
HAL Id: hal-03468401
https://uphf.hal.science/hal-03468401v1

Submitted on 17 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated business rules and requirements to enrich
product-centric information

Virginie Fortineau, Thomas Paviot, Samir Lamouri

To cite this version:
Virginie Fortineau, Thomas Paviot, Samir Lamouri. Automated business rules and require-
ments to enrich product-centric information. Computers in Industry, 2019, 104, pp.22-33.
�10.1016/j.compind.2018.10.001�. �hal-03468401�

https://uphf.hal.science/hal-03468401v1
https://hal.archives-ouvertes.fr

Automated business rules and requirements to
enrich product-centric information
Virginie Fortineaua,*, Thomas Paviotb,c, Samir Lamourib,c
a Khtema, Paris, France
b LAMIH-UMR CNRS 8201, UVHC, Le Mont-Houy, 59313,Valenciennes, Cedex 9, France
c Arts et Métiers ParisTech, 151 boulevard de l’Hôpital, 75013, Paris, France

Keywords:
Business rule
Requirements

Ontology

PLM
BIM

A B S T R A C T

Current PLM or BIM based information systems suffer from a lack of checking components for business
rules. One reason is the misunderstanding of the role and nature of business rules, and how they should
be treated in a product-centric information system. This paper intends to provide both a process and a
related model to build such a component and enrich future systems. Rules and requirements process
management enables the unambiguous formalization of implicit knowledge contained in business rules,
generally expressed in easily understandable language, and leads to the formal expression of
requirements. In this paper, the requirements are considered a consequence of the application of a
business rule. A conceptual model is then introduced, called DALTON (DAta Linked Through Occurrences
Network), which supports this process. In this ontology, concepts and product data, coming for instance
from an existing product database, are represented using instances and occurrences, connected together
with triples built from business rules and requirements according to previous management processes. An
experiment involving a set of SWRL rules is conducted in the Protégé environment that validates the
model and the process.

Computers in Industry 104 (2019) 22–33
1. Introduction

The research presented in this paper has been accomplished in
collaboration with a French company in the field of nuclear power
plant engineering. Designing complex systems such as nuclear
power plants involves hundreds of people working together for
many years. From the very start of construction to the time when
the power plant is operational, engineers use a vital enterprise
asset: business rules. Business rules ensure that the product will fit
all of the requirements, including those regarding performance or
conformance with safety regulations.

Knowledge that is covered by business rules results from
decades of successes, failures, optimizations, test and simulation
results, maintenance operations, and so on. In the context of the
digitalization of industrial design methodologies and tools
(known, for example, as PLM or BIM), business rules must become
a part of an efficient information system. However, many issues
related to business rules management have been found in the
literature, such as: knowledge elicitation, rule formalization,
completeness and consistency of the business rules set, automated
* Corresponding author.
E-mail address: vfortineau@gmail.com (V. Fortineau).

DOI : 10.1016/j.com
or assisted rule application, and automated rule checking on a set
of actual data.

In this study, we do not cover the questions related to
knowledge elicitation, as we treat rules that were already
formalized. The problem addressed in this paper is limited to
how to integrate formalized rules into a product-centric informa-
tion system and enable them to be applied in order to verify
product data. Moreover, we discuss these issues on a conceptual
level, interrogating the nature of business rules, and the right
processes to manage them, providing a management process and a
rule/requirement/product meta-model as our main contributions.
Implementation and technical issues are only provided as
prospects as they depend on applicative (specific) constrains.

The two contributions of this work - the rule management
process and the meta-model - are validated using a simplified real-
case scenario and an ontology-based technology since ontologies
are human readable and include an inference mechanism, which
makes the proof of concept quick.

The paper is structured as follows. Section 2 is a literature
review that targets both the next generation of PLM/BIM systems
and the concept of business rule. Section 3 introduces a rule and
requirement engineering process that could be supported by those
systems. Section 4 presents a meta-model, called DALTON (an
acronym for DAta Linked Through Occurrences Network), which is
pind.2018.10.001 1

a conceptualization of the proposed process to enable its
implementation. Then, an ontological implementation to validate
the model/process is described in Section 5 and results are
discussed in Section 6. Finally, Section 7 concludes the paper.

2. Towards the next generation of industrial enterprise systems

2.1. PLM, BIM, closed-loop

PLM is the acronym for Product Lifecycle Management. Several
definitions exist in the literature, merging two points of view: the
information system point of view, which considers PLM as an
integrated enterprise IT solution to manage product-related data
[19,27,37], and the methodological point of view, which considers
PLM as an approach aimed to manage information about a product
among all stakeholders during the entire product lifecycle. A
definition from Stark [39] provides a consensual point of view
about what PLM actually is:

“Product Lifecycle Management (PLM) is the business activity of
managing, in the most effective way, a company’s products all the
way across their lifecycles; from the very first idea for a product all
the way through until it is retired and disposed of”.

Terzi et al. [40] provided an overview of the history of PLM: the
first PLM systems that were developed were mostly document
management systems, enabling the centralization of different
product views generated along a product lifecycle (design
sketches, Bill of Materials, 2D and 3D files, etc.). Then, PLM
systems moved toward data management systems, starting with
design data as an extension of PDM systems (product data
management systems, repositories of all design data related to the
product). The first issue for a PLM was to include all of the phases in
the product lifecycle. Since this historical review, many works have
notably discussed the design/manufacturing interface by targeting,
for instance, PLM/ERP interoperability [34] or integrating design
and assembly stages [28].

