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Abstract

This paper addresses the local stabilization of constrained nonlinear systems with input
saturation described by Takagi-Sugeno fuzzy models with nonlinear consequents. To
reduce the design conservativeness, we propose a new delayed multiple-parameterization
control approach based on a nonquadratic Lyapunov function with multiple delayed
fuzzy summations. Both input saturation and state constraints are explicitly taken into
account in the control design procedure. This multiple-parameterization condition is
given in terms of linear matrix inequalities. Compared to existing results, the new
approach offers a unified and concise control framework to design both non-delayed
and delayed multidimensional nonlinear fuzzy controllers. Numerical examples are
provided to demonstrate the effectiveness of the proposed multiple-parameterization
approach in both reducing the design conservativeness and enlarging the estimation of
the domain of attraction.

Keywords: Takagi-Sugeno fuzzy systems, input saturation, local stabilization,
delayed control, nonquadratic Lyapunov functions.

1. Introduction1

In practical control applications, input and state constraints frequently arise not2

only from physical and technical restrictions but also from safety reasons [1]. Input3

constraints emerge from actuator saturation [2] whereas state constraints can be related4

to both safety/comfort specifications and modeling validity region. If these constraints5

are not properly taken into account in the control design, the closed-loop performance6

may be seriously degraded, possibly leading to instability in extreme cases [3]. Thus,7

performing the control design taking into account these constraints is essential to en-8

sure closed-loop stability and performance. For instance, this control issue has been9
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rod.faraujo@gmail.com (Rodrigo F. Araújo), nguyen.trananhtu@gmail.com
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addressed for linear [2] and linear parameter varying [4] systems with input saturation,10

nonlinear systems such as vibrating flexible string systems with dead-zone nonlinearity11

and input constraint [5–7], vibrating flexible riser systems with input saturation [8, 9],12

and nonlinear systems with input saturation described by Takagi-Sugeno fuzzy models13

[1, 3].14

Using Takagi-Sugeno (TS) fuzzy modeling [10, 11], nonlinear systems can be rep-15

resented by convex relations of simpler local models, which are usually valid within16

a given domain of validity [12]. A well-known method to obtain an exact TS fuzzy17

representation for nonlinear systems is the sector nonlinearity approach [12, Chapter18

2]. However, it should be stressed that for this approach, the required number of fuzzy19

rules exponentially grows according to the number of system nonlinearities. This may20

lead to some major drawbacks on both the control design (conservativeness of results)21

and the real-time implementation (numerical complexity) of TS fuzzy model-based22

control technique. To avoid an excessive number of fuzzy rules while preserving the23

convexity property of classical TS fuzzy systems, a new class of TS fuzzy systems with24

local nonlinear models (N-TS) was proposed in [13, 14] for continuous-time nonlinear25

systems and employed in [15] for the discrete-time counterparts. As aforementioned,26

both TS and N-TS fuzzy representations are generally valid within a given subset of the27

state-space. Hence, taking into account these state constraints is necessary to ensure28

the fuzzy controller performance [16]. However, these constraints are usually neglected29

in the fuzzy control literature, especially for N-TS fuzzy models. Therefore, the first30

motivation of this work is (i) to perform the fuzzy control design taking into account31

both state and input constraints.32

By means of the direct Lyapunov method, it is possible to obtain sufficient con-33

ditions to design fuzzy controllers for both TS and N-TS fuzzy systems. In addition,34

taking advantage of the convexity of these models, the stabilization conditions can be35

formulated in terms of linear matrix inequalities (LMIs). It is known that control ap-36

proaches based on common quadratic Lyapunov functions and the parallel distributed37

compensation (PDC) control law [12] can lead to conservative design results, espe-38

cially for complex nonlinear systems requiring a large number of fuzzy rules when39

using TS modeling [17]. Introducing LMI slack decision variables [12, 18, 19] and/or40

taking into account the information of the membership functions in continuous-time41

case [20] have been demonstrated as effective solutions to reduce the design conserva-42

tiveness. Another control approach capable to progressively reduce conservativeness43

is based on asymptotically necessary and sufficient (ANS) conditions [21–23], which,44

however, may quickly lead to an excessive number of LMIs and intractable numerical45

complexity [19].46

An alternative solution to reduce design conservativeness is based on the choice47

of different Lyapunov function candidates. In this context, various classes of Lya-48

punov functions have been proposed to deal with the conservativeness issue, such as49

piecewise Lyapunov functions [24], line integral Lyapunov functions [25], and fuzzy50

(or nonquadratic) Lyapunov functions [26–28]. The effectiveness of fuzzy Lyapunov51

functions for conservativeness reduction has been mainly demonstrated in the discrete-52

time case, especially through multiple-parameterization approach [29]. Nevertheless,53

the latter approach presents similar drawbacks as ANS conditions, i.e., possibly leading54

to numerical intractability. More recently, delayed multiple-parameterization approach55
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[17, 30, 31] has been proven to be an efficient framework to provide less conservative56

design conditions for TS fuzzy systems regarding delayed fuzzy membership functions57

in fuzzy controllers and nonquadratic Lyapunov functions. With the delayed control ap-58

proach, the design conservativeness can be reduced without increasing substantially the59

multiple-parameterization dimension, thus avoiding excessive numerical complexity.60

However, both multiple-parameterization and delayed approaches have not been pro-61

posed for the class of N-TS fuzzy systems. Then, the second motivation for this work is62

(ii) to derive the control design conditions based on delayed multiple-parameterization63

approach for N-TS fuzzy systems.64

Since the state and the input constraints are explicitly taken into account in the65

proposed control design, the local stability analysis is considered for the closed-loop66

N-TS fuzzy systems. Within the local stabilization context, it is of particular interest to67

characterize the closed-loop domain of attraction (DoA) [32]. In the case of TS or N-68

TS fuzzy models, finding a DoA estimation is useful to provide the state-space region69

where the fuzzy controllers can guarantee the closed-loop asymptotic stability. Then,70

the third motivation of this paper is (iii) to determine an estimation of the domain of71

attraction, as large as possible, for the closed-loop N-TS fuzzy systems.72

Based on the aforementioned discussion, this paper investigates the local stabiliza-73

tion of constrained discrete-time nonlinear systems with input saturation represented74

by N-TS fuzzy models. This control problem was recently addressed in [16] using a75

fuzzy dynamic output feedback controller whose design is based on a standard fuzzy76

