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1. INTRODUCTION 

Data generation in modern manufacturing systems has 

experienced an explosive growth, reaching around 1000 

Exabytes per year (Tao et al. 2018). This gathered information 

represents a source of invaluable knowledge for manufacturers 

as it can lead to savings and improvements. However, the 

potential present in this data is insufficiently exploited 

(Manns, Wallis and Deuse, 2015). Consequently, various 

countries have proposed roadmaps to adapt their industries to 

the new paradigms. For instance, Germany introduced the 

Industry 4.0 (I4.0), the US created the Smart Manufacturing 

Leadership Coalition, and China proposed the plan China 

Manufacturing 2025 (Jinjiang Wang et al. 2018). This is 

leading to huge financial efforts in manufacturing research. 

For example, the European Union will invest around €7 billion 

by 2020 in Factories of the Future (Kusiak, 2017). 

In the context of I4.0, PPC can be defined as an approach that 

determines the flow of work through each work centre and 

monitors the production process by enabling real time 

synchronisation as well as customized fabrication of products 

(Tony Arnold, Chapman and Clive, 2012; Kohler and Weisz, 

2016).  

Ruessmann et al. (2015) identified nine groups of technologies 

enabling the realisation of I4.0. Among these nine elements, 

this research focuses on Big Data Analytics (BDA), and more 

specifically on ML applied in PPC. Regarding ML, the 

definition that will be considered is the one proposed by 

Mitchell (1997), which refers to a computer program capable 

to learn from experience to improve a performance measure at 

a given task. 

Even if there are efficient analytical solver methods to perform 

PPC, the proposed solutions become rapidly unfeasible in the 

execution phase due to uncertainty (machine breakdowns, 

scrap rate, etc.) and to the stochastic nature of manufacturing 

processes. Furthermore, Enterprise Resource Planning (ERP) 

systems perform poorly at the operative level (Gyulai, Kádár 

and Monosotori, 2015). Additionally, current volatile markets 

with a strong tendency towards mass customization and strict 

respect of delivery dates impose a complexity that has to be 

addressed through an robust PPC (Reuter et al. 2016). ML 

could improve PPC’s robustness since knowledge included in 

data may help to handle predictable and unpredictable events. 

Having recognized the potential contribution of ML to PPC, 

the aim of this paper is to conduct a systematic review of 

scientific literature about the use of ML in PPC under the 

context of I4.0. Two research questions were addressed: which 

are the activities and techniques currently employed to 

perform ML-aided PPC? And which are the currently used 

data sources to implement a ML-aided PPC? 

The first question relates to the research objective of this study, 

while the second question will provide insights about data 

sources used to train ML models in recent applications. In fact, 

data sources represent an important aspect at the core of ML, 

because the meaningfulness of the results greatly depends on 

the quality and source of the data used to train the models. 

The rest of this paper is constructed as follows. Firstly, the 

methodology of the systematic review is described in Section 

2. Section 3 introduces the analysis framework to be used. 

Section 4 presents and analyses the results of the review. 

Finally, Section 5 deals with the conclusion and further 

research perspectives. 

2. RESEARCH METHODOLOGY 

To address the proposed questions and meet the research 

objective, a full investigation of the bibliography is carried. 
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(2003) was performed. This literature review focuses 

exclusively on applications of ML in PPC under the context of 

I4.0. 

The queries were performed between 10/10/2018 and 

05/11/2018 in two databases: ScienceDirect and SCOPUS. 

Additionally, to assure the context requisite, only papers 

published in and after 2011 were considered, as this year 

corresponds to the formal introduction of I4.0 at the Hannover 

Fair. The following keywords conducted the research in titles, 

abstracts and keywords: 

• (“Deep Learning” OR “Machine Learning”) AND 

(“Production scheduling”) 

• (“Deep Learning” OR “Machine Learning”) AND 

(“Production control”) 

• (“Deep Learning” OR “Machine Learning”) AND 

(“Line balancing”) 

• (“Deep Learning” OR “Machine Learning”) AND 

(“Production planning”) 

Additionally, from the year restriction (year >= 2011), only 

publications corresponding to “Research Articles” in 

ScienceDirect and “Conference Paper” OR “Article” in 

SCOPUS were considered. Then, a review of the abstracts 

allowed the selection of only empirical applications of ML in 

PPC. Next, duplicates were removed. Finally, a full text 

analysis of the initial article selection enabled the construction 

of the short list of papers that were used to perform the 

analysis. Figure 1 depicts the search strategy. 

