenhua et al. [1], Kakaç
and Pramuanjaroenkij [2] and Buschmann [3]. A study of heat transport
in suspensions of nanoparticles in nanofluids has been undertaken by
Keblinski et al. [4]. During the last years, the number of investigations
into heat transfer in nanofluids with phase transitions has significantly
increased due to the perspective to use nanofluids e.g. for in quenching
processes (Kim et al. [5]) and nuclear engineering (Bang et al. [6]). It has
been noticed inmany studies that at boiling of different nanofluids, HTC
(or wall heat flux) has significantly increased, for instance, by up to 4 to
5 times in experiments of Rohsenow [7] at boiling of water with an ad-
dition of TiO2 and Al2O3 nanoparticles. Nanoparticles of TiO2, SiO2, CeO2,
Al2O3, Au and ZnO added to water and ethylene glycol abruptly, by 170
to 200%, increased the CHF [5]. Analogous results for the HTC and the
CHF in nanofluids were described in the works of Ramesh and Prabhu
[8], Wang and Mijumdar [9] and Bang and Chang [10].
hevchuk).

DOI : 10.1016/j.mo
Heat transfer intensificationwas different in different investigations.
In experiments of Ramesh and Prabhu [8] in nucleate boiling of CuO-
water nanofluid, theHTC and theCHF increased togetherwith thenano-
particle concentration. After the nanoparticle concentration reached 1%,
the HTC passed over its maximum and began decreasing. In the experi-
mental study of boiling of an Al2O3-water nanofluid performed by Bang
and Chang [10], an increase in the nanoparticle concentration caused an
increase in the CHF up to 32% over a horizontal and 13% over a vertical
surface. However, Wang and Mijumdar [9] and Lotfi and Shafii [11] re-
vealed heat transfer and CHF decrease at boiling in nanofluids. Bang et
al. [6] attributed the aforementioned differences in the boiling curves
to appearance of a nanoparticle layer on the heated wall. This layer is
several microns thick and may change the contact angle (responsible
for wettability of a solid surface by a liquid) and the number of nucle-
ation cites. Simultaneously, the onset of a nanoparticle layer expedites
heat conduction on the heating surface.

Experimental studies of the boiling processes in nanofluids have
been intensively performed during the last several years. Heat transfer
measurements in pool boiling of functionalized nanofluid at atmospher-
ic and sub-atmospheric pressures done by Yang and Liu [12] demon-
strated increased HTC as compared with pure water and almost no
effect on the CHF. Experimental studies of Wen et al. [13] on nucleate
lliq.2016.08.038 1



Nomenclature

A parameter А, the relation between the mechanisms of
the thermophoretic and Brownian diffusion, Eq. (30)

c specific heat capacity
dp particle diameter
DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
f self-similar stream function
g acceleration of gravity
G mass flow rate through the vapor film
h enthalpy
H self-similar function of enthalpy
Jah , Ja Jacoby numbers, Eqs. (27) and (34)
k thermal conductivity of the vapor with nanoparticles
kB Boltzmann constant
Le Lewis number
Lυ latent heat of vaporization
Nu Nusselt number, Eq. (41)
Pr Prandtl number
Sc Schmidt number
T temperature
u streamwise velocity component
v wall-normal velocity components
x, y Cartesian coordinates

Greek symbols
α heat transfer coefficient, Eq. (42)
δ thickness of the vapor film
η self-similar variable, Eq. (14)
Θ dimensionless temperature, Eq. (30)
μ dynamic viscosity
ρ density
ϕ nanoparticle concentration (volume fraction)
Φ self-similar function of nanoparticle concentration

Subscripts
f fluid
p properties of nanoparticles
υ properties of the pure vapor
w wall
∞ outer boundary of the condensation film

Acronyms
HTC heat transfer coefficient
CHF critical heat flux
3D three-dimensional
boiling heat transfer with aqueous alumina nanofluids revealed that de-
position of particles onto a heating smooth surface increased surface
roughness resulting in increased nucleate boiling heat transfer, whereas
geometry of a rough surface has not changed,which resulted in a similar
boiling curve. Park et al. [14] investigated film boiling of Al2O3

nanofluids on a small (10 mm diameter) steel sphere and showed that
presence of nanoparticles intensified vaporization atfilm boiling and di-
minishes heat flux. Nevertheless, the literature presents practically no
data on the effect of nanoparticles on laminar film boiling over a vertical
flat surface relevant to transport phenomena in biotechnology and food
processing industry.

During the last years, numerous authors have undertaken theoreti-
cal studies of heat transfer in nanofluids. Thama et al. [15] modeled
boundary layer flow of a nanofluid with the help of the Buongiorno-
Darcy model and a finite-difference scheme. Effects of thermophoresis
were studied theoretically by Eslamian and Saghir [16]. 3D transient
DOI : 10.1016/j.molli
model of a vapor chamber was developed by Hassan and Harmand
[17], who studied effects of nanofluids on the performance of this
vapor chamber. Altaç and Altun [18] performed a numerical study of
steady-state developing flow and heat transfer of a nanofluid in a spiral
tube coils using the FLUENT software. Li et al. [18] discussed the phe-
nomenon of formation of a porous layer of deposited nanoparticles on
the heated wall, which incurs much higher average nanoparticle con-
centration in the microlayer in comparison with the rest of the liquid.
A novel heat flux partitioning model for nucleate boiling of nanofluids
considering nanoparticle Brownian motion in a liquid microlayer en-
abled Li et al. [18] to model this phenomenon.

A newmathematic model was developed by Li et al. [19] to simulate
nucleate pool boiling of nanofluidswith account for Brownianmotion of
nanoparticles, active site density and the bubble departure diameter.
The model of Li et al. [20] works in combination with two-fluid boiling
model employed to simulate the nucleate pool boiling process.

Self-similar analysis as an analytical mathematical approach is cur-
rently widely used to model laminar and turbulent boundary layer
flows over flat surfaces. This approach has been also employed for
nanofluid flow by Avramenko et al. [21,22], whereas thermophysical
properties of a nanofluid as a function of both nanoparticle concentra-
tion and temperature are included in the model. Here the symmetry
analysis was used as a mathematical methodology to find out individu-
ally fitted self-similar variables and functions.