Lyapunov function, i.e., without delayed membership functions. The authors in [16]77

have tackled only the control problems (i) and (iii) mentioned above. However, solv-78

ing these problems regarding delayed multiple-parameterization Lyapunov functions is79

more involved than the case of a standard fuzzy Lyapunov function, which is a par-80

ticular case of the previous one. Therefore, our main contributions are summarized as81

follows:82

• Propose a new multiple-parameterization framework for local stabilization of83

constrained N-TS fuzzy systems with input saturation;84

• Provide a unified control approach to design both non-delayed and delayed non-85

linear fuzzy controllers for the studied class of fuzzy systems;86

• Estimate the DoA of the closed-loop fuzzy systems taking into account both state87

and input constraints.88

Furthermore, numerical examples are appropriately given to illustrate the effective-89

ness of the proposed control approach on reducing the design conservativeness and90

enlarging the DoA estimation.91

Notation. The symbol ‘?’ denotes matrix blocks deduced by symmetry. For a matrix92

X , X> is the transpose matrix, X � 0 means that X is a positive definite matrix and93

X(l) is the lth row. diag(X1, X2) denotes a block-diagonal matrix composed of X194

and X2. For an integer p > 1, we denote Ip = {1, . . . , p} ⊂ N. co{S} denotes95

the convex hull of the set S. Function arguments are omitted when their meaning is96

straightforward.97
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2. Takagi-Sugeno Fuzzy Systems with Nonlinear Consequents98

This section describes the considered class of N-TS fuzzy models and their advan-99

tages for the control design of nonlinear systems.100

2.1. System Description101

Consider the following class of N-TS fuzzy systems [15]:

xk+1 =

r∑
i=1

hi(zk)(Aixk +Giϕ(xk) +Bisat(uk)) (1)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the input vector, zk ∈ Rnz is the
vector of measurable premise variables, and r is the number of fuzzy rules. The state-
space matrices (Ai, Bi, Gi) of the ith local fuzzy rule are of appropriate dimensions.
The normalized membership functions hi(z), i ∈ Ir, verify the convex sum property,
i.e.,

∑r
i=1 hi(z) = 1, and hi(z) ≥ 0, i ∈ Ir. Moreover, the control input is subject to

a componentwise saturation map sat(·) : Rnu 7→ Rnu defined as

sat(u(l)) = sign(u(l)) min(|u(l)|, ū(l)),

for all l ∈ Inu , where ū(l) > 0 is the saturation bound of the lth control input compo-102

nent. The following assumptions are considered for system (1).103

Assumption 1. The vector of nonlinearitiesϕ(x) ∈ Rnϕ satisfies the sector-boundedness
condition ϕ(i)(x) ∈ co{0, Eix}, ∀i ∈ Inϕ , which can be equivalently rewritten as fol-
lows [32]:

ϕ(x)>L−1 (Ex− ϕ(x)) ≥ 0 (2)

where the matrix E = [E>1 , . . . , E
>
nϕ ]> ∈ Rnϕ×nx is given, and L ∈ Rnϕ×nϕ is a104

positive definite diagonal matrix.105

Inequality (2) in Assumption 1 is especially useful to derive convex control design106

conditions for N-TS fuzzy systems.107

Assumption 2. The state trajectories of system (1) is constrained into the following
polyhedral set:

Dx = {x ∈ Rnx : S(j)x ≤ 1, j ∈ Ine}, (3)

where the given matrix S ∈ Rne×nx characterizes the domain of validity Dx.108

The domainDx represents the state-space region where trajectories are constrained109

to evolve due to both physical limitations and validity region of the N-TS fuzzy model (1).110

Taking this domain into account in the control design is essential to ensure both suitable111

closed-loop performance and stability [3, 16].112
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2.2. System Motivation113

To highlight the interests of using N-TS fuzzy models, we consider an input-saturated
nonlinear system constructed by N inverted pendulums series connected via linear
springs. Using the Euler’s discretization method, the system dynamics can be described
by the following state-space representation:

xk+1(j) = xk(j) + Txk(n) (4a)

xk+1(n) = xk(n) +
gT

lκ
sinxk(j) +

T

mκl2κ
sat(uk(κ))

+ (1− δκ1 )
kκ−1a

2T

mκl2κ

(
sinxk(j−2) cosxk(j−2) − sinxk(j) cosxk(j)

)
+ (1− δκN )

kκa
2T

mκl2κ

(
sinxk(j+2) cosxk(j+2) − sinxk(j) cosxk(j)

)
(4b)

where κ ∈ IN , j = 2κ − 1, n = 2κ, and δqp, p, q ∈ Z, denotes the Kronecker delta,114

xk(κ) is the rod angle with respect to the vertical axis, mκ is the mass, and lκ is the rod115

length of the κth pendulum. uk(κ) is the torque applied to the base of the κth pendulum.116

T is the sample time, g is the gravitational acceleration, ks, s ∈ IN−1, are the spring117

elastic constants, and a is their connection heights.118

By the sector nonlinearity approach [12, Chapter 2], an exact TS fuzzy representa-119

tion can be obtained for system (4) choosing the premise variables as zk(κ) = sinxk(j),120

and zk(N+κ) = sinxk(j) cosxk(j), for all j = 2κ − 1, κ ∈ IN . This leads to a clas-121

sical TS fuzzy model with 22N fuzzy rules. However, note that sinxk(κ) cosxk(κ) ∈122

co{0, xk(κ)}. Then, a N-TS fuzzy model can be constructed with N premise vari-123

ables zk(κ) = sinxk(j) and N local nonlinearities ϕκ(xk) = sinxk(j) cosxk(j), for124

j = 2κ− 1, κ ∈ IN . In this case, the number of fuzzy rules is reduced to only 2N . As125

a direct consequence, not only the numerical complexity for control design and imple-126

mentation but also the conservativeness of the results can be drastically reduced when127