Going step by step to the middle of life (MOL), and especially the
usage/maintenance phase, PLM studies have faced an important
issue: at this point of the product lifecycle, the information that
was centralized in the manufacturing enterprise’s IS is then spread
out. The concept of Internet of Things (IoT) has emerged, which
states that inform1ation is supported by the product (or part) itself
and not by the enterprise information system [43]. In a way, IoT is a
complementary approach to PLM, solving the hole of the Middle of
Life phase.

Complementarily to the IoT concept, Kiritsis [25] proposes the
closed loop. Whereas the aim of PLM is to master and exchange
information along the whole product life-cycle, closed loop PLM
aims to integrate knowledge from the other stages of the lifecycle
to improve decision-making, notably during the design phase.
Thus, closed-loop PLM is the continuous learning version of PLM.

From the building industry perspective, information systems
and methodologies related to digital data management are known
to belong to the BIM area, which is the acronym for Building
Information Modeling [42]. Recently, the terms “closed-loop” and
“BIM” have appeared in the literature: Chang et al [8] run
simulation loops, integrated with the building data, in order to
optimize the thermal structure of the façades.

In the use case of our study, a nuclear power plant could be
considered the object of a BIM study, since it is a building, as well as
from the PLM point of view, because the items that operate in a
nuclear power plant (valves, tanks, motors, pumps etc.) are
produced using PLM tools. Regardless, despite the fact that the
businesses of AEC (targeted by BIM) and classical industrial sectors
(aerospace, automotive, steel industry) are slightly different, there
are similarities and connection points that will hopefully make
those systems more cooperative in the future [25].
DOI : 10.1016/j.compin
Finally, a study by Panetto et al. [33] provides a consistent
view of PLM, BIM and their possible future. They consider the
future of Enterprise Information System and reveal two major
trends:

� moving from system integration to system interoperability;
� and from dynamic (exchanged) and real-time data to inferred
data, which means automated information generation and
checking.

They provide more detail on this second point:
“it is also important to note that recent advances in information

and communication technologies (ICT) have allowed enterprises to
move from highly data-driven environments to a more cooperative
information/knowledge-driven environment”.

Therefore, the issue discussed in the paper is how to enrich (or
extend) current systems (PLM/BIM) with intelligent information
produced during the system engineering process (for instance, in
the form of business rules).

2.2. Problem statement: implementing business rules in a product-
centric information system

The research area of this study is the integration of knowledge
in an information system. Applied to industrial Information
Systems (IS), the correlated problem is the integration and
management of business rules in a PLM / BIM system. Business
rules are indeed the IS formalization of knowledge. For instance, as
Yao and Kumar [44] explain, while designing a decision-making
tool for medical purposes based on ontologies, “procedural
knowledge is encapsulated in rules”, and the knowledge manager
provided is an OWL API, combined with a JESS engine to execute
SWRL rules. Also in the domain of mobile devices, Nalepa and
Bobek [30] state that “a rule-based system consists of three main
elements: knowledge base, fact base and inference engine.
Knowledge base is considered as a set of rules”. For BIM
applications, Sacks et al. [38] consider that rules “encapsulate
expert knowledge of the domain”. Finally, Bajec and Krisper [2]
conclude that “the roots of business rules come from the Artificial
Intelligence community, where they have been successfully
applied as a way of representing knowledge”.

Moreover, the Business Rules Group (BRG) defines a business
rule as follows [23]:

“A business rule is a statement that defines or constrains some
aspect of the business. It is intended to assert business structure or
to control or influence the behaviour of the business. [. . .] From
the information system perspective, it pertains to the facts that are
recorded as data and constraints on changes to the values of those
facts”.

The double-nature of this definition confirms that a business
rule is at once an element in the information system as well as an
expression of business-related knowledge. Thus, implementing
business rules raises the issue of integrating knowledge into an
information system, as described in Fig. 1.

The research question in this study is therefore how to integrate
and manage business rules in a product-centric information
system (PLM or BIM). Thus, we consider that the elicitation of rules
is already done, because knowledge elicitation is an(other) issue in
of itself, and we focus on the computer-aided management of the
existing rule set. The industrial application domain (the nuclear
industry) adds some additional requirements to this study:

� given the amount of data and the number of rules, rule
management should include automated verification of the rule;

� given the amount of data and the number of rules, the checking
algorithms should be generic;
d.2018.10.001 2

� given the lifespan of the power plant, the provided system
should be based on open-source technologies, and shall not rely
on commercial tools;

� the IS expression of rules should be easy to understand by a
business user;

� full traceability of information must be ensured, from expression
to verification;

� the model provided should anticipate the fact that, given the
amount of data, a distributed architecture might be preferred,
and that data can be exchanged with stakeholders separately
from the corresponding concept/knowledge base. For this reason
(and others that will be developed later), meta-modelling is
required.

2.3. Difficulties of checking rules

The literature on rule checking and business rules management
is important. The literature reveals that the checking of single rules
isn’t the main challenge. Rule languages are in fact well suited to do
so (SWRL, OCL, Prolog, etc.); rather, the issue is automatically
checking a set of rules with minimum effort on the part of the end
user or from IT support.

The literature on business rule processing can be divided into
two types: the business side, which provides methodologies or
languages to manage business rules that are mainly not comput-
able. Like Bajec and Krisper [2], some authors indeed consider that
“business rules are set and owned by the business and have to be
therefore managed by the business”. The process model BPMN
(Business Process Model and Notation), for instance, enables end
users to write business rules in a text format. The SBVR language
(Semantics of Business Vocabulary And Rules Specification)
provides a structure for business rules based on business concepts,
but is not implemented such that it is executed on product data. On
the other hand, IT experts have many languages to execute rules
such as Prolog, Java, SWRL, etc. However, they are mostly captives
of modelling languages, demand a computable expression for each
rule, and are not readable by business users. Business rule
management must be considered as a continuous process of
reconciling both sides [16], such as the initiative by Knuplesch and
Reichert [26] in the healthcare domain.