Koh [23] was apparently the first who proposed a self-similar ap-
proach for modeling stable film boiling of a pure one-phase liquid
over a flat plate and derived a system of ordinary differential equations
to be numerically solved for this purpose. Boundary-layer equations
were simultaneously treated for liquid and vapor phases. Koh [23]
showed that in boiling heat transfer the interfacial shear is an important
parameter, which quite different from zero.

Avramenko et al. [24] developed analytical models of Bromley [25]
and Ellion [26] used to simulate heat transfer at stable film boiling of a
nanofluid film a vertical plate. The basic assumption of Avramenko et al.
[24] was that the inertia force of the vapor film is negligibly small. The
authors found six major non-dimensional parameters, which describe ef-
fects of the nanoparticles on heat transfer and fluid flow in the vapor film.
Itwas shown that an increase in the nanoparticle concentration expedites
the processes of momentum, mass and heat transfer.

The model of Avramenko et al. [24] has been also used in a series of
other investigations. These works have been devoted to the study of
heat transfer in film boiling of nanofluids [27] and magnetic nanofluids
[28,29]. Themodelwas implemented as a component part of themodel-
ing approach based on numerical methods of simulations.

However, as it was shown by Koh [23], the assumption regarding
vanishingly small influence of inertia force is valid only for the case
where the parameter Ja/Pr is less than unity (a discussion and interpre-
tation of this parameter is given below in the main body of the paper).
With the increase in the parameter Ja/Pr, the role of inertia force also in-
creases, which makes including it in the mathematical model and fur-
ther calculations inevitable.

In view of the aforementioned, this article focuses on the study of
heat transfer in film boiling of a nanofluid over a vertical surface with
account for inertia force in the mathematical model. While considering
the problems of heat transfer in nanofluids, one must take into
account combined effects of the nanoparticle concentration on all
thermophysical properties, because theHTC, being a function of thermal
conductivity, is also subject to the influence of the flow structure, thick-
ness of the condensation layer and other flow characteristics.

The model proposed in this investigation is an extension of the
model suggested by Koh [23] to be applied for the study of heat transfer
at film boiling over a vertical surface. This model includes the transport
equation for the nanoparticle concentration taking into consideration
heat transfer intensification due to the addition of nanoparticles plus
the effects of mass transfer. Using the formulated model, one needs to
search for the dimensionless parameters, which outline the effects of
q.2016.08.038 2



nanoparticles onfluidflow, heat andmass transfer, in order to derive re-
lations for velocity profiles, mass flow rate and heat transfer rate. Oppo-
site to the most of the theoretical studies of nanofluid flow, our work
considers in full effects of nanoparticles on the viscosity, thermal con-
ductivity and density of the nanofluid.

Lie group theorywill be employed to obtain self-similar formsof var-
iables for the flow rate, enthalpy, nanoparticle concentration and trans-
port equations.

Application of the theory of Lie groups will be used to find out self-
similar forms of differential equations in the most general form taking
into account any arbitrary dependence of physical properties (viscosity,
thermal conductivity and diffusion coefficient) on the nanoparticle con-
centration and temperature. Therefore the finally derived equations are
universal since they do not depend on the specific functional depen-
dence of physical properties.

2. Mathematical model

The present study focuses on a problem of convective heat transfer
between a vapor layer (or film) and a vertical flatwall kept at a constant
temperature Tw (Fig. 1). In the chosen coordinate system, the x coordi-
nate is aligned with the wall surface, the y coordinate is orthogonal to
it, whereas the zero point of is located on the wall (Fig. 1). The vapor
in the film moves upwards towards the larger x-values. The fluid sur-
rounding the vapor film contains nanoparticles with concentration ϕ∞.
Here subscript w means conditions on the wall and subscript ∞ stands
for conditions at the outer edge of the vapor layer. The vapor film has
thickness δ, which is significantly smaller than the length of the wall,
which backs up the boundary layer assumption used for modeling the
film. The vapor, as well as the fluid temperature T∞ at the outer bound-
ary of the film y= δ, are equal to the saturation temperature at a given
pressure. The wall is heated more than the fluid: TwNT∞.
Fig. 1. Schematic of the modeled geometry.

DOI : 10.1016/j.mo
The problem solution will be found given the following assump-
tions: vapor density is much smaller than fluid density; surface tension
effects at the outer boundary of the vapor film, as well as fluid flow out-
side of the vapor film, can be ignored.

Based on these assumptions,fluid flow, heat andmass transfer in the
vapor filmwith nanoparticles over a heatedwall can be describedby the
following differential equations

∂ρu
∂x

þ ∂ρv
∂y

¼ 0 ð1Þ

ρ u
∂u
∂x

þ v
∂u
∂y

� �
¼ ∂

∂y
μ
∂u
∂y

� �
þ gρ f ð2Þ

ρ u
∂h
∂x

þ v
∂h
∂y

� �
¼ ∂

∂y
k
∂T
∂y

� �
þ ρpcp DB

∂ϕ
∂y

∂T
∂y

þ DT

T
∂T
∂y

∂T
∂y

� �
ð3Þ

u
∂ϕ
∂x

þ v
∂ϕ
∂y

¼ ∂
∂y

DB
∂ϕ
∂y

þ DT

T
∂T
∂y

� �
ð4Þ

where u and v are streamwise and wall-normal velocity components
(i.e. x- and y-components), respectively; ρ, μ and k are density, viscosity
and thermal conductivity nanovapor; ρf is fluid density; ρp and cp are
density and specific heat capacity of the particles; h = cT and c are en-
thalpy and specific heat capacity nanovapor; T is temperature; ϕ is
nanoparticle volume fraction; DB and DT are Brownian diffusion coeffi-
cient and thermophoretic diffusion coefficient, respectively. Eqs.
(1)–(4) are complemented with the following additional relations [30]

μ ¼ μυ

1−ϕð Þ2:5
; DB ¼ kBT

3πμdp
; DT ¼ β

μ
ρ
ϕ ð5Þ

ρ ¼ 1−ϕð Þρυ þ ϕρp;

ρc ¼ 1−ϕð Þ cρð Þυ þ ϕ cρð Þp;
β ¼ 1−ϕð Þβυ þ ϕβp

ð6Þ

k ¼ kυ
kp þ 2kυ þ 2ϕ kυ−kf

� �
kp þ 2kυ−ϕ kυ−kf

� �
" #

ð7Þ

where subscripts υ and p stand for vapor and particles, respectively; kB
is the Boltzmann constant, dp is the particle diameter.