N-TS fuzzy models are used, see also [13, 15].128

3. Problem Formulation129

The considered control problem is formulated in this section. First, we provide130

technical definitions related to the theory of multisets to represent compactly multiple131

fuzzy summations with arbitrary delays. Then, the control problem is stated.132

3.1. Technical Definitions133

Hereafter, technical definitions related to the theory of multisets [33] and multiple134

fuzzy summations are presented. Similar notations on multisets of delays and multi-135

indexes can be found in [17, 22].136

Definition 1 (Multisets, see [33]). Let D = {d1, d2, . . . , dn} be a set. A multiset GD137

over D is a cardinal-valued function GD : D 7→ N such that for d ∈ Dom(GD)138

implies the cardinal 1GD (d) > 0. The value 1GD (d) is called multiplicity of d and139

represents the number of occurrences of d inGD. A multisetGD is denoted here by the140
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set of pairs GD = {〈1GD (d1), d1〉, . . . , 〈1GD (dn), dn〉}. If the multiplicity of a given141

element d ∈ D is 1, it is simply denoted 〈1, d〉 = d.142

From the last definition, the cardinality of a multiset GD is computed by |GD| =143 ∑
d∈D 1GD (d).144

Definition 2 (Operations on multisets). Consider two multisets GA and GB . Useful145

operations on multisets are defined as follows:146

• Union: G∪ = GA ∪GB = {d ∈ G∪ : 1G∪(d) = max{1GA(d),1GB (d)}}147

• Intersection: G∩ = GA∩GB = {d ∈ G∩ : 1G∩(d) = min{1GA(d),1GB (d)}}148

• Sum: G⊕ = {d ∈ G⊕ : 1G⊕(d) = 1GA(d) + 1GB (d)}.149

Definition 3 (Multiple fuzzy summation). Let

PGP0 =

r∑
i1=1

· · ·
r∑

in=1

hi1(zk+d1) . . . hin(zk+dn)P(i1,...,in) (5)

be a multiple fuzzy summation of matrices P(i1,...,in). The multiset of delays involved150

in this summation is denoted by GP0 = {d1, . . . , dn}, for di ∈ Z≤0, i ∈ In. If the151

summation is evaluated at the instant k+α, the summation is denoted by PGPα and the152

multiset of delays is GPα = {α+ d1, . . . , α+ dn}.153

The above notations and operations on multisets are illustrated in the following154

example.155

Example 1. Consider the 4-dimensional fuzzy summation156

r∑
i1=1

r∑
i2=1

r∑
i3=1

r∑
i4=1

hi1(zk)hi2(zk)hi3(zk)hi4(zk−1)P(i1,i2,i3,i4).

The multiset of delays associated to this fuzzy summation is GP0 = {〈3, 0〉,−1} and its157

cardinality is |GP0 | = 4. If this fuzzy summation is evaluated at the instant k + α, then158

the corresponding multiset of delays is GPα = {〈3, α〉, α− 1}.159

To illustrate the operations on multisets, we consider the multiset of delays GX0 =160

{0, 〈2,−1〉,−2}. The union of GX0 with the multiset of delays GP0 is GP0 ∪ GX0 =161

{〈3, 0〉, 〈2,−1〉,−2}; the intersection is GP0 ∩ GX0 = {0,−1,−2} and the sum is162

GP0 ⊕GX0 = {〈4, 0〉, 〈3,−1〉,−2}.163

Definition 4 (Index set and multi-index). The index set of a multiple fuzzy summation164

with multiset of delays GP0 is the set of all indexes in the sum. It is denoted here by165

IGP0 = {i = (i1, . . . , i|GP0 |) : ij ∈ Ir, j ∈ I|GP0 |}. An element i ∈ IGP0 is called166

multi-index.167

Remark 1. For the formulations presented in this paper, the following two subsets of168

IGP0 will be useful. The set of upper-triangle indexes, which is defined by I+
GP0

= {i ∈169

IGP0 : ij ≤ ij+1, j ∈ I|GP0 |−1}, and the set of multi-index permutations defined by170

P(i) ⊂ IGP0 , for some i ∈ IGP0 . These subsets of IGP0 can also be found in [21, 22].171
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Example 2. Consider the index set IG = {i = (i1, i2, i3) : ij ∈ I2, j ∈ I3}.172

The set of upper-triangle indexes is I+G = {(1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 2)}. In173

addition, consider the multi-index i = (1, 2, 2) ∈ I+G. The set of permutations is174

P(i) =
{

(1, 2, 2), (2, 1, 2), (2, 2, 1)
}

.175

Definition 5 (Projection of a multi-index). The projection of a multi-index i ∈ IGA to176

the multisetGB , denoted by priGB , is the part of i corresponding to delays inGA∩GB .177

It is important to note that the projection may be not unique. For instance, consider178

the multi-index i = (1, 2, 3, 4) ∈ IGP0 , where GP0 = {〈3, 0〉,−1}. The projection to179

the multiset of delays GC0 = {0,−1} can be pri
GC0

= (1, 4), or pri
GC0

= (2, 4), or180

pri
GC0

= (3, 4).181

Remark 2. The multiple fuzzy summation (5) can be rewritten using the multi-index
notation as follows:

PGP0 =

n∏
j=1

r∑
ij=1

hij (zk+dj )P(i1,...,in) =
∑

iP0 ∈IGP0

hiP0 PiP0
,

with IGP0 = {iP0 = (i1, . . . , in) : ij ∈ Ir, j ∈ In}. Similarly, the N-TS fuzzy system
(1) can be rewritten in the form:

xk+1 = AGA0 xk + GGG0 ϕ(xk) + BGB0 sat(uk), (6)

with GA0 = GG0 = GB0 = {0}.182

3.2. Problem Statement183

For the stabilization of the N-TS fuzzy model (6), the following delayed nonlinear
fuzzy control law is proposed:

uk = FGF0 H
−1
GH0

xk + KGK0 L−1
GL0
ϕ(xk), (7)

where FGF0 , HGH0 , KGK0 are respectively the multiple fuzzy summations of matrices184

FiF0
∈ Rnu×nx , iF0 ∈ IGF0 , HiH0

∈ Rnx×nx , iH0 ∈ IGH0 , and KiK0
∈ Rnu×nϕ , iK0 ∈185

IGK0 , and LGL0 is composed of diagonal matrices LiL0
∈ Rnϕ×nϕ , iL0 ∈ IGL0 . For real-186

time implementation, the multisets of delays involved in (7) cannot be defined with187

positive delays, which corresponds to premise variables at future time samples, since it188

leads to a non-causal closed-loop dynamics.189

190

Remark 3. The proposed control law (7) generalizes other fuzzy controllers existing191

in the literature. For instance, the PDC control law can be obtained by selectingGF0 =192