 

Fig. 1. Search strategy: mapping scientific literature 

In such manner, the 40 kept articles were analysed under the 

Analytical Framework proposed in the next section. 

3. ANALYTICAL FRAMEWORK 

3.1 First component of the analytical framework: the elements 

of a method 

The first research question in this paper deals with the 

activities and techniques used to create a ML-aided PPC 

model. According to Zellner (2011), these two items are 

related to what he proposes as the “Mandatory Elements of a 

Method” (MEM). These elements are: 

1. A Procedure: order of activities to be fulfilled when 

employing the method. 

2. Techniques: the way to generate the results. 

Activities of a procedure are supported by techniques, 

while tools support the latter. 

3. Results: what is created by an activity. 

4. Role: the point of view adopted by the person who 

performs the activity and is responsible for it. 

5. Information Model: the relation between the four 

aforementioned elements. 

In the scope of this research, two of the five Mandatory 

Elements are involved: the procedure and the techniques. The 

former concerns the activities, while the latter concerns the 

techniques themselves. More precisely, activities are related to 

tasks performed such as “data cleaning” or “feature selection”; 

and techniques are associated to used ML models such as 

Support Vector Machines (SVM) or Linear Regression (LR). 

3.2 Second component of the analytical framework: used data 

sources 

ML uses data as raw material to develop autonomous computer 

knowledge gain (Sharp, Ak and Hedberg, 2018). Therefore, it 

is capital to use pertinent data in order to have meaningful 

results. Consequently, the choice of the data source is an 

important dimension that has to be analysed. Tao et al. (2018) 

proposed a classification of data sources in manufacturing:  

1. Management data, which comes from historical 

records stored in manufacturing information systems 

(MES, ERP, CRM, etc.) concerning production 

planning, maintenance, order dispatch, sales, etc. 

2. Equipment data, that originates from Internet of 

Things (IoT) technologies implemented in the shop 

floor on machines, workstations, workers, etc. 

3. User data, which derives from consumer information 

collected from internet sources such as e-commerce 

platforms or social networks. 

4. Product data arising from products or service. It 

comes from data collected during the manufacturing 

process or from the final consumer. It can be related 

to product performance, context of use, 

environmental data, etc. 

5. Public data coming from open databases such as 

university repositories, government data or data from 

other researchers. 

The analysis of the 40 short-listed articles showed that some 

of them did not fit with the data sources proposed by Tao et al. 

(2018). These papers shared the same data origin: information 

generated artificially by computer by means of simulations or 
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statistical distributions. Therefore, a sixth new data source is 

proposed, which is also a contribution of this paper: 

6. Artificial data, which concerns information generated 

by computer (e.g. simulations) in order to assess 

applications of ML in PPC. 

In such manner, both proposed analytical framework 

components are used to analyze the 40 short-listed articles. 

The next section presents the results. 

4. RESULTS 

4.1. First research question: activities and techniques 

To identify the activities, the tasks defined to implement a ML-

aided PPC in each of the 40 articles were identified. Next, a 

first data pre-processing was performed in order to manually 

group these tasks into general activities, reducing the number 

of results. Finally, these activities were analysed with two 

experts to keep the most meaningful ones. In such way, eleven 

standard and recurrent activities were identified:  

1. Data Acquisition System Design and Integration 

(DA): design and implementation of IoT solutions to 

collect, transfer and store the data. 

2. Data Exploration (DE): preliminary analysis of data 

to make early decisions. This can be achieved through 

means such as data visualization or descriptive 

statistics. 

3. Data Cleaning and Formatting (DC): steps to make 

data usable to ML models. 

4. Feature Selection (FS): choice of the variables to use 

according to domain knowledge or statistical 

analysis. 

5. Feature Extraction (FE): creation of new and more 

meaningful features using the original dataset 

variables. 

6. Feature Transformation (FT): use of techniques such 

as standardization, normalization or kernels to 

transform the features and improve the learning 

performance. 

7. Hyperparameter Tuning (HT): adjustment of the ML 

parameters. 

8. Model Training, Validation, and Testing (MT): as its 

name implies, it refers to the training, validation and 

testing of the proposed ML models. It also 

encompasses the model’s performance assessment. 