To solve Eqs. (1)–(4), the boundary conditions suggested by Ellion
[26] will be applied here. These boundary conditions specify stationary
fluid environment and have been also used as a limiting case in the in-
vestigations of Koh [23]

u ¼ v ¼ 0; T ¼ Tw; DB
dϕ
dy

� �
y¼0

¼ −
DT

T∞

dT
dy

� �
y¼0

at y ¼ 0; ð8Þ

u ¼ 0; T ¼ T∞; ϕ ¼ ϕ∞ at y ¼ δ ð9Þ

The last relation in Eq. (8) outlines mathematically equality of the
total flux of nanoparticles (Stefan's flow) on the wall at y = 0 due to
the concentration gradient (the left-hand of the last Eq. (8)) to the
total flux of nanoparticles incurred by the temperature gradient (the
right-hand side of the last Eq. (8)) in line with suggestions of Lienhard
IV and Lienhard V [31] and Baehr and Stephan [32].

Following Koh [23], a relation for the outer boundary of the vapor
layer δ will be obtained from the mass balance

dG ¼ k∞
dT
dy

� �
y¼δ

dx ð10Þ
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where

G ¼
Zδ
0

ρudy ð11Þ

is the mass flow rate in the vapor film, k∞ is the thermal conductivity at
y = δ, and Lυ is the latent heat of vaporization.

3. Symmetry and self-similar forms of equations

An advantage of self-similar solutions consists in the possibility to
reduce the system of partial differential Eqs. (1)–(4) to ordinary differ-
ential equations. The mathematical methodology widely used for this
purpose is symmetry analysis (i.e. the Lie group analysis). Symmetries
of systems (1)–(4) can bederivedwith the help of the infinitesimal gen-
erator [33]

q ¼ ξ1
∂
∂x

þ ξ2
∂
∂y

þ φ1
∂
∂u

þ φ2
∂
∂v

þ φ3
∂
∂T

þ φ4
∂
∂ϕ

þ ζ1
∂
∂ρ

þ

ζ2
∂
∂μ

þ ζ3
∂

∂DB
þ ζ4

∂
∂DT

þ ζ5
∂
∂c

þ ζ6
∂
∂k

ð12Þ

where equations for the coefficients
ξ1 ,ξ2 ,φ1 ,φ2 ,φ3 ,φ4 ,ζ1,ζ2 ,ζ3 ,ζ4 ,ζ5 ,ζ6 are relegated to the appendix.

For two reasons, the most convenient symmetry to derive self-simi-
lar variables is the Lie sub-algebra ~q6 (Eq. (A22)). Firstly, in contrary to
~q1 that describes translation symmetry with respect to coordinates x
and y, the symmetry ~q6 involves scalingwith symmetry respect to coor-
dinates x and y, which is useful at buildingup the self-similar forms. Sec-
ondly, the sub-algebra ~q6 is free from transformations with respect to T,
φ, ρ, μ, DB, DT, c and k.

As the next step, symmetry (Eq. (A22)) should be correctedwith ac-
count for any of the functional dependences ρ = ρ(φ), μ = μ(φ), DB =
DB(T), DT = DT(φ), c = c(φ), k = k(φ). The resulting self-similar func-
tions of these variables do not contain parametric variables, for exam-
ple, a function of the coordinate x. The only self-similar functions
containing parametric variable are those for u(x, y) and v(x, y), because
these velocity components are included into the infinitesimal generator
(Eq. (A22)).

At first, let us find the self-similar variable η derived from Eq. (A22)
using the equation

x
∂η
∂x

þ 1
4
y
∂η
∂y

¼ 0 ð13Þ

Integration of Eq. (13) yields the following solution

η ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gρ fρυ

4μ2
υx

4

s
ð14Þ

Parameter gρfρυ/μυ2 in Eq. (14) was used solely for the purpose of
parameterization of the self-similar variable, whereas the coefficient 4
was involved in order to transform the variable (Eq. (14)) in the limiting
case to the respective variable for pure vapor [23]. The present analysis
of the self-similar forms is valid for the condition of F8= 0. The function
F8 describes transposition principle of Prandtl, see Oberlack [34], and
can be involved in the analysis of flow over surfaces having variable
geometrical form. We consider here a flat plate, which means that
F8 = 0.

At second, let us determine the self-similar function f from Eq. (A22)
using the following relation

x
∂ f 0

∂x
þ 1
2
u
∂ f 0

∂u
¼ 0 ð15Þ
DOI : 10.1016/j.molli
Here derivative f′(η) is used for the sake of convenience in integrat-
ing the continuity Eq. (1). Integration of Eq. (15) brings

ρu ¼ 2ρ∞ f 0 ηð Þ
ffiffiffiffiffiffiffiffiffiffiffi
gx

ρ f

ρυ

s
ð16Þ

Keeping in mind that continuity equation includes variable density,
it makes sense in Eq. (16) to use parameter gρf/ρυ again solely for pa-
rameterization of the self-similar variable. The coefficient 2 was in-
volved with the purpose to have an opportunity to reduce Eq. (16) to
the conditions for pure vapor [23].

Integration of the continuity Eq. (1) with account for Eq. (16) yields

ρv ¼
ffiffiffiffiffiffiffiffiffiffiffi
gρ f

4xρυ

4

s
ρ∞ f 0 η−3 f
� � ð17Þ

Introducing self-similar functions for enthalpy and nanoparticle vol-
ume fraction

h ¼ h∞H ηð Þ; ϕ ¼ Φ ηð Þ ð18Þ

and substituting Eqs. (16), (17) and (18) into Eqs. (2), (3) and (4)
results in derivation of a system of ordinary differential equations

Mf ‴ þ 3R ϕ∞ð Þ f þ M0−2M
R0

R

� �
Φ0

� �
f ″þ Φ02 ð2M R0

R

� �2

−M0 R
0

R
−M

R″

R

" !

− 3Rυ ϕ∞ð ÞΦ0 þ MΦ″
� �

R0

R

�
f 0−2R ϕ∞ð Þ f 02 þ R

R ϕ∞ð Þ ¼ 0 ð19Þ

KH″ þ 3PrRC
R ϕ∞ð Þ

R
fþ

�
1
Le

þ K 0 þ 2
D
Le

þ K
� �

R0

R
−

RC0

RC

� �� �� �
Φ0
�
H0

þ½KΦ″ R0

R
−

RC0

RC

� �
þΦ02ð 1

Le
R0

R
−

RC0

RC
þ D

R0

R

� �2

−2
R0

R
RC0

RC
þ RC02

RC2

 ! !