{0}, GH0 = {∅}, and ϕ(xk) = 0, and the classical non-PDC law can be constructed193

with GF0 = GH0 = {0} and ϕ(xk) = 0. Moreover, the nonlinear non-PDC control194

law used in [15] for the stabilization of N-TS fuzzy models can also be obtained by195

selecting GF0 = GH0 = GK0 = GL0 = {0}.196
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Substituting (7) into (6), the closed-loop dynamics is rewritten as

xk+1 = Aclxk + Gclϕ(xk)− BGB0 ψ(uk) (8)

where Acl = AGA0 + BGB0 FGF0 H
−1
GH0

, Gcl = GGG0 + BGB0 KGK0 L−1
GL0

, and ψ(uk) =197

uk− sat(uk) is the dead-zone nonlinearity. The following lemma is useful to deal with198

this nonlinearity.199

Lemma 1. Consider the set

Du =
{
xk ∈ Rnx : |Π| ≤ ū(l),∀l ∈ Inu

}
, (9)

where

Π =
(
FGF0 H

−1
GH0
−WGW0

H−1
GH0

)
(l)
xk +

(
KGK0 L−1

GL0
− JGJ0 L

−1
GL0

)
(l)
ϕ(xk),

and WGW0
and JGJ0 are respectively the multiple fuzzy summations of matrices WiW0

∈
Rnu×nx , iW0 ∈ IGW0 , and JiJ0 ∈ Rnu×nϕ , iJ0 ∈ IGJ0 . If xk ∈ Du, then

ψ(uk)>U−1
GU0

(
ψ(uk)−WGW0

H−1
GH0

xk − JGJ0 L
−1
GL0
ϕ(xk)

)
≤ 0 (10)

for positive definite diagonal matrices UiU0
∈ Rnu×nu , iU0 ∈ IGU0 , and uk given in (7).200

Proof. The proof follows similar steps as in [1, Lemma 1] and is omitted here for201

brevity.202

To study the local asymptotic stability of the closed-loop system (8), the following
delayed nonquadratic Lyapunov function candidate is considered:

V (xk) = x>k P
−1
GP0
xk (11)

where PGP0 ∈ Rnx×nx is the multiple fuzzy summation of matrices PiP0
= P>

iP0
� 0,203

iP0 ∈ IGP0 .204

Remark 4. The level set associated to the function (11) is defined by205

LV =
{
xk ∈ Rnx : x>k P

−1
GP0
xk ≤ 1

}
.

Moreover, if ∆V = V (xk+1) − V (xk) < 0 holds along trajectories of system (8) for206

all xk ∈ LV \ {0}, then (11) is said to be a Lyapunov function and LV a contractively207

invariant set with respect to the closed-loop system (8). Note that LV is a subset of the208

DoA of the closed-loop system [32].209

In the light of the previous discussions, this work is concerned with proposing210

sufficient conditions to solve the following control problem.211

Problem 1. Consider the N-TS fuzzy model (6). Design a nonlinear fuzzy controller of212

the form (7) such that LV ⊂ Dx∩Du, as large as possible, is a contractively invariant213

set with respect to the closed-loop system (8).214
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4. Multiple-Parameterization Stabilization Conditions for Constrained N-TS Fuzzy215

Systems216

The following theorem provides sufficient conditions to guarantee that LV ⊂ Dx∩217

Du is a contractively invariant set with respect to system (8).218

Theorem 1. Given GV = GP0 ∪ GP1 ∪ (GA0 ⊕ GH0 ) ∪ (GG0 ⊕ GL0 ) ∪ (GB0 ⊕ GF0 ) ∪
(GB0 ⊕ GK0 ) ∪ (GB0 ⊕ GU0 ). If there exist matrices PiPj

= P>
iPj
� 0, iPj = pri

GPj
,

j ∈ {0, 1}, HiH0
, iH0 = pri

GH0
, KiK0

, iK0 = pri
GK0

, FiF0
, iF0 = pri

GFj
, WiW0

, iW0 = pri
GW0

,

JiJ0 , iJ0 = pri
GJ0

, and positive definite diagonal matrices LiL0
, iL0 = pri

GL0
, and UiU0

,

iU0 = pri
GU0

, i ∈ IGV , such that (12), (13) and (14) are feasible. Then, the control law
(7) guarantees that LV ⊂ Dx ∩ Du is a contractively invariant set of the closed-loop
system (8).[

1 S(j)PGP0
? PGP0

]
� 0, ∀j ∈ Ine (12)

HGH0 + H>
GH0
− PGP0 −H>

GH0
E>

(
FGF0 −WGW0

)>
(l)

? 2LGL0
(
KGK0 − JGJ0

)>
(l)

? ? ū2
(l)

 � 0, ∀l ∈ Inu (13)


−PGP1 Φ1 Φ2 −BGB0 UGU0
? −HGH0 −H>

GH0
+ PGP0 H>

GH0
E> W>

GW0
? ? −2LGL0 J>

GJ0
? ? ? −2UGU0

 ≺ 0 (14)

where Φ1 = AGA0 HGH0 + BGB0 FGF0 , and Φ2 = GGG0 LGL0 + BGB0 KGK0 .219

Proof. Multiplying (12) with diag
(

1,P−1
GP0

)
on the left and its transpose on the right,

yields [
1 S(j)

? P−1
GP0

]
� 0. (15)

Then, pre- and post-multiplying (15) with
[
1 −xk>

]
and its transpose, respectively,220

leads to221

1− x>k S>(j) − S(j)xk + x>k P
−1
GP0
xk ≥ 0.