9. Model Comparison and Selection (MC): as there are 

several available ML techniques to perform the same 

task, this activity concerns their comparison to 

choose the most suitable model. 

10. Contextualized Analysis or Application (CA): 

implementation of a solution coherent with the 

problem’s context or the context-oriented knowledge 

generation from the obtained results. It goes beyond 

a simple assessment of the model’s performance. 

11. Model Update (MU): update of ML learned 

parameters with new data in order to adapt it to the 

dynamics of the manufacturing system. 

The usage of these activities in the 40 papers is summarized in 

figure 2. 

 

Fig. 2. Identified activities and their use percentage 

From these eleven activities, three different clusters can be 

identified:  

1. Often used activities (n°7, 8, and 9) or OUAs, applied 

in more than 50% of the studies. 

2. Medium used activities (n°3, 4, 5, 6, and 10) or 

MUAs, implemented in 20 to 50% of the cases. 

3. Seldom used activities (n°1, 2, and 11) or SUAs, 

which are used in less than 20% of the applications. 

These clusters show that research is frequently focused on 

OUAs while the other two clusters represent potential research 

gaps to improve ML-aided PPC performance. Notably, MUAs 

mostly cover data pre-processing activities, which are capital 

to assure a good performance of ML models. Additionally, 

finding the activity n°10 in this cluster shows that it is not 

common to make a contextualized application or analysis of 

the proposed model. In fact, one out of two papers do not go 

further than just assessing the model’s performance. 

Concerning the SUAs, it was surprising to find here the 

activity n°1, as it represents the bridge between IoT and ML. 

This shows that despite the big efforts described in the 

introduction section, the coupling between these two subjects 

is far from being satisfied. Additionally, activity n°11 is 

fundamental to tackle the dynamics of manufacturing 

processes and deliver robust ML-aided PPC solutions. In fact, 

the unpredictable change of the statistical properties and 

relationships between variables over time is known as concept-

drift (Hammami, Mouelhi and Ben Said, 2017). Models must 

overcome concept-drift as it can seriously damage the quality 

of results in a long-term horizon. Despite its importance, 

activity n°11 is only used in 8% of the cases, which points a 

gap in research.  

Finally, in spite of the apparent easiness to apply the activity 

n°2 through means such as data visualization or descriptive 

statistics, it was only used in 8% of the reviewed applications. 

Concerning the techniques, the number of uses of each 

technique family is measured. It is important to mention that, 

in the case of papers applying several technique families, only 
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the one chosen by the author(s) because of its better 

performance was counted. Results are shown in figure 3. 

 

Fig. 3. Technique families and their number of uses 

It is found that the Tree-based models and Neural Networks 

are placed in the top three most used techniques, probably 

because the former has a good trade-off between accuracy and 

interpretability; and the latter has excellent performance when 

dealing with non-linear datasets. 

It is remarkable to find that Clustering is one of the most used 

techniques. In fact, they provide excellent means to deal with 

unlabelled data, which abounds manufacturing. Furthermore, 

Reinforcement Learning techniques such as Sarsa or Q-

Learning were extensively used, pointing an interest on agent-

based models in PPC. 

Finally, it was surprising to find that Principal Component 

Analysis (PCA) and Association Rule are seldom used in ML-

aided PPC (applied only twice and once, respectively). In fact, 

PCA is a useful technique allowing data denoising (included 

in activity n°3) as well as data pre-processing (specifically, 

activities n°5 and 6); and Association Rule provides 

interpretable results, which is convenient to generate 

knowledge and contextualized analysis (activity n°10). 

4.2. Second research question: data sources 

Table 1 summarizes the results concerning the second research 

question (i.e. data sources). 

Table 1: Summary of data sources for the short-listed 

articles 

Reference M E U P Pb A 

(Altaf et al. 2018), (Li et al. 2012)    X   

(Diaz-Rozo, Bielza and 

Larrañaga, 2017), (Kho, Lee and 

Zhong, 2018), (Kruger et al. 

2011), (Rostami, Blue and 

Yugma, 2018), (Yang, Zhang and 

Chen, 2016), (Zhong, Huang and 

Dai, 2013) 

 X     

(Dolgui et al. 2018), (Kartal et al. 

2016), (Lai and Liu, 2012), 

(Lingitz et al. 2018), (Mori and 

Mahalec, 2015), (Reboiro-jato et 

al. 2011), (Reuter et al. 2016), 

(Schuh et al. 2017), (Tong et al. 