þK 0 R0

R
−

RC0

RC

� �
þK 2

RC02

RC2 −2
R0

R

� �2 RC02

RC2 þ R″

R
−

RC″

RC

 !!#
H þ D

Le
H02

H
¼ 0

ð20Þ

1−
RC
RC0 Dþ R0

R

� �� �
Φ″−

RC
RC0

H0

DT

D0
T

H
þ D0

B

� �
þ 3Sc

R ϕ∞ð Þ
R

RC
RC0 f

� �
Φ0

þ D0
T

DT
1−

R0

R
RC
RC0

� �
þ R02

R2

RC
RC0 −

RC0

RC
−

R″

R
RC
RC0 þ

RC″

RC0

" #
Φ02

þ RC
RC0

H02

H2 −
H″

H

!
¼ 0

ð21Þ

where

R ϕð Þ ¼ 1−ϕð Þ þ ϕrpυ; RC ϕð Þ ¼ 1−ϕð Þ þ ϕ
ρpcp
ρυcυ

;

M ϕð Þ ¼ 1−ϕð Þ−2:5; K ϕð Þ ¼ κ þ 2þ 2ϕ κ−1ð Þ
κ þ 2−ϕ κ−1ð Þ ; rpυ ¼ ρp

ρυ
; κ ¼ kp

kυ

Pr ¼ μυcυ
kυ

; Sc H ηð Þ½ � ¼ μυ
ρυDB

; D ¼ DT

DB
; Le H ηð Þ½ � ¼ Sc H ηð Þ½ �

Pr
ρυcυ
ρpcp

:

ð22Þ

In Eqs. (19), (20) and (21), primes in the functions f′,H′ andΦ′ stand
for derivatives with respect to η, primes in the functions R′, RC′, M′, K′
and D'T stand for derivatives with respect to Φ, and primes in the func-
tionsD'Bmeanderivativeswith respect toH. It isworth pointing out that
the Prandtl number here is constant, as it is based only on the properties
of pure vapor.

Boundary conditions (8) and (9) can be re-written as

f ¼ 0; f 0 ¼ 0; H ¼ hw
h∞

;
H0

H
¼ Φ0 RC0

RC
−D

� �
at η ¼ 0; ð23Þ
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f 0 ¼ 0; H ¼ 1; Φ ¼ ϕ∞ at η ¼ ηδ; ð24Þ

where

ηδ ¼ δ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gρ fρυ

4μ2
υx

4

s
: ð25Þ

In view of Eq. (11), one can derive from Eq. (10) the following rela-
tion for the outer boundary of the vapor layer

3 f ηδ
� � ¼ Jah

Pr
K ϕ∞ð Þ
RC ϕ∞ð Þ −H0 ηδ

� �þ RC0 ϕ∞ð Þ
RC ϕ∞ð Þ −

R0 ϕ∞ð Þ
R ϕ∞ð Þ

� �
H0 ηδ
� �

Φ0 ηδ
� �� �

;

ð26Þ

where

Jah ¼ h∞
Lυ

ð27Þ

is the Jacoby number characterizing the ratio of the latent heat of vapor-
ization and heat transferred by heat conduction and heat convection.

In the boundary conditions (23) an additional parameter hw/h∞
arises. To eliminate this parameter from the further consideration, one
can replace enthalpy with the temperature in the energy Eq. (3) under
fully justifiable assumption for the specific heat capacity of nanofluid
to be constant. Other additional assumptions are DB = const, DT =
const and setting temperature to be constant equal to T∞ in the denom-
inators in the last terms of Eqs. (3) and (4) [30].

In view of the assumptions made above, partial differential equa-
tions, Eqs. (3) and (4), can be reduced to the self-similar form

KΘ″ þ 3R ϕ∞ð ÞPr f þΦ0

Le
þ K 0Φ0

� �
Θ0 þ A

Le
Θ02 ¼ 0 ð28Þ

Φ″ þ 3R ϕ∞ð Þ Sc
R

fΦ0 þ AΘ″ ¼ 0 ð29Þ

where

T−Tw

T∞−Tw
¼ Θ ηð Þ; A ¼ Tw−T∞

T∞
D ð30Þ

System of Eqs. (19), (28) and (29) is to be complemented with the
boundary conditions (8) and (9) re-written as

f ¼ 0; f 0 ¼ 0; Θ ¼ 1; DΘ0 ¼ −Φ0 at η ¼ 0; ð31Þ

f 0 ¼ 0; Θ ¼ 0; Φ ¼ ϕ∞ at η ¼ ηδ: ð32Þ

Based on this one can find the outer boundary of the vapor layer
using the following equation

3 f ηδ
� �

−Θ0 ηδ
� � ¼ Ja

Pr
K ϕ∞ð Þ
R ϕ∞ð Þ ; ð33Þ

where

Ja ¼ cυΔT
Lυ

ð34Þ

is re-written Jacoby number.

4. Results and discussion

Eqs. (19), (28) and (29) together with the boundary conditions (31)
and (32) have been used for numerical simulations of heat and mass
transfer and fluid flow in a film boiling of nanofluids on a vertical
plate for wide range of variation of the parameters Sc, ϕ∞, κ, rpυ, rpL
DOI : 10.1016/j.mo
and complex Ja/Pr, where

rpL ¼
ρp

ρL
; ð35Þ

and ρL is density of the pure liquid.
Simulations have been performed using “MATLAB” software and an

in-house code written using programming language С++. The objec-
tive was to validate these two types of software against each other. To
conclude, agreement between themwas very good, with the deviations
of the results fromeach other not exceeding 1%. The computational time
of simulations increases together with the Schmidt (Lewis) number,
which results from the increase in the stiffness of the system of differen-
tial equations.