Since for all xk ∈ LV , one has x>k P
−1
GP0
xk ≤ 1, which implies that S(j)xk ≤ 1. This222

proves the inclusion LV ⊆ Dx.223

Inequality (13) implies clearly that HGH0 + H>
GH0
� PGP0 � 0. This, in its turn,

implies that HGH0 is regular. Since H>
GH0

P−1
GP0

HGH0 � HGH0 + H>
GH0
− PGP0 , inequality
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(13) implies that
H>
GH0

P−1
GP0

HGH0 −H>
GH0

E>
(
FGF0 −WGW0

)>
(l)

? 2LGL0
(
KGK0 − JGJ0

)>
(l)

? ? ū2
(l)

 � 0. (16)

Then, multiplying (16) with diag
(
H−>
GH0

,L−1
GL0
, 1
)

on the left and its transpose on the
right, followed by the well-known Schur complement lemma, we obtain[

P−1
GP0

−E>L−1
GL0

? 2L−1
GL0

]
− 1

ū2
(l)

Σ>(l)Σ(l) � 0, ∀l ∈ Inu (17)

where Σ =
[
(FGF0 −WGW0

)H−1
GH0

(KGK0 − JGJ0 )L−1
GL0

]
. Following the same steps as224

in [1], we can conclude from (17) that LV ⊂ Du.225

Using again the property −H>
GH0

P−1
GP0

HGH0 � PGP0 −HGH0 −H>
GH0

, it follows from
(14) that 

−PGP1 Φ1 Φ2 −BGB0 UGU0
? −H>

GH0
P−1
GP0

HGH0 H>
GH0

E> W>
GW0

? ? −2LGL0 J>
GJ0

? ? ? −2UGU0

 ≺ 0. (18)

Then, multiplying (18) with diag
(
P−1
GP1
,H−>

GH0
,L−1

GL0
,U−1

GU0

)
on the left and its transpose

on the right, respectively, followed by the Schur complement lemma, the following
inequality can be obtained:

Ψ>P−1
GP1

Ψ +

−P
−1
GP0

E>L−1
GL0

H−>
GH0

W>
GW0

U−1
GU0

? −2L−1
GL0

L−>
GL0

J>
GJ0

U−1
GU0

? ? −2U−1
GU0

 ≺ 0 (19)

where Ψ =
[
Acl Gcl −BGB0

]
.226

Pre- and postmultiplying (19) by
[
x>k ϕ(xk)> ψ(uk)>

]
and its transpose, it

follows that

∆V + 2ϕ(xk)>L−1
GL0

(Exk − ϕ(xk))

− 2ψ>(uk)U−1
GU0

(
ψ(uk)−WGW0

H−1
GH0

xk − JGJ0 L
−1
GL0
ϕ(xk)

)
< 0.

(20)

Since L−1
GL0
� 0 and U−1

GU0
� 0, by properties (2) and (10), it follows from (20) that227

∆V < 0, for ∀xk ∈ Dx ∩ Du. This guarantees that the origin of the closed-loop228

system (8) is asymptotically stable and LV ⊂ Dx ∩ Du is a contractively invariant set229

with respect to system (8). This completes the proof.230
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Remark 5. Without considering H∞ performance in the design condition of [15,231

Corollary 12], this condition can be seen as a special case of (14) in Theorem 1 for232

N-TS fuzzy systems without input saturation and state constraints. Indeed, the design233

conditions in [15] can be recovered from Theorem 1 by choosing the multisets of delays234

as GP0 = GF0 = GK0 = GH0 = GL0 = {0}.235

The proposed multiple-parameterization approach is based on the choice of mul-236

tisets of delays in Theorem 1, i.e., by increasing the fuzzy summation dimensions in237

both delayed controller (7) and Lyapunov function (11). In particular, Theorem 1 al-238

lows to design both non-delayed and delayed controllers with appropriate choices of239

the multisets of delays.240

For example, conditions to design a non-delayed controller can be obtained with
GP0 = {〈1GP0 (0), 0〉} and GF0 = GH0 = GK0 = GL0 = GJ0 = GW0 = GU0 =

{〈1GF0 (0), 0〉}. If we consider |GP0 | = nP and assume that |GF0 | = |GP0 |, the multiset
of all delays in Theorem 1 isGV = {0, 〈nP , 0〉, 〈nP , 1〉}. Hence, condition (14) corre-
sponds to a (2nP +1)-dimensional fuzzy summation. For illustrations, taking nP = 1,
condition (14) becomes

r∑
i1=1

r∑
i2=1

r∑
i3=1

hi1(zk)hi2(zk)hi3(zk+1)Ξ∗ ≺ 0 (21)

where241

Ξ∗ =


−Pi3 Ai1Hi2 +Bi1Fi2 Gi1Li2 +Bi1Ki2 −Bi1Ui2
? Pi2 −Hi2 −H>i2 Hi2E

> W>i1
? ? −2Li2 J>i2
? ? ? −2Ui2

 .
Moreover, the design conditions to obtain a delayed fuzzy controller can be obtained
with GP0 = {〈1GP0 (−1),−1〉} and GF0 = GH0 = GK0 = GL0 = GJ0 = GW0 =

GU0 = {〈1GF0 (0), 0〉, 〈1GF0 (−1),−1〉}. In this case, with |GP0 | = nP and GF0 =

{〈nP , 0〉, 〈nP ,−1〉}, the multiset GV is GV = {0, 〈nP , 0〉, 〈nP ,−1〉}. For exam-
ple, to obtain a 3-dimensional fuzzy summation based condition to design a delayed
controller from (14), one can choose GP0 = {−1} and GF0 = {0,−1}, which results in

r∑
i1=1

r∑
i2=1

r∑
i3=1

hi1(zk)hi2(zk)hi3(zk−1)Ξ ≺ 0 (22)

where242

Ξ =


−Pi2 Ai1H(i2,i3) +Bi1F(i2,i3) Gi1L(i2,i3) +Bi1K(i2,i3) −Bi1U(i2,i3)

? Pi3 −H(i2,i3) −H>(i2,i3) H(i2,i3)E
> W>(i2,i3)

? ? −2L(i2,i3) J>(i2,i3)

? ? ? −2U(i2,i3)

 .
It can be clearly observed in (21) and (22) that for a fixed number of fuzzy summations,243

design conditions based on both delayed fuzzy controllers and Lyapunov functions244
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may lead to more degrees of freedom (thus, less conservativeness) than those for non-245

delayed ones. The extension to higher fuzzy summation dimensions is obvious from246

the above discussion.247

248

Remark 6. From practical aspects, there are two ways of reducing conservativeness249

with the proposed delayed multiple-parameterization approach. First, for the case of250

non-delayed fuzzy controllers, less conservative results can be obtained by increasing251

the multiple-parameterization dimension. Second, by introducing delayed membership252

functions in the fuzzy controller (7) and nonquadratic Lyapunov function (11), conser-253

vativeness can be further reduced since more degrees of freedom can be introduced into254

the design conditions without increasing the dimension of the overall fuzzy summation255

dimension related to the multiset of delays GV in Theorem 1.256

5. LMI-Based Design Conditions of Constrained N-TS Fuzzy Systems257

The stabilization conditions in Theorem 1 are expressed in terms of (possibly de-258

layed) membership functions. Hence, they cannot be solved directly by numerical259

solvers. For practical use, the following lemma provides a technical tool to derive a260

finite set of LMI-based design conditions from Theorem 1.261

Lemma 2. Consider a multiple fuzzy summation with multiset of delays G = D1 ⊕
· · · ⊕Dq , where Dk = {〈1Dk(dk), dk〉} for all k ∈ Iq . The following inequality∑

i1∈ID1

. . .
∑

iq∈IDq

hi1(zk+d1) . . . hiq (zk+dq )Υ(i1,...,iq) ≺ 0 (23)

is verified if

Θ =
∑

i1∈P(j1)