2.4. The lack of a generic, time-based approach

In Table 1, only the works that provide automated (computer-
assisted) verification of the rules are collected. As this table reveals,
most of the contributions to business rules management tend to
provide a specific computational expression for each rule.
Therefore, the involvement of an IT expert is required. Some tools
limit the user’s commitment (especially IT) in implementing a rule,
such as Drools1, which provides patterns for the rule’s computa-
tional expression. Also, Fortineau et al. [16], Njonko et al. [31], as
well as the SBVR initiative [3] try to express rules in a controlled,
natural language, to automatically transform the natural expres-
sion of the rule into a formal one “in order to be machine-
processed” [31]. The output of this approach, as explained by Beach
et al. [4], “leads to regulatory compliance systems that are often
closed and can only be maintained by dedicated software
developers. This [. . .] is simply not viable in the complex and
continuously changing regulatory landscape”. Most of the time,
they try to develop rule engines, where the rules are stored and can
be executed at one time on a set of data.
DOI : 10.1016/j.com
To conclude, the literature demonstrates that existing contri-
butions on business rules management in engineering mainly rely
on two hypotheses that we believe to be false:

� a set of business rules can be checked at a given moment for a set
of data. We think that checking a set of computational rules at
one time during the SE process is a mistake. There is a “right
moment” for each rule, i.e. when the corresponding data (the
data that activates the rule, and the data that enables the
verification) actually exist. For each rule, those moments are
different, so each rule should follow its own workflow. Hence,
checking a rule is not an event but a full workflow, consisting of
different stages that may not be simultaneous (the data that
activates the rule are potentially produced before the data
required for the rule verification, so both stages may not be
simultaneous);

� each rule must be checked individually and a computational
expression for each rule is required. When the amount of data
grows, this second assumption is a scientific lock.

We intend to provide a generic framework for rule processing,
enabling the verification of all rules with a generic (and unique)
computational expression. This framework relies on a continuous
rule engineering process consisting of different stages with various
temporalities.

3. Contribution: a rule and requirement engineering process

3.1. Why rules should not be checked

In fields other than engineering, the literature review on “rule
checking” is surprisingly poor. In fact, the vocabulary associated
with a “rule” is not “checking” but “applying”. In the legal domain,
notably, decrees are delivered in the application of laws [20]. In
addition, Yao and Kumar [44], in designing a rule engine for
medical purposes, state that rules are related “to the stage at
which they are applied in the clinical process”. Moreover,
Zeichner et al. [46], when using crowdsourcing for rule evaluation
state that “As mentioned, in instance-based evaluation individual
rule applications are judged rather than rules in isolation, and the
quality of a rule-resource is then evaluated by the validity of a
sample of applications of its rules.” This semantic issue is not just
a detail, because considering that a rule should be applied and not
checked is an important paradigm shift. This raises two research
questions:

� “When should the rule be applied?”
� “What is the generated output of the application of a rule?”

The first question is discussed in Section 3.3 and the second
question is in the next Section 3.2.

3.2. The relationship between business rules and requirements

3.2.1. Definition of requirements regarding the notion of business rules
Managing business rules calls for the use of related notions such

as specifications, requirements or constraints. Contrary to the
definition of business rules that was discussed in multi-disciplin-
ary groups like the BRG, the definition of related notions in the
literature are in movement; no consensual definition has emerged
from the literature review. Moreover, this is a semantic issue, and a
semantic issue will always face limits in that different languages
will have various definitions for terms. In addition, English is the
common language in the research field, but global researchers tend
to define concepts given an instinctive interpretation from their
native language. As the literature cannot provide a consensus on
pind.2018.10.001 3

those terms, we have chosen to provide our own definition of all
concepts to avoid any misunderstanding on the part of the reader.

Requirements are frequently defined by the process that
manages them, called requirement engineering. More precisely,
they are defined by the aim of each phase of the requirement
engineering process. For instance, Greenspan et al. [21], who 24
years ago expressed their “debt” to requirement definition, state,
“Requirements definition is a careful assessment of the needs that
a system is to fulfil”, usually in the form of functional
specifications. In their view, a requirement is a global statement
that, when processed, produces detailed specifications on the
expected size, behaviour, or material of a system or a part of the
system. In 2007, when making a state-of-the-art on requirement
engineering in software development, Cheng and Atlee [9] still did
not define the requirement in itself, but give a definition of each
step of the requirement engineering process. Starting with
requirements elicitation: “Requirements elicitation comprises
activities that enable the understanding of the goals, objectives,
and motives for building a proposed software system. Elicitation
also identifies the requirements that the resulting system must
satisfy to be considered acceptable.” We can understand from this
definition that a requirement expresses an “expected result” of the
system that can be of different natures. Finally, in the second
edition of their book published in 2017 [12], gives the following
definition of a requirement: “Requirements are the basis for every
project, defining what the stakeholders – users, customers,
suppliers, developers, businesses – in a potential new system
need from it and also what the system must do in order to satisfy
that need.”

The abstraction level of a requirement also cannot find a
consensus in the literature: it could be a high level expectation
(notably in the primary phases of design) or detailed
specifications, usually divided into functional and non-
functional specifications. In a large-scale study in 2017 on
the “pain in requirements engineering”, Fernandez et al. [14]
proved that having overly abstract or not well-defined require-
ments is the main cause of requirements engineering failures. A
reason why the notion “requirement derivation” exists in the
literature [12] is that it refines the requirement to a sufficiently
detailed format to allow it to be checked. We reached the same
conclusion during our applicative project, and the derivation of
business rules is discussed is possible by adding a taxonomic link
between business rules. In the remainder of the study, however,
we consider only the sufficiently detailed and complete business
rules for implementation and treatment in the information
system.