At first, we have carried out computations to validate the numerical
codes for the system of equations obtained by Koh [23] for a film of pure
vapor (without nanoparticles) on a vertical wall. This system has the
following form

f ‴ þ 3 f f ″−2 f 0
2 þ 1 ¼ 0; ð36Þ

Θ″ þ 3Pr fΘ0 ¼ 0: ð37Þ

It is easy to ascertain that this system is a limiting case of the system
of Eqs. (19), (28) and (29), when the terms describing properties of
nanoparticles disappear for φ = 0. In this case, the boundary
conditions (31) and (32) reduce to

f ¼ 0; f 0 ¼ 0; Θ ¼ 1 at η ¼ 0; ð38Þ

f 0 ¼ 0; Θ ¼ 0; at η ¼ ηδ: ð39Þ

Calculations performed using Eqs. (36) and (37) with the boundary
conditions (38) and (39) demonstrated almost complete agreement
with the data of Koch [23]. Velocity profiles for Ja/Pr = 0.249, Ja/Pr =
1.2653, Ja/Pr = 4.2639 (Pr = 0.5) and Ja/Pr = 0.2598, Ja/Pr = 1.5375,
Ja/Pr = 7.2145 (Pr = 1) fully coincide with the profiles shown in the
work [23]. The data for the Nusselt number obtained in our calculations
also showed very good agreement with the data of [23]. Thus, one can
draw a conclusion about the correctness of the numerical codes used
in our simulations.

Calculations based on the complete system of Eqs. (19), (29) and
(29) for nanofluids have been performed for two cases: Ja/Pr = 0.1
and Ja/Pr = 7.5, i.e. for small and large values of the parameter Ja/Pr.
The reason for this was that for small values of parameter Ja/Pr, as also
indicated Koh [23], simulations taking into account inertial forces are
close to calculations without inertial forces done by Bromley [25]
and Ellion [26]. Ignoring inertial forces for large values of the parameter
Ja/Pr causes significant errors in the results of calculations.

Calculations demonstrated that the addition of nanoparticles leads
to emergence of a concentration boundary layer. Concentration profiles
for different values of the Schmidt number are depicted in Fig. 2. In the
vicinity of the wall, the magnitude of concentration level reduces,
though rather moderately. Such a behavior of the concentration profile
is caused by the interaction of mechanisms of the Brownian and
thermophoretic diffusion. It is obvious that the increase in the Schmidt
number results in the decrease in the thickness of the concentration
layer. Consequently, for the large Schmidt numbers, the concentration
on the wall is quite high, which entails heat transfer enhancement.
Thus, the numerical results obtained in the present work confirm the
finding of Bang et al. [6], who wrote about the presence of a thin (few
microns thick) nanoparticle layer on the heated wall.

Results of the calculations for the normalized Nusselt number as a
function of the parameters characterizing properties of the nanofluid
are discussed below. The normalized Nusselt number was determined
lliq.2016.08.038 5



Fig. 2. Concenration boundary layer.
from the relation

Nu
Nu0

¼ K ϕwð Þ −Θ0 0ð Þ	 

−Θ0

0 0ð Þ	 

ffiffiffiffiffiffi
ρ f

ρL

4

s
¼ K ϕwð Þ −Θ0 0ð Þ	 


−Θ0
0 0ð Þ	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rf ϕ∞ð Þ4
q

; ð40Þ

where

Nu ¼ αx
kυ

; Nu0 ¼ α0x
kυ

; ð41Þ
Fig. 3.Normalized Nusselt number as a function of the nanoparticle concentration for different v
[12].

DOI : 10.1016/j.molli
α ¼ kυK ϕwð Þ ∂T
∂y

� �
y¼0

; α0 ¼ kυ
∂T0

∂y

� �
y¼0

; ð42Þ

Rf ϕð Þ ¼ 1−ϕð Þ þ ϕrpL; ð43Þ

α is the heat transfer coefficient, subscript “0”means pure liquid (with-
out nanoparticles).

Fig. 3 depicts the normalized Nusselt number as a function of the
nanoparticle concentration ϕ∞ for different values of the Schmidt
number.

As one can see from Fig. 3, heat transfer rate increasesmonotonically
with the increasing nanoparticle concentration and Schmidt number for
both values of the parameter Ja/Pr. In both cases, the Schmidt number
effect enhances with the increasing nanoparticle concentration.

The effect of the Schmidt number is caused by the formation of a
concentration layer. As it was mentioned above (Fig. 2), for higher
Schmidt numbers the nanoparticle concentration increases on the
wall, which results in the heat transfer augmentation.

It should be pointed out that for Sc=100 and Sc=1000 an increase
in the normalized Nusselt number is approximately the same for both
values of the parameter Ja/Pr. However, an increase in the normalized
Nusselt number for Sc = 10,000 is more noticeable for the smaller
value of Ja/Pr = 0.1. It can be obviously attributed to the fact that for a
pure fluid (without nanoparticles) at high values of parameter Ja/Pr
the Nusselt number value Nu0 is much higher than that for low values
of Ja/Pr. Therefore the relative increase in the normalized Nusselt
alues of the Schmidt number. a) Ja/Pr=0.1, b) Ja/Pr=7.5. Solid points: experimental data
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Fig. 4. Normalized Nusselt number as a function of the nanoparticle concentration for
different nanoparticle density. a) Ja/Pr = 0.1, b) Ja/Pr = 7.5.

Fig. 5.Normalized Nusselt number as a function of the normalized thermal conductivity of
nanoparticles for different values of nanoparticle concentration. a) Ja/Pr = 0.1, b) Ja/Pr=
7.5.
number is more noticeable namely at low values of Ja/Pr. It should be
also pointed out that considering high Schmidt numbers is important
for the nanofluid applications, because namely for typical nanofluids
the Schmidt numbers attain significant values, for instance, Sc =
10,000 for water mixture with copper nanoparticles. Having compared
results of the calculations in frames of the present study with the data
of the work [24], where inertia forces and convective heat and mass
transfer were not taken into account (similarly to work Bromley [25]
and Ellion [26]), one can conclude that ignoring these effects leads to
that the Schmidt number as a dimensionless parameter characterizing
heat transfer does not arise in the solution at all. Thus, the approach ig-
noring inertia forces and convective heat andmass transfer is obviously
disadvantageous.

For validation of our model and respective simulations, we selected
experiments [12] for pool film boiling under the pressure of 7.4 KPa.
Though these experiments have been performed in geometry different
from that in Fig. 1, the physical trend describing effects of nanoparticles
is expected to be analogous to that in our geometry. Experimental data
[12] depicted in Fig. 3a lie lower than the theoretical curves; however,
they demonstrate the same trend of the increased normalized Nusselt
number for higher nanoparticle concentrations. As one can see from
Fig. 3a, the theoretical model predicts a more pronounced effect of
nanoparticles. Obviously, the reason for the difference in the theoretical
and experimental data is caused by the different geometries, as well as
the fact that the Buongiorno theory cannot take into account all pecu-
liarities of heat transfer during boiling of nanofluids.