. . .
∑

iq∈P(jq)

Υ(i1,...,iq) ≺ 0, jk ∈ I+Dk , k ∈ Iq. (24)

Proof. Condition (23) can be equivalently rewritten in the following form:∑
j1∈I+D1

. . .
∑

jq∈I+Dq

Θ ≺ 0 (25)

with Θ defined in (24). It is clear that inequality (24) is a sufficient condition to ensure262

(25). This concludes the proof.263

Remark 7. Given a multidimensional fuzzy summation with multiset of delays G =264

D1⊕ · · · ⊕Dq , with Dk = {〈1Dk(dk), dk〉}, k ∈ Iq , the number of LMIs to ensure its265

negativity obtained with Lemma 2 is
∏q
k=1 |I

+
Dk
|, where |I+Dk | =

(r+|Dk|−1)!
|Dk|!(r−1)! .266

The following example illustrates the application of Lemma 2 to obtain a finite set267

of LMI-based conditions from a multiple fuzzy summation condition.268
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Example 3. Consider a 4-dimensional fuzzy summation in the form (23) with multiset
of delays G = {〈2, 0〉, 〈2, 1〉}. Then, G = D1 ⊕ D2, with D1 = {〈2, 0〉}, D2 =
{〈2, 1〉} and |D1| = 1G(0) = |D2| = 1G(1) = 2. By Lemma 2, the negativeness of
this fuzzy summation is guaranteed if the following set of LMIs hold:

Γ(1,1,1,1) ≺ 0, Γ(2,2,2,2) ≺ 0, Γ(1,1,1,2) + Γ(1,1,2,1) ≺ 0, Γ(1,1,2,2) ≺ 0,

Γ(1,2,1,1) + Γ(2,1,1,1) ≺ 0, Γ(1,2,1,2) + Γ(2,1,1,2) + Γ(1,2,2,1) + Γ(2,1,2,1) ≺ 0,

Γ(1,2,2,2) + Γ(2,1,2,2) ≺ 0, Γ(2,2,1,1) ≺ 0, Γ(2,2,1,2) + Γ(2,2,2,1) ≺ 0.

Remark 8. Note that the explicit dependence of the set LV , obtained from Theorem269

1, on the premise variables leads to difficulties in finding the largest contractively in-270

variant set, especially in the case of delayed controllers [3]. A suitable alternative is271

to consider the following shape-independent subset of LV :272

EV =
⋂

iP0 ∈IGP0

E(P−1
iP0

) ⊂ LV ,

where E(P−1
iP0

) =
{
xk ∈ Rnx : x>k P

−1
iP0
xk ≤ 1

}
. The maximization of LV can be thus273

performed by maximizing EV .274

By Lemma 2, LMI-based sufficient conditions can be obtained to guarantee con-275

ditions (12), (13) and (14) in Theorem 1. Hence, the maximization of EV can be276

reformulated as a convex optimization problem in the the following corollary.277

Corollary 1. Given GV as in Theorem 1. If there exist matrices P̄ = P̄> � 0,
PiPj

= P>
iPj
� 0, iPj = pri

GPj
, j ∈ {0, 1}, HiH0

, iH0 = pri
GH0

, KiK0
, iK0 = pri

GK0
, FiFj

,

iFj = pri
GFj

, WiW0
, iW0 = pri

GW0
, JiJ0 , iJ0 = pri

GJ0
, and diagonal matrices LiL0

� 0,

iL0 = pri
GL0

and UiU0
� 0, iU0 = pri

GU0
, i ∈ IGV , such that the optimization problem

max
P̄ ,P

iP0
,P

iP1
,H

iH0
,K

iK0
,F

iF
j
,W

iW0
,J

iJ0
,L

iL0
,U

iU0

det
(
P̄
)1/nx

subject to (12), (13), (14) and (27) (26)

with

PiP0
� P̄ , iP0 ∈ IGP0 , (27)

is feasible. Then, Problem 1 is solved with the guaranteed contractively invariant set278

EV ⊂ LV .279

Proof. Note that inequality (27) directly implies the inclusion E(P̄−1) ⊆ EV . The rest280

of the proof is a direct consequence of Theorem 1 and Remark 8.281

It should be highlighted that the index det(P̄ )1/nx is proportional to the volume of282

the ellipsoid E(P̄−1).283
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Remark 9. The computational complexity of an LMI solver based on interior point284

methods can be estimated as being proportional to log10(N3
dNl), where Nd is the285

number of decision variables and Nl the number of LMI rows [1, 29]. For the opti-286

mization problem in Corollary 1 with LMI conditions derived using Lemma 2, these287

quantities can be computed as follows:288

Nd = nx

(
nx + 1

2

)(
1 + r|G

P
0 |
)

+ r|G
L
0 |nϕ + r|G

U
0 |nu+

r|G
H
0 |n2

x + nxnu

(
r|G

F
0 | + r|G

W
0 |
)

+ nunϕ

(
r|G

K
0 | + r|G

J
0 |
)
,

Nl = Nl1 +Nl2 +Nl3 +Nl4 ,

where Nl1 = (1 + nx)ne
∏q
k=1 |I

+
Dk
| is the number of LMI rows in (12). In this case,289

the multisets Dk, k ∈ Iq , are defined as in Lemma 2 for G = GP0 ; Nl2 = (nx + nϕ +290