Moreover, the requirement engineering process has about
the same stages as the business rule engineering process
(elicitation, modelling, verification/checking, management) [9].
The main difference between a requirement and a business rule
seems to be the “always true in a given condition” nature of a
rule: while a requirement, in our opinion, is a given specifica-
tion constraining the system, usually expressed by a specific
stakeholder, in a specific project, a business rule is a specifica-
tion that should always be applied, for any equivalent system,
when its condition is fulfilled. For example: “machine A should
have an emergency button to stop it when pressed” is a
requirement specific to machine A, expressed by a project
stakeholder. However, “when a machine is used by a human
being in production, it shall always have an emergency button to
stop it when it is pressed for security reasons” is a business rule,
covering the knowledge of the company engineers or regulatory
constraints, and that will apply on any machine that fits the
condition (for instance, machine A).

With this example and the given definitions, it is clear why,
in the remainder of this paper, we consider the requirement is
DOI : 10.1016/j.compin
(but not exclusively) the output of the application of a rule.
This is consistent with the literature on business rule
formalization.

3.2.2. Formalization of business rules
Usually, rule languages divide a rule into two parts: the

condition (the IF part) and the implication (the THEN part). Thus,
the IF/THEN format is the most widespread representation of
formal business rules. Even Nalepa and Bobek [30] propose “rules,
usually of a form of production rules: IF < conditions > THEN <
action>”. The Rule Interchange Format (RIF, [47],), which is a W3C
recommendation, has a similar structure.

However, while the nature of the content of the IF part is
consensual (it is the set of conditions required to apply the rule),
the content of the THEN part is not clearly defined. For Nalepa and
Bobek [30], it is an action. For the RIF language, it is an implication.
According to Yao and Kumar [44], “rules are triggered by
contextual data and produce actions, which are generally in the
form of reminders, alerts, and recommendations”. The term
recommendation is interesting, because it is not in the lexicon
of acting, but it refers to “an expected state or result”; in other
words, a requirement (mandatory or optional).

Thus, the proposed structure of a business rule is the following:
when the < condition(s) to fulfilled > is true, then the < expected
result> (a requirement) must be checked regarding the product
data.

3.3. When to apply rules

Usually, the management of business rules is divided into
two phases: the rule expression and checking. However, we
state that because rules are the application of user knowledge,
they should be processed all along the product lifecycle. Even a
single rule may be applied at different stages of the lifecycle.
For example, a rule related to the evacuation time during a fire
is applied during the design phase (for a simulation), and
during the usage phase (for a real-life exercise). This rule has
two occurrences for the application. In fact, rule processing is
re-iterated at each phase of the product lifecycle during an
engineering process, which aims to apply knowledge: the
system engineering process.

System Engineering (SE) is an engineering process during which
the engineers perform a system analysis to translate initial require-
ments into technical requirements and, finally, produce the product
view at each step of the product lifecycle [29]. It is a recursive and
iterative process when engineering knowledge is applied to conceive
the best product representation. In the ISO 15,288 standard [24], the
product view is considered the decomposition of the logical view
following requirements engineering during the SE process. Conse-
quently, we consider that the SE process is the process in which
business rules are applied and that the SE process is orthogonal tothe
product lifecycle.

Fig. 1 synthetizes those primary thoughts: knowledge manage-
ment is achieved among the time a business expert’s knowledge is
elicited in the form of business rules. Business rules are processed
during the SE process in every moment of the product lifecycle. The
SE process produces requirements constraining the product views
and should be checked with regards to the product data generated
along the product lifecycle and stored in a product-centric system
(PLM or BIM, for instance).

3.4. Processing time-based rules and requirements

As previously presented, the verification of a rule is made in
several stages: condition fulfilment and checking related require-
ments. Moreover, rule verification can occur at a different time in
d.2018.10.001 4

Fig. 1. Relations between System Engineering, Knowledge Management and Product Life- cycle.

Table 1
Bibliography for automated rule checking and business rules management.

Paper Domain Modelling
language

Rule language Rule engine, tool Business
rules

Comput.
expression

Yao and Kumar [44] Healthcare OWL SWRL Jess yes Specific
Nalepa and Bobek
[30]

Mobile devices __ Prolog/HMR HeaRT yes Specific

Zayaraz et al. [46] Language extraction Ontology Nave
Bayes

no generic

Bernardi et al. [5] Process management __ Declare yes generic
Aichernig and Schumi
[1]

Process management XML C# FScheck yes specific

Fortineau et al. [17] PLM OWL SWRL Protégé yes Specific
Njonko et al. [31] All RuleCNL

Vocabulary
RuleCNL RuleCNL yes specific

Pham and Le [36] Automated processes in bank and
accounting

PetriNets ECAE ECAE reasoner yes specific

Beach et al. [4] AEC OWL, IFC-OWL SWRL (with RASE rule
converter)

Protégé yes Specific

Choi et al. [10] AEC IFCs InSightBIM-
Evacuation

yes specific

Study target PLM/BIM any any To define yes specific
the product lifecycle. Finally, business rules must be formalized in
order to be processed. For these reasons, a rule engineering process
is proposed that covers the various steps of rule engineering.
Moreover, because all steps are not simultaneous, it has been
Fig. 2. Rules and requ

DOI : 10.1016/j.com
considered that each step must produce a resulting piece of data to
be stored in order to complete the traceable information. The
proposed rule engineering process, which consists of 4 stages, is
synthetized in Fig. 2.
irements process.

pind.2018.10.001 5

3.4.1. Stage 1: expressing the rule (what the rule means)
Processing the business rules starts with the expression of the

rule. This formalization is based on abstract concepts and not on
product data, because a rule is always true and can be written
before any technical data is actually produced. Therefore, rule
management supposes that a related concept base is built. The
formalization is made of two parts: the condition of the rule and
the expected result of its application, which is modelled as a
requirement.