We have also derived a solution for (Nu/Nu0)Le→∞ for the case
where terms including the Lewis number were omitted from Eq.
(28). The purpose of the comparative analysis was to look in detail
into the significance of different terms responsible for the effect of
the Lewis number, which is of great importance for nanofluids. This
analysis has shown that ignoring the aforementioned terms affects
very little the results of computations even for medium and high
Schmidt numbers.

Fig. 4 depicts variation of the normalized Nusselt number as a func-
tion of nanoparticle concentration for different values of nanoparticle
density. One can conclude fromhere that an increase in the relative den-
sity of nanoparticles results in heat transfer enhancement. Again, as in
Fig. 3, the increase in the normalized Nusselt number ismore significant
for smaller values of the parameter Ja/Pr = 0.1.

It can be also pointed out that the density effect for large nanoparti-
cle concentration (ϕ∞→0.1) is more pronounced at larger values of the
parameter Ja/Pr = 7.5.

Comparisons of the present calculations with the data of the model
that ignored inertia forces and convective heat and mass transfer [24]
demonstrate approximately the same rate of increase of the normalized
Nusselt number (see [24]). This enables drawing a conclusion that the
model neglecting inertia forces and convective heat and mass transfer
can be used for predictions of the normalized Nusselt number.

Fig. 5 describes the effect of the normalized thermal conductivity of
nanoparticles, which is characterized by the parameter κ, on the nor-
malized Nusselt number for different values of the nanoparticles con-
centration ϕ∞.

As in both previous cases discussed above, this effect is somewhat
stronger at smaller value of the parameter Ja/Pr= 0.1. It is also interest-
ing to note the fact that for κ N 10 the further increase in the thermal
conductivity of nanoparticles does not cause any significant increase
in the heat transfer coefficient. For κ N 10, the curve Nu/Nu0=Nu/
Nu0(κ) asymptotically flattens to a horizontal line. A similar effect was
also observed in the model neglecting inertia forces and convective
heat and mass transfer (see [24]).

Effects of the parameter A on the normalized Nusselt number were
also investigated for two values of the Schmidt number (Sc = 100,
Sc = 1000). Computations demonstrated that the influence of the pa-
rameter A on Nu/Nu0 is weak. An increase in the parameter A by 60
times (from 0.01 to 0.6) results in the decrease in Nu/Nu0 by only 4%.
DOI : 10.1016/j.molliq.2016.08.038 7



5. Conclusions

Using symmetry properties of the model of a two-component fluid,
self-similar equations were derived to model heat transfer in film boil-
ing of a nanofluid over a verticalflatwall. Self-similar systemof ordinary
differential equations was integrated numerically.

Physical novelty of the model proposed in our paper as compared to
thefilm boiling problem studied by Koh [23] consists in adding an equa-
tion for nanoparticle concentration,which accounts for the heat transfer
enhancement at the expense of the nanoparticles, as well as effects of
mass transfer. The model takes also into consideration the Brownian
and thermophoretic diffusion mechanisms, together with the nanopar-
ticle concentration effects on the fluid properties. Mathematical novelty
of the model consists in obtaining new self-similar forms of functions
for flow rate, enthalpy, nanoparticle concentration and for the system
of differential equations on the basis of the Lie group technique.

Self-similar form of differential equations have been obtained in the
most general forms taking into account arbitrary dependence of physi-
cal properties (viscosity, thermal conductivity and diffusion coefficient)
on the nanoparticle concentration and temperature. Therefore these
equations are universal, whereas their form does not depend on the
specific functional dependence of physical properties.

As it was demonstrated in the present work, fluid flow and heat
transfer are affected by six non-dimensional parameters: Schmidt num-
ber Sc; nanoparticle concentration ϕ∞; normalized densities of the
nanoparticles rpυ and rpL (which are not independent parameters); rel-
ative thermal conductivity of the nanoparticles κ and the complex pa-
rameter Ja/Pr.

Heat transfer rate growsmonotonicallywith increasing nanoparticle
concentration and Schmidt number for small (0.1) and large values
(7.5) of the parameter Ja/Pr. It was also demonstrated that the Schmidt
number arises as a result of the solution and characterizes heat transfer
only in the case where inertia forces and convective heat mass transfer
are taken into account. Numerical simulations have shown that ignoring
terms including the Lewis number affects very little the results of com-
putations even for medium and high Schmidt numbers.

An increase in the parameters rpυ, rpL and κ leads to heat transfer en-
hancement. At κ N 10, the further increase in thermal conductivity of
nanoparticles does not cause any significant increase in theheat transfer
coefficient. The effect on heat transfer is somewhat stronger at the
smaller value of the parameter Ja/Pr = 0.1.

Practical value of the present investigation consists in that the pro-
posed self-similarmodel has universal character, because it does not de-
pend on the specific form of the functional dependences of physical
properties on the temperature and nanoparticle concentration. This
means that this model can be used with arbitrary functional depen-
dences for these functions.

Appendix A

To find symmetries of the system of partial differential Eqs. (1)–(4)
(i.e. coefficients ξ1 ,ξ2 ,φ1 ,φ2 ,φ3 ,φ4 ,ζ1 ,ζ2 ,ζ3 ,ζ4 ,ζ5 ,ζ6), the following
condition should be used

pr 2ð Þq Δð Þ ¼ 0; ðA1Þ

where pr(2)q(Δ) is the second prolongation of the infinitesimal genera-
tor (Eq. (14)), the symbolΔmeans the system of partial differential Eqs.
(1)–(4).