1)nu
∏q
k=1 |I

+

D̂k
|, with D̂k related to the multiset G = GP0 ∪GH0 ∪GL0 ∪GF0 ∪GK0 , is291

the number of LMI rows in (13); Nl3 = (2nx +nϕ +nu)
∏q
k=1 |I

+
D̄k
|, with D̄k related292

to GV in Theorem 1, is the number of LMI rows in (14); Nl4 = nxr
|GP0 | is the number293

of LMI rows in (27). Note that the LMI rows computation is based on the procedure294

described in Remark 7.295

6. Illustrative Examples296

Three numerical examples are given in this section to demonstrate effectiveness of297

the proposed multiple-parameterization approach in reducing control design conserva-298

tiveness and enlarging the estimation of DoA. The first two are academic examples,299

while the third example is physically motivated.300

6.1. Example 1301

Consider the following nonlinear input-saturated system:[
xk+1(1)

xk+1(2)

]
=

[
xk(1) − xk(1)xk(2)

−xk(1) − 0.5xk(2)

]
+

[
0.5x3

k(1)

0.2xk(2)

(
1.2 + sinxk(2)

)]+

[
5 + xk(1)

2xk(1)

]
sat(uk), (28)

where xk(1) ∈ [−b, b], b > 0, xk(2) ∈ [−2, 2] and ū = 0.7. System (28) has two302

sector nonlinearities, namely ϕk(1) = x3
k(1) ∈ co{0, b2xk(1)} and ϕ̄k(2) = xk(2)(1.2 +303

sinxk(2)) ∈ co{0.2xk(2), 2.2xk(2)}. Applying a simple loop transformation [32] to304

ϕ̄k(2), the following nonlinearity can be derived ϕk(2) = xk(2)(1.2 + sinxk(2)) −305

0.2xk(2) ∈ co{0, 2xk(2)}. Considering zk(1) = xk(1) as a premise variable, the non-306

linear system (28) can be exactly represented by a 2-rule N-TS fuzzy model (1) with307

the membership functions h1(xk(1)) =
xk(1)+b

2b , h2(xk(1)) = 1− h1(xk(1)), and local308

state-space matrices309

A1 =

[
1 −b
−1 −0.46

]
, B1 =

[
5 + b

2b

]
, A2 =

[
1 b
−1 −0.46

]
, B2 =

[
5− b
−2b

]
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and G1 = G2 = diag(0.5, 0.2). The validity domain Dx of the nonlinear system310

(28) explicitly depends on the parameter b. Denote b∗ as the maximal value of b for311

which the control design is feasible. This value is used to illustrate the design con-312

servativeness of the proposed control approach according to the procedure discussed313

in Remark 6. Applying Corollary 1 with different choices of multisets of delays, the314

obtained values for b∗ are given in Table 1. We assume that GF0 = GH0 = GK0 =315

GL0 = GJ0 = GW0 = GU0 and |GP0 | is up to 3.316

Note that taking into account both input and state constraints, the proposed 3-317

dimensional fuzzy summation based conditions to design non-delayed controllers are318

an extension of those given in [15]. These conditions can be extended to 6-dimensional319

fuzzy summation based conditions by setting GP0 = {〈2, 0〉} and GF0 = {〈3, 0〉},320

which corresponds to GV = {〈0, 4〉, 〈2, 1〉} in Corollary 1. For this multiset of delays,321

(14) can be rewritten as a 6-dimensional summation similar to (21).322

Moreover, a 3-dimensional delayed based condition can be obtained with GP0 =323

{−1} andGF0 = {0,−1}, which results inGV = {〈2, 0〉,−1}. To obtain 6-dimensional324

fuzzy summation based conditions, we consider GP0 = {−1} and GF0 = {〈0, 4〉,−1},325

which leads to GV = {〈0, 5〉,−1}. Similarly, for GP0 = {〈2,−1〉} and GF0 =326

{〈3, 0〉, 〈2,−1〉}, one has GV = {〈4, 0〉, 〈2,−1〉}. Then, note that delayed condi-327

tions offer more flexibility to design since different multisets of delays can be chosen328

without increasing |GV |.329

Table 1: Parameter b∗ obtained with Corollary 1 for different multisets of delays.

GP0 GF0 |GV | b∗

{0} (extension of [15]) {0} 3 1.367
{−1} {0,−1} 3 1.369
{〈2, 0〉} {〈3, 0〉} 6 1.432
{−1} {〈4, 0〉,−1} 6 1.437
{〈2,−1〉} {〈3, 0〉, 〈2,−1〉} 6 1.442
{〈3, 0〉} {〈3, 0〉} 7 1.436
{−1} {〈5, 0〉,−1} 7 1.438
{〈2,−1〉} {〈4, 0〉, 〈2,−1〉} 7 1.443
{〈3,−1〉} {〈3, 0〉, 〈3,−1〉} 7 1.445

From the results in Table 1, it is clear that increasing the fuzzy summation dimen-330

sion leads to less design conservativeness. However, observe also that there is a kind of331

limit bound for which the conservativeness can be reduced since in comparison to the332

6-dimensional based conditions, the results with |GV | = 7 are just slightly improved.333

To further illustrate the advantages of the proposed control approach, let us consider334

b = 1.367, the value for which all design conditions in Table 1 are feasible. As depicted335

in Figure 1 (a), the contractively invariant set EV obtained with the 6-dimensional non-336

delayed design conditions encompasses the one provided by the 3-dimensional non-337

delayed conditions (i.e., extension of [15]). Consider now b = 1.389, a value for338

which the 3-dimensional conditions are infeasible. Figure 1 (b) depicts the set E(P−1
iP0

)339

together with several closed-loop trajectories340
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Figure 1: Illustrations on the contractively invariant sets. (a) EV obtained from Corollary 1 using the non-
delayed conditions with 3 (dash-dotted line) and 6 (solid line) fuzzy summations for b = 1.367. (b) E(P−1

iP0
)

(dash-dotted line), EV (solid line) and closed-loop trajectories obtained with 6 fuzzy summations and GP
0 =

{〈2,−1〉} for b = 1.389.