3.4.2. Stage 2: activating the rule (when the rule applies)
Stage 2 is the activation of the rule. This stage represents the

time when the rule should be applied. A rule is indeed formalized
before any actual data is produced. Later, during the SE process,
some data fits the condition of the rule and requires the application
of the rule. In the proposed process, the output of the rule
activation (stage 2) is an occurrence of the rule. There might be
several occurrences for the same rule (each time that the rule
should be applied during a product lifecycle).

The concept of rule activation exists in the literature. Pham
and Le Than [36] embed the notion Event-Condition-Action type
rules (ECA) of activation in the form of an event. The approach of
Bernardi et al. [4] uses DECLARE as declarative process
modelling language [35] and makes use of the notion of rule
activation:

“An activation of a business rule in a process instance is an
event whose occurrence imposes certain obligations on the
occurrence of other events in the same process instance. For
example, for the business rule “every request is eventually
acknowledged”, each request is an activation, since the
occurrence of a request forces an acknowledgement that it
will eventually occur. In this case, the activation request
becomes a fulfilment or a violation depending on whether it
is followed by an acknowledgement or not. In our context, the
notion of rule activation is crucial because we try to identify
characteristics of the lifecycle of an activation that allow us to
discriminate by whether that activation is a fulfilment or
not.”

However, they mix the activation and the application of the rule
in this definition when we consider that they must be separated,
because they are not always simultaneous. Moreover, they
consider whether there is a fulfilment of the obligation (require-
ment) related to the application of the rule, whereas later we show
that there could be several.

3.4.3. Stage 3: applying the rule (what the rule implies)
Stage 3 is the application of each activation (occurrence) of

a rule. Applying the rule assumes an expression of the expected
result of the rule in the specific context that activates the rule:
the output of stage 3 is an occurrence of the requirements,
specifically related to the occurrence of the rule that was
applied.

3.4.4. Stage 4: checking the corresponding requirements (consistency
with the product data)

Stage 4 checks the occurrence of the requirement; this means
that the set of data must be consistent with the requirement.
There can be different existing values for the same attribute
constrained by the requirement. For instance, a pressure has two
values: one calculated during the design phase, and the second
measured during the usage phase. The first might fit the
requirement, but the second might not. Each one is stored in a
different criterion with a different result. This concept of criterion
corresponds to the “multiple fulfilments and violations of a rule”
expressed in [4]:
DOI : 10.1016/j.compin
“In process instance? a; b; a; c? for example, the response rule is
activated twice, but the first activation leads to a fulfilment
(eventually b occurs) and the second activation leads to a
violation (b does not occur subsequently) [. . .] An algorithm to
discriminate between fulfilments and violations of a rule in a
process instance has been presented by [7].”

The output of stage 4 is one or several criterion, each one
reflecting the fulfilment (or not) of the occurrence of requirement
regarding a piece of data. Hence, a rule might be verified and not
verified at the same time.

4. The DALTON model supporting processing rules and
requirements

4.1. A generic meta-model based on triples

Rules and requirements are formalized based on engineering
concepts. Therefore, a model of concepts is required to support the
expression of rules. To support a product lifecycle, this model
suffers from several constraints, the first being to manage non-
canonic data. In order to understand this constraint, let us consider
the following two rules:

� Rule 1: “the materials of seismic systems must be painted blue”;
� Rule 2: “the valves must have the code BR.”

During the product lifecycle, the technical data valve123 is
created. It is a valve in the primary system. This valve is
concerned with both rules, but not in the same way: it is
concerned with the first because it is part of a seismic system,
and by the second because it is a valve. Applying both rules on
valve123 supposes it is categorized as a valve and as a material of
a seismic system; i.e., taxonomies are needed. Moreover, we
need non-canonic taxonomies (this means that an individual
may belong to two or more concepts that are not strictly
dependent on one another. Indeed, in the example below, some
seismic systems might not have valves and not all valves are part
of seismic systems).

The DALTON model is a conceptualization that supports rule
processing in order to implement it in any technology. DALTON
stands for “DAta Linked Through Occurrence Network” because the
model relies on a network of data labelled using a network of
concepts, the data being the actual occurrences of concepts. This
conceptualization, presented in Fig. 3, is independent of any
technology or modelling paradigm. However, for better compre-
hension, an UML representation of the DALTON model is presented
in Fig. 4.

There are two kinds of objects in the DALTON model:

� instances are objects representing the concepts;
� occurrences are objects representing the applicative data related
to concepts. For example, the instance valve can have different
occurrences: valve3453, valve38, etc.

The DALTON model is generic; i.e., it has neutral classes (the
classes are not business-oriented) to fit the issue of genericity and
automation. A model supporting business rules must be semanti-
cally rich. The richness of information lies in the relations between
concepts, and not in the concepts themselves. Then, the network of
instances and the network of occurrences are modelled as lists of
triples. A triple is made of three elements: a subject, a predicate
and an object. The proposed model is therefore based on triples of
instances, related to (populated with) triples of occurrences. The
triple-like representation is classical in ontology-based
approaches. The Resource Description Format (RDF) is, for
d.2018.10.001 6

Fig. 3. Conceptual representation of the DALTON model.