The second prolongation of the infinitesimal generator q (Eq. (14))
is constructed according to the following expression

pr 2ð Þq ¼ qþ φx
1

∂
∂ux

þ φy
1

∂
∂uy

þ φyy
1

∂
∂uyy

þ φy
2

∂
∂vy

þ φx
3

∂
∂Tx

þφy
3

∂
∂Ty

þ φyy
3

∂
∂Tyy

þ φx
4

∂
∂ϕx

þ φy
4

∂
∂ϕy

þ φyy
4

∂
∂ϕyy

;
ðA2Þ
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where the subscripts of u, v, T and φ represent the partial de-
rivatives with respect to the appropriate variables. The coefficients
ϕ1
x ,ϕ1

y ,ϕ1
yy ,ϕ2

y ,ϕ3
x ,ϕ3

y ,ϕ3
yy ,ϕ4

x ,ϕ4
y ,ϕ4

yy are functions of ξ1 ,ξ2 ,ϕ1 ,ϕ2 ,
ϕ3 ,ϕ4 ,ζ1 ,ζ2 ,ζ3 ,ζ4 ,ζ5 ,ζ6, u, v, T and φ and their derivatives with re-
spect to x and y.

The application of the operator pr(2)q (Eq. (A2)) to each equation of
systems (8)–(11) (according to condition (A1)) results in four equa-
tions. These equations contain monomials with different combinations
of derivatives of u, v, T and φ. Then the coefficients of monomials con-
taining identical combinations of the derivatives of u, v, T and φ are
equated. As a result, one has a system of partial differential equations
with respect to the ξ1 ,ξ2 ,φ1 ,φ2 ,φ3 ,φ4 ,ζ1 ,ζ2 ,ζ3 ,ζ4 ,ζ5 ,ζ6. The solution
of this system consists of five symmetries (five Lie sub-algebras). After
further transformations, the Lie algebra of the systems (1)–(4) can befi-
nally presented as

q1 ¼ ∂
∂x

þ F1 xð Þ ∂
∂y

þ dF1 xð Þ
dx

u
∂
∂v

; ðA3Þ

q2 ¼ F2 xð Þ ∂
∂y

þ dF2 xð Þ
dx

u
∂
∂v

þ ∂
∂ϕ

; ðA4Þ

q3 ¼ F3 xð Þ ∂
∂y

þ dF3 xð Þ
dx

u
∂
∂v

þ 1
T
∂
∂c

; ðA5Þ

q4 ¼ F4 xð Þ ∂
∂y

þ dF4 xð Þ
dx

u
∂
∂v

þ ϕ
∂
∂ϕ

þ DT
∂

∂DT
þ c

∂
∂c

þ k
∂
∂k

; ðA6Þ

q5 ¼ F5 xð Þ ∂
∂y

þ u
∂
∂u

þ dF5 xð Þ
dx

uþ v
� �

∂
∂v

−2ρ
∂
∂ρ

−μ
∂
∂μ

þ DB
∂

∂DB

þ DT
∂

∂DT
þ 2c

∂
∂c

þ k
∂
∂k

; ðA7Þ

q6 ¼ x
∂
∂x

þ F6 xð Þ ∂
∂y

þ dF6 xð Þ
dx

u−v
� �

∂
∂v

þ ρ
∂
∂ρ

−DB
∂

∂DB
−DT

∂
∂DT

−c
∂
∂c

−k
∂
∂k

; ðA8Þ

q7 ¼ yþ F7 xð Þð Þ ∂
∂y

þ dF7 xð Þ
dx

uþ v
� �

∂
∂v

þ 2μ
∂
∂μ

þ 2DB
∂

∂DB

þ 2DT
∂

∂DT
þ 2k

∂
∂k

; ðA9Þ

q8 ¼ x
∂
∂x

þ 1
4
yþ F8 xð Þ

� �
∂
∂y

þ 1
2
u

∂
∂u

þ dF8 xð Þ
dx

u−
1
4
v

� �
∂
∂v

; ðA10Þ

where F1(x),…, F8(x) are arbitrary smooth functions.
Let us construct an optimal systemof the Lie sub-algebras. To remind

(see thework [30]) that an optimal system is a list of the Lie subalgebras
where every Lie subalgebra of the total Lie algebra is equivalent to a
unique item in the list under some element of the adjoint representa-
tion

~q ¼ AdH qð Þ; ðA11Þ

where AdH is the adjoint representation of the underlying Lie group.
This adjoint representation can be reconstructed by two ways. At first,
it can be done by integrating the system of the linear ordinary differen-
tial equations

d~q
dε

¼ ~q;q½ �; ~q 0ð Þ ¼ ~q0 ðA12Þ

with the solution

~q εð Þ ¼ Ad exp εqð Þð Þ~q0: ðA13Þ
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Another way is applying the Lie series

Ad exp εqð Þð Þ~q0 ¼ ~q0−ε q; ~q0½ � þ ε2

2
q; q; ~q0½ �½ �−:::: ðA14Þ

In Eqs. (A12)–(A15) ½~q;q� is the Lie bracket

~q;q½ �F ¼ ~q q Fð Þð Þ−q ~q Fð Þð Þ; ðA15Þ

F is the smooth function, ε is the infinitesimal transformation param-
eter,

H Fð Þ ¼ exp εqð ÞF ðA16Þ

is the exponentiation of the vector field, i.e. the group transformation.
To construct an optimal system of the Lie sub-algebras, it is neces-

sary to simplify the coefficients ai of the non-zero vector

q ¼
X8
i¼1

aiqi; ðA17Þ

through judicious applications of the adjoint representations. Procedure
of this mathematical operation is described in detail by Olver [30]. Ap-
plying this procedure to Eqs. (A3)–(A10) allows finding an optimal sys-
tem of one-dimensional Lie sub-algebras, which has following form

~q1 ¼ q1; ðA18Þ

~q2 ¼ q2; ðA19Þ

~q3 ¼ q3; ðA20Þ

~q4 ¼ q4; ðA20Þ

~q5 ¼ q6 þ Cq7; ðA21Þ

~q6 ¼ q8; ðA22Þ

where C is an arbitrary constant.

References

[1] Y. Wenhua, D.M. France, J.L. Routbort, S.U.S. Choi, Review and comparison of
nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer
Eng. 29 (2008) 432–460.

[2] S. Kakac, A. Pramuanjaroenkij, Review of convective heat transfer enhancement
with nanofluids, Int. J. Heat Mass Transfer 52 (2009) 3187–3196.

[3] M.H. Buschmann, Nanofluids in thermosyphons and heat pipes: Overview of recent
experiments and modelling approaches, Int. J. Therm. Sci. 72 (2013) 1–17.

[4] P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanisms of heat flow in sus-
pensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer 45 (2002)
855–863.