6.2. Example 2341

Consider the discrete-time N-TS fuzzy model (1) described in [14, Example 1] with342

the following local matrices:343

A1 =


1 + T T 2

π sin π
2 T̄ −0.1T

T̄ 1− 2T̄ 0 0
T̄ a2T̄ 1− 0.3T̄ 0
0 0 2

π sin π
2T 1− T

 , B1 =


(1 + a2)T

0
0
0

 ,

A2 =


1 + T T̄ 2

π sin π
2T −0.1T

T 1− 2T̄ 0 0
T 0 1− 0.3T̄ 0
0 0 2

π sin π
2T 1− T

 , B2 =


T̄
0
0
0

 , G1 = G2 =


T
0
0
T


where x(1) ∈ [−a, a] with a > 0, x(3) ∈ [−π2 ,

π
2 ], the sampling time is T = 0.5s, the344

control input bound is ū = 2. The sector nonlinearity is chosen as ϕ(x) = sinx(3) −345

( 2
π sin π

2 )x(3) ∈ co{0, (1 − ( 2
π sin π

2 )x(3)}. In addition, the normalized membership346

functions are defined by h1(x1) = x2
1/a

2 and h2(x1) = 1− h1(x1). Similar to Exam-347

ple 6.1, it is evaluated the maximal a, denoted by a∗, for which a given control design348

condition is feasible. The results obtained withGF0 = GH0 = GK0 = GL0 = GJ0 = GW0 = GU0349

are summarized in Table 2. It can be confirmed that fuzzy summation based design350

conditions with higher dimensions can provide less conservative results.351

Consider the case with a = 7, for which the design conditions based on 3-dimensional352

fuzzy summations are infeasible. The conservativeness reduction is evaluated in terms353

of the index det(P̄ )1/nx obtained from Corollary 1. The values of this index for differ-354

ent multisets of delays are summarized in Table 3. Observe that the volume of the ellip-355

soid E(P̄−1) can be increased with higher dimensions in the multiple-parameterization356

conditions.357
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Table 2: Parameter a∗ obtained with Corollary 1 for different multisets of delays.

GP0 GF0 |GV | a∗

{0} (extension of [15]) {0} 3 6.592
{−1} {0,−1} 3 6.592
{〈2, 0〉} {〈2, 0〉} 5 7.931
{−1} {〈3, 0〉,−1} 5 8.224
{〈2, 0〉} {〈3, 0〉} 6 8.952
{−1} {〈4, 0〉,−1} 6 9.854

Table 3: Values of index det(P̄ )1/nx obtained with different multisets of delays in Corollary 1 for a = 7.

GP0 GF0 |GV | det(P̄ )1/nx

{〈2, 0〉} {〈2, 0〉} 5 0.3015
{−1} {〈3, 0〉,−1} 5 0.3864
{〈2, 0〉} {〈3, 0〉} 6 0.3935
{−1} {〈4, 0〉,−1} 6 0.4285

6.3. Example 3 (Stabilization of Connected Inverted Pendulums)358

Let us consider the stabilization problem of a constrained system composed of two359

inverted pendulums interconnected via a linear spring, i.e., the nonlinear system (4)360

with N = 2. The system parameters are T = 0.2s, g = 9.8m/s2, l1 = 0.5m, l2 =361

0.7m, m1 = 0.25kg, m2 = 0.35kg, k1 = 60N/m and a = 0.4m.362

A 4-rule N-TS fuzzy model can be obtained applying the sector nonlinearity ap-363

proach with z(κ) = sinx(j) ∈ [ 2
π , 1] and ϕκ(x) = sinx(j) cosx(j) ∈ co{0, x(j)},364

j = 2κ − 1, κ ∈ I2. Note however that 16 fuzzy rules are required to derive an365

exact representation of this nonlinear system in the classical TS fuzzy form. The366

membership functions are h1(zk) = w1
0(z(1))w

2
0(z(2)), h2(z) = w1

0(z(1))w
2
1(z(2)),367

h3(z) = w1
1(z(1))w

2
0(z(2)), h4(z) = w1

1(z(1))w
2
1(z(2)), where368

wκ0 (z(κ)) =


1, z(κ) = 0,

z(κ) − 2
πasinz(κ)(

1− 2
π

)
asinz(κ)

, z(κ) 6= 0,

and wκ1 (z(κ)) = 1 − wκ0 (z(κ)), κ ∈ I2. The local state-space matrices are given as369
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follows:370

Ai =


1 T̄ 0 0

gT

l1
bj 1 0 0

0 0 1 T̄

0 0
gT

l2
dl 1

 , Bi =


0 0
T

m1l21
0

0 0

0
T

m2l22

 ,

Gi =

0 −k1a
2T̄

m1l21
0 k1a

2T
m2l22

0
k1a

2T̄

m1l21
0 −k1a

2T
m2l22


>

, i = l + 2(j − 1),

for j, l ∈ I2, b1 = d1 = 1 and b2 = d2 = 2
π . Moreover, the input and state con-371

straints are respectively given as ū =
[
8 6

]>
and |x(1)| ≤ π

3 , |x(3)| ≤ π
3 . For the372

control design, the 3-dimensional delayed conditions with multisets of delays used in373

Examples 6.1 and 6.2 are considered. The number of decision variables involved in the374

solution is Nd = 754 and the number of LMI rows is Nl = 800. Hence, the numerical375

complexity is estimated as log10(N3
dNl) = 11.535.376

The closed-loop behavior of the nonlinear system corresponding to the initial con-377

dition x0 =
[
π
6 0 −π4 0

]>
is depicted in Figure 2. Note that although the input378

signal uk exceeds its amplitude bound ū, the control signal actually applied to the379

system is sat(uk), which is always bounded by ū(l). Observe also that despite the380

saturation of both actuators at the beginning of the simulation, the proposed nonlin-381

ear controller can guarantee an asymptotic stability of the closed-loop system. This382

illustrates the effectiveness of the proposed control approach in dealing with complex383

constrained nonlinear systems in real-world applications.384
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Figure 2: Closed-loop behaviors of the 2 connected inverted pendulums system. (a) Position trajectories. (b)
and (c) Control input.
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7. Concluding Remarks385

This work has proposed a multiple-parameterization approach for stabilization of386

N-TS fuzzy systems with input saturation subject to state constraints. This control ap-387

proach offers the possibility to design both non-delayed and delayed nonlinear fuzzy388

controllers. In addition, a procedure to obtain convex design conditions in terms of389

LMIs was proposed. Several numerical tests were performed to illustrate the advan-390

tages of the proposed control approach compared to existing fuzzy summation based391

results. Future research directions are related to the development of fuzzy output392

feedback control designs based on the proposed delayed multiple-parameterization ap-393

proach and switching mechanisms [30] to further reduce the design conservativeness394

as well as the online computational burden.395
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