Fig. 4. The DALTON conceptualization formalized as an UML-like class diagram.

DOI : 10.1016/j.compind.2018.10.001 7

2 The list of triples depends on the concept base that is specific to each
application. Other concepts and relations could have been used, without impacting
the process of the rule.
instance, a triple-based modelling language. It is also the right way
to formalize natural language. For instance, Zayaraz et al. [45]
extract sentences in the form of triple, using a Binary Decision Tree
(BDT)-based engine.

The main elements of DALTON are presented in Fig. 3. The
fundamental classes of instances are:

� triples of concepts;
� instances of rules and requirement (formalization of the rule).

Built as a mirror of the instances, the fundamental classes of
occurrences are:

� triples of occurrences, representing the data network;
� occurrences of rules, resulting from the activation of rule
instances;

� occurrences of requirements, resulting from the application of
rule occurrences;

� occurrences of criterion, resulting from the comparison of
requirements;

� occurrences of each existing data value.

4.2. A generic rule and requirement model

The DALTON model helps to formalize rules in the form of three
elements. As with most rule languages, a rule is made from a
condition and an implication. The condition is a list of triples
reflecting the situation that activates the rule, and the implication
is a requirement. Moreover, the use case rules raise the point that
the condition may not be directly related to the implication. For
example, in the following rule: “the materials of seismic systems
must be painted blue”, the condition is “systems are type seismic”
(and only that), and the implication is “the material must be blue”.
However, how can one know that the materials of the concerned
system are covered by this rule? This link between the condition
and the implication is stored in the DALTON model as the context of
the rule, which is a list of triples. This is completed by a
requirement model based on 4 elements and built according to the
literature [11]:

(1) the constrained element, to which the requirement is directly
related. It can be a function, a material, a system, etc.;

(2) the constrained attribute;
(3) the expected value of the attribute. Here, the value must be

considered in the wider sense; it can be a quantitative or a
qualitative element;

(4) the context to find the right constrained element.

In the DALTON model, these four elements are represented
using two triples. The first triple represents the constrained
element and its attributes. The second represents the attribute and
its link to the expected value. The context is not expressed in the
two triples, because a requirement is generated by a rule, in which
the context is already stored.

5. Ontological validation of the model

5.1. A SWRL ontology for model validation

To prove the concept of the DALTON model, a DALTON-like
ontology was implemented in Protégé software using SWRL rules
to validate the rule and requirement treatment mechanisms.
Despite the fact that it is an OWL file, this ontology has RDF
expressivity that allows it to stay consistent with the UML model
proposed in Section 4.1. Indeed, we did not use OWL axioms to
DOI : 10.1016/j.compin
define the ontology, because it demands to define specific /
business-oriented classes [15]. As a matter of fact, the T-
Box reflects the generic classes of the DALTON classes, and the
inference is operated on the A-Box, using SWRL rules.

The properties of the ontology define the meta-relations
between DALTON classes. They are listed in Table 2.

The use case consists of a single rule, LSN2 that states: “if the
fluid that passes through a system is borated water, then the
physical materials of this system must have characteristic
MaterialCode worth BA”. The rule is instantiated with a condition,
a context, and a requirement ex2 as follows2:

� if: {system - isPassedThrough - fluid ; fluid - has - fluidType ;
fluidType - isWorth - Borated Water};

� context: {system - isMadeUpOf - material};
� then ex2: {tl = material - has - materialCode ; t2=materia1Code -
isWorth - BA};

Then, occurrences are added (meaning actual systems and
materials). The system considered is called "ASG", which is
part of the secondary circuit of the power plant. ASG is an
individual of the Occurrence class, and is aKindOf system. The
fluid passing through the ASG is the SecondaryFluid, which is
borated water. Materials of the ASG system have two ASGMater-
ialCode values: BA and BB. Three outputs are expected as a result
for the reasoning:

� because the fluid passing through the ASG system is borated
water, the rule LSN2 is activated;

� this rule occurrence generates a occurrence of requirement,
called Occex2, with its first occurrence triple being {ASGMaterial
- has - ASGMaterialCode};

� ASGMaterialCode has two values: BA that fulfils Occe x 2 t, and
BB that violates Occex2.

Ten SWRL rules (see Table 3) are used to get this result. Rules
SWRL1 and SWRL2 perform a preliminary reasoning: they map the
triple of occurrences to the corresponding triple of instances. For
example, they detect that the triple {ASG - isPassedThrough –

SecondFluid} isType {system - isPassedThrough – fluid}. Rules
SWRL3 to 5 “activate” LSN2; that is to say, it has an occurrence
(OccLSN2) that exists because the following list of occ triples exists
and fulfils the condition of LSN2:

� If: OccLSN2 = {ASG - isPassedThrough - SecondFluid ; Second-
Fluid - has - SecondFluiTyp ; SecondFluidTyp - isWorth -
BoratedWater}

SWRL 6 finds the context of OccLSN2: it is the triple of
occurrence {ASG - is made up of - ASG Material} which means that
OccLSN2 can be applied. The application of OccLSN2 is achieved by
using the following algorithm:

� link OccLSN2 to the occurrence of requirement generated
(Occex2) with SWRL7;

� find the occurrence constrained by Occex2 thanks to ex2 also
with SWRL7;

� find the first triple of occurrence (occT1) of Occex2 with SWRL 8:
occTl = {ASG Material - has - ASG Material Code}
d.2018.10.001 8

Table 2
List of owl properties.