[5] H. Kim, G. DeWitt, T. McKrell, J. Buongiorno, L.W. Hu, On the quenching of steel and
zircaloy spheres in water-based nanofluids with aluminia, silica and diamond nano-
particles, Int. J. Multiphase Flow 35 (2009) 427–438.

[6] I.C. Bang, J. Buongiorno, L.W. Yu, H. Wang, Measurement of key pool boiling param-
eters in nanofluids for nuclear applications, J. Power Energy Systems 2 (2008)
340–351.
DOI : 10.1016/j.mo
[7] W.M. Rohsenow, A method of correlating heat transfer data for surface boiling liq-
uids, Transactions of ASME 74 (1952) 969–979.

[8] G. Ramesh, N.K. Prabhu, Review of thermo-physical properties, wetting and heat
transfer characteristics of nanofluids and their applicability in industrial quench
heat treatment, Nanoscale Research Letters 334 (2011) 1–15.

[9] X.Q.Wang, A.S. Mijumdar, Heat transfer characteristics of nanofluids: a review, Int. J.
Thermal Sci. 46 (2007) 1–19.

[10] I.S. Bang, S.H. Chang, Boiling heat transfer performance and phenomena of Al2O3–
water nanofluids from a plain surface in a pool, Int. J. Heat Mass Transf. 48 (2005)
2420–2428.

[11] H. Lotfi, M.B. Shafii, Boiling heat transfer on a high temperature silver sphere in
nanofluid, Int. J. Thermal Sci. 48 (2009) 2215–2220.

[12] X.F. Yang, Z.H. Liu, Pool boiling heat transfer of functionalized nanofluid under sub-
atmospheric pressures, Int. J. Thermal Sci. 50 (2011) 2402–2412.

[13] D. Wen, M. Corr, X. Hu, G. Lin, Boiling heat transfer of nanofluids: the effect of
heating surface modification, Int. J. Thermal Sci. 50 (2011) 480–485.

[14] H.S. Park, D. Shiferaw, B.R. Sehdal, D.K. Kim, M. Muhammed, Film boiling heat trans-
fer on a high temperature sphere in nanofluid, ASME 2004 Heat Transf./Fluids Eng.
Summer Conf. (Charlotte, NC, USA), 4, 2004, pp. 469–476.

[15] L. Thama, R. Nazar, I. Pop, Mixed convection flow from a horizontal circular cylinder
embedded in a porous medium filled by a nanofluid: Buongiorno-Darcy model, Int.
J. Thermal Sci. 84 (2014) 21–33.

[16] M. Eslamian, M.Z. Saghir, On thermophoresis modeling in inert nanofluids, Int. J.
Thermal Sci. 80 (2014) 58–64.

[17] H. Hassan, S. Harmand, 3D transient model of vapour chamber: effect of nanofluids
on its performance, Appl. Therm. Engineering 51 (2013) 1191–1201.

[18] Z. Altaç, Ö. Altun, Hydrodynamically and thermally developing laminar flow in spiral
coil tubes, Int. J. Thermal Sci. 77 (2014) 96–107.

[19] X. Li, Y. Yuan, J. Tu, A theoretical model for nucleate boiling of nanofluids considering
the nanoparticle Brownian motion in liquid microlayer, Int. J. Heat Mass Transf. 91
(2015) 467–476.

[20] K. Li, X.D. Li, J.Y. Tu, H.G. Wang, A mathematic model considering the effect of
Brownian motion for subcooled nucleate pool boiling of dilute nanofluids Int, J.
Heat Mass Transf. 84 (2015) 46–53.

[21] A.A. Avramenko, D.G. Blinov, I.V. Shevchuk, Self-similar analysis of fluid flow and
heat-mass transfer of nanofluids in boundary layer, Phys. Fluids 23 (2011) 082002.

[22] A.A. Avramenko, D.G. Blinov, I.V. Shevchuk, A.V. Kuznetsov, Symmetry analysis and
self-similar forms of fluid flow and heat-mass transfer in turbulent boundary layer
flow of a nanofluid, Phys. Fluids 24 (2012) 092003.

[23] J.C.Y. Koh, Analysis of film boiling on vertical surfaces, ASME J. Heat Transfer (1962)
55–62.

[24] A.A. Avramenko, I.V. Shevchuk, A.I. Tyrinov, D.G. Blinov, Heat transfer in stable film
boiling of a nanofluid over a vertical surface, Int. J. Thermal Sci. 92 (2015) 106–118.

[25] L.A. Bromley, Heat transfer in stable film boiling, Chem. Eng. Prog. 46 (1950)
211–227.

[26] M.E. Ellion, A study of the mechanism of boiling heat transfer, Jet Prop. Lab. Memo,
20, CIT 1954, pp. 1–88.

[27] A. Malvandi, S. Heysiattalab, D.D. Ganji, Thermophoresis and Brownian motion ef-
fects on heat transfer enhancement at film boiling of nanofluids over a vertical cyl-
inder, J. Molecular Liquids 216 (2016) 503–509.

[28] A. Malvandi, Anisotropic behavior of magnetic nanofluids (MNFs) at film boiling
over a vertical cylinder in presence of a uniform variable-directional magnetic
field, Powder Technol. 294 (2016) 307–314.

[29] A. Malvandi, Film boiling of magnetic nanofluids (MNFs) over a vertical plate in
presence of a uniform variable-directional magnetic field J, Magnetism andMagnet-
ic Materials 406 (2016) 95–102.

[30] J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer 128 (2006)
240–250.

[31] J.H. Lienhard IV, J.H. Lienhard V, A Heat Transfer Textbook, third ed. Phlogiston Press,
Cambridge Massachusetts, 2003.

[32] H.D. Baehr, K. Stephan, Heat and Mass Transfer, Second, Revised ed. Springer Verlag,
Berlin, Heidelberg, 2006.

[33] P. Olver, Applications of Lie Groups to Differential Equations, Springer, New York,
1985.

[34] M. Oberlack, Asymptotic expansion, symmetry groups, and invariant solutions of
laminar and turbulent wall-bounded flows, ZAMM 80 (2000) 791–800.
lliq.2016.08.038 9


	Symmetry analysis for film boiling of nanofluids on a vertical plate using a nonlinear approach
	1. Introduction
	2. Mathematical model
	3. Symmetry and self-similar forms of equations
	4. Results and discussion
	5. Conclusions
	Appendix A
	References