2016), (Wauters et al. 2012) 

X      

(Gyulai et al. 2018), (Leng et al. 

2018), (Manns, Wallis and Deuse, 

2015) 

X   X   

(Gyulai, Kádár and Monosotori, 

2015) 
X X    X 

(Gyulai, Kádár and Monostori, 

2014) 
X     X 

(Hammami, Mouelhi and Said, 

2016), (Ji and Wang, 2017), (Li, 

Wang and Sawhney, 2012), (Qu et 

al. 2016), (Shahzad and Mebarki, 

2012), (Stricker et al. 2018), 

(Wang et al. 2015), (Waschneck et 

al. 2018) 

     X 

(Junliang Wang et al. 2018) X    X  

(Lubosch, Kunath and Winkler, 

2018) 
    X X 

(Lv et al. 2018) X    X X 

(Palombarini and Martínez, 2012), 

(Tian, Zhou and Chu, 2013), 

(Tuncel, Zeid and Kamarthi, 

2012), (Wang, Zhang and Wang, 

2018) 

    X  

(Solti et al. 2018)    X  X 

(Zhang et al. 2011) X     X 

Number of times applied 18 7 0 6 7 14 

M: Management data, E: Equipment data, U: User data, P: Product 

data, Pb: Public data, A: Artificial data. 

The most commonly used data sources were, by far, the 

Management data and Artificial data. This indicates two 

things: first, researchers extensively use the historical data 

stored in enterprise information systems, which is favourable 

for companies as they benefit from their records. Second, 

despite the extensive use of Management data, there are still 

issues to retrieve real information, which obliges the use of 

Artificial data. These issues are mainly related to difficulties 

to collect the information. 

There are some applications using Equipment and Product data 

(7 and 6 papers, respectively). These two data sources are 

directly related to IoT technologies implemented inside the 

factory. This means that manufacturers are starting to benefit 

from data generated by IoT in their facilities. However, it is 

not the case for the use of IoT outside the factory environment. 

This is concluded with the fact that no paper used User data as 

source. Therefore, there is an important gap in the use of 

customer analytics applied in I4.0. 

5. CONCLUSION AND FURTHER RESEARCH  

This research paper studied the activities, techniques and data 

sources used to perform ML-aided PPC in the era of I4.0 

through the analysis of 40 empirical application papers. Three 

clusters of activities were identified: OUAs, MUAs, and 

SUAs. The last cluster needs further research as it mainly 

contains activities positioned as key enablers for I4.0. 

Specially, it is possible to highlight the low percentage of 

papers using activities n°1 and 11, which are directly related 

to connected factories to collect and exploit real time data. In 

that sense, activity n°1 is presented as the way to capture this 

real-time data and activity n°11 can be proposed as a solution 

to adapt the ML model to the dynamics of the manufacturing 

systems and overcome the concept-drift issue. 
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The usage of six data sources (from which one is proposed by 

this study) is analyzed. Results indicate that Management and 

Artificial data dominate the current horizon of applications. On 

the other hand, IoT related data sources such as Equipment, 

User and Product data are until now rarely used, pointing a 

research gap. This shows that despite the efforts launched to 

develop the I4.0, there are few applications integrating ML 

with IoT technologies. 

Concerning the identified techniques, there is a prevalence of 

Tree-based models, Neural Networks and Clustering. 

However, further exploration of the use of PCA and 

Association Rule in the context of I4.0 must be done to tackle 

the lack of data pre-processing and contextualized application 

activities (MUAs cluster). Notably, Association Rule is 

considered as a method able to discover and deliver knowledge 

from databases, an important characteristic that must be 

exploited. 

Further research will concern, at a first stage, the development 

of a methodology to implement ML-aided PPC. In such 

manner, three important steps must be performed: first, 

identify tools and link them to techniques; second, link the 

techniques to activities; and third, stablish a logical order 

between activities to create a procedure. At a second stage, the 

domains in PPC where ML has been applied are to be 

identified. This will provide an insight about which areas need 

further development. 

Finally, at a third stage, an application is to be performed in 

one of the PPC domains labeled as a gap in order to test the 

methodology proposed in the first stage. Ideally, a successful 

application will settle solid basis to explore further solutions 

to the concept-drift issue in manufacturing. 
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