owl property meaning UML corresponding relation

aKindOf maps an occurrence to its corresponding instance isOccurrenceOf
isType maps a triple of occurrences to its corresponding triple of instances Is not in the UML model, it is an inferred relation
condα links a condition triple (number α) to the corresponding rule Mutualisation of “if” and “ifList”
contα links a context triple (number α) to the corresponding rule Mutualisation of “hasContext” and “contextList”
imply links the rule to its related requirement Then
co_Obj defines the occurrence object of a triple of occurrences hasOccObject
co_Sub defines the occurrence subject of a triple of occurrences hasOccSubject
co_Pred defines the relation predicate of a triple of occurrences hasOccRelation
tm_Obj defines the instance object of a triple of instances hasObject
tm_Sub defines the instances subject of a triple of instances hasSubject
tm_Pred defines the relation predicate of a triple of instances hasRelation
constElt defines the constrained. element of the requirement (subject of the first triple defining the

requirement)
Mutualisation of “occT1” and “hasOccSubject”

exT1 links the instance of requirement to the first triple of instances that defines it. T1
exT2 links the instance of requirement to the second triple of in stances that defines it. T2
occT1 links the occurrence of requirement to the first triple of occurrences that defines it. occT1
crit Links the occurrence of requirement to the criterion (the second triple of occurrences) occT2
fulfil When the value in the criterion fulfils the occurrence of requirement Attribute of class “Criterion”
The checking of the requirement Occex2 is achieved in two
steps:

� detect the existing values of ASG Material Code with SWRL9 and
store them as a criterion;

� compare them to the required value with SWRL10, thus
detecting whether it fulfils the requirement.

5.2. Limits due to SWRL expressivity

The ontological implementation of the rule LNS2's use case with
the help of ten generic SWRL rules validates the fact that the
proposed DALTON model enables reasoning mechanisms to
express, activate, apply rules and check requirements. However,
this ontology faces some issues that lead to adjustments in the
reasoning, but are only due to the use of SWRL and its lack of
expressivity [17,18]. Indeed,

� SWRL is not a query language: the detection of condition and
context length cannot be automated, because it requires a query;

� SWRL cannot generate individuals: all individuals are created
manually, and the SWRL rules infer only the relations between
individuals;
Table 3
List of reasoning (SWRL) rules.

SWRL1 Pred(?a),co_Obj(?e,?f),co_Sub(?e,?h),co_Pred(?e,?a),isKindOf(?

meaning find the OccTriples corresponding to the Concept Triples
SWRL2 Value(?f),co_Obj(?e,?f),co_Sub(?e,?h),co_Pred(?e,?$is),aKindO
meaning like rule SWRLl but for values
SWRL3 condRulel(?a,?b),aKindOf(?d,?a),isType(?c,?b)→condl(?d,?c)
meaning find the occ triples that satisfies the first concept triple of the
SWRL4 co_Obj(?e,?f),co_Sub(?c,?f),condl(?d,?e),condRule2(?a,?b),isKi
meaning find the occ triple that satisfies the second concept triple of t
SWRL5 co_Obj(?e,?f),co_Sub(?c,?f),cond2(?d,?e),condRule3(?a,?b),aKi
meaning find the occ triple that satisfies the third concept triple of the
SWRL6 co_Sub(?c,?f),co_Sub(?e,?f),cond1(?d,?e),cont1(?a,?b),isType(?
meaning find the occTriple corresponding to the context
SWRL7 co_Obj(?c,?e),contl(?a,?c),exTl(?f,?g),imply(?b,?f),aKindOf(?a,?
meaning apply the rule, by creating the requirement occurrence, and fi

SWRL8 co_Sub(?c,?b),constElt(?a,?b),exTl(?d,?e),aKindOf(?a,?d),isTyp
meaning find the first occurrence triple of the requirement thanks to t
SWRL9 co_Obj(?b,?c),co_Sub(?h,?c),co_Pred(?h,?$Worth),aKindof(?c,?
meaning detect the existing values of the constrained attribute (object
SWRL10 crit(?a,?c),isType(?c,?d),aKindOf(?a,?b),exT2(?b,?d) →fulfil(?c
meaning compare the existing values of the constrained attribute with

DOI : 10.1016/j.com
� SWRL reasoning is based on the Open World Assumption (OWA):
rule SWRL10 checks that the triple of occurrences {ASG Material
Code - is worth - BA} fulfils the requirement Occex2 but it cannot
infer that the triple of occurrences {ASG Material Code - is worth
- BB} violates the requirement Occex2. The OWA indeed prevents
any negative reasoning.

6. Discussion and perspectives

The model presented in this paper targets highly large and
complex systems, composed of thousands or million parts closely
interconnected through many semantic relationships. The devel-
opment and operation of such systems require engineers to apply
many business rules coming from local, national or international
regulations (aerospace industry, nuclear power plants) or from the
enterprise knowledge. In this context, it order to achieve a “closed
loop PLM” as presented in the introduction, the model acts as a
basis for a systematic way to address the workflow from the
business rule to the requirement checking over the system lifecycle
(a Product or a Building). The purpose if clearly to partially
automate something that is manually achieved or, in the worst
case, impossible to achieve if it appears that the business rules
applied to millions of occurrences lead to inconsistencies. In order
f,?d),aKindOf(?h,?g),tm_Obj(?c,?d),tm_Sub(?c,?g),tm_pred(?c,?a)→isType(?e,?c)

f(?h,?g),tm_Obj(?c,?f),tm_Sub(?c,?g),tm_Pred(?c,?$is)→isType(?e,?c)

 rule condition
ndOf(?d,?a),isType(?c,?b)→cond2(?d,?c)
he condition and is connected to the occ triple found previously.
ndOf(?d,?a),isType(?c,?b)→cond3(?d,?c)

 condition and is connected to the occ triples found previously.
c,?b),aKindOf(?d,?a)→cont1(?d,?c)

b),aKindOf(?e,?h),aKindOf(?j,?f),tm_Sub(?g,?h)→constElt(?j,?e),imply(?a,?j)
nding the constrained element (occurrence)
e(?c,?e)→occTl(?a,?c)
he constrained element
f),exT2(?d,?e),occT1(?a,?b),tm_Sub(?e,?f)→crit(?a,?h)

 of occTl) and store them as “criterion”
,?a)

 the expected one (stored in exT2) and detect if it fulfils exT2

pind.2018.10.001 9

to reach this stage of a partial automation, following issues are
identified to be overcome: a tool to assist business and
requirement processing (Subsection 6.1), consistent data models
(Subsection 6.2), a system architecture (Subsection 6.3) and its
related implementation (6.4).

6.1. A graphical vision of rules and requirement processing

With the contributions of virtual reality, system engineers
should be provided a virtual knowledge environment to evolve in,
which will grow dynamically following the product lifecycle. Thus,
a graphic representation of the proposed conceptualization
provides real added value. The huge amount of data leads to an
investigation of at least 3 dimensions and even four dimensions, as
in BIM, where the time dimension is considered in the digital
model. With the time dimension, the graphic representation could
support the data workflow that is part of PLM/BIM systems.

A graphic representation of a rule (see Fig. 5) - taken from the use
case - is proposed in order to check how the proposed conceptuali-
zation changes the engineering view of business rules and suggests a
new vision for “checking rules”. This graphic representation is
dynamic and enriched time after time with the data produced from
the rules and requirements process. It changes the paradigm of the
map verification currently made in the design process of power
plants and shows that the vision of “rule checking,” based on the
binaryresultofasingleprocessingofacomputableversionof therule
with regards to a set of data, is obsolete.

6.2. The interoperability of applicable models

In this contribution, the product data is supposed to be
represented in a single model, which is not true in a PLM/BIM
context, where different applicable views can co-exist. As a matter
of fact, the rule and requirement process climbs over the various
Fig. 5. Rule and requiremen

DOI : 10.1016/j.compin
applicable product models, which is why it is important to create
and store data at each step in the process.

For example, the elements in the condition of the rule provided
in this study are generated by hydraulic engineers when producing
the 2D design file. However, the material code is chosen a few steps
later by industrial engineers while sourcing the right supplier. They
used to work with different tools based on different product
models.

Therefore, one issue remains that the DALTON model currently
does not cover: how can the rule-related data be transmitted from
one model to another and the different modelling paradigms be
managed? We are working on the possibility of designing a unified
representation as a pivotal model. A first approach is to use a
standard for the pivotal model, but this would lead to a semantic
issue, as explained by Beach et al. [3]:

“Choi et al. [8] have developed an approach to regulation
checking for high-rise and complex buildings. In their work the
authors have specified the regulations in a way that tightly couples
them to the industry standard representation of data, the IFCs
(Industry Foundation Classes, 2005). This means that implicitly the
IFCs have been utilised as the underlying semantics of the model.
The key problem with this approach arises if the semantics of the
regulations do not match these semantics”.

On the contrary, we intend to design a pivotal model that will
become the system engineering view, because system engineers
play a pivotal role in the product development, since they gather
information from every specific business.

6.3. Towards a DALTON-based architecture

In order to design and develop a prototype for an IT component
that is able to manage business rules according to the DALTON
representation, the following results have to be considered
(presented in an unordered list):
t graphic presentation.

d.2018.10.001 10

� genericity: any kind of business rule should be handled by the
component;

� data and concept databases have to be separated. Their
conceptual consistency may, however, be ensured through
semantic mappings or a metamodel;

� a business-oriented formal expression of the rule is mandatory,
but all rules must have a unique computational expression;

� a huge amount of data is to be supported (in an order of
magnitude of 106, considering the usual number of materials
operated in a nuclear power plant (pipes, valves, motorpumps,
sensors etc.) ;

� a large number of relations are needed to represent the intricacy
of the overall data/business rules (the order of magnitude is 109 if
we consider the usual number of components of nuclear power
plants). This intricacy is important because the knowledge is not
captured only in the concepts, but rather in the relationships
between concepts. For example, Tsuchiya [41] and Nonaka and
Takeuchi [32], experts in knowledge management, explain that
the information is the structured representation of concepts/
data, and knowledge (tacit or explicit) is the result of the
interpretation of the information by a semantic framework, for
example a human). Moreover, the C-K theory, as explained by
Hatchuel et al. [22], formalizes two worlds: the “C” world, the
world of concepts, and the “K” world, the world of knowledge.
Concepts “become” (are mapped to) knowledge when they are
related by properties: “the structures of C and K. Space K contains
all established (true) propositions (the available knowledge).
Space C contains ‘concepts’ which are undecidable propositions
in K (neither true nor false in K) about partially unknown objects
x. Concepts all take the following form: ‘There exists some object
x, for which a group of properties P1,P2, . . . ,Pk are true in K’.”
Indeed, a sentence is a network of concepts that DALTON
formalizes as a list of triples. A unique identifier (like the IRI)
should be affected by any list.

� reasoning must be closed.

6.4. Implementation challenges

Given the “L” and “D” letters of the DALTON acronym (“D” for
Data, “L” for Linked), and the billions of objects to manage,
concepts and tools from the Linked Data domain [6] are adopted:
distributed architectures, URI/IRI for objects identification and
location. From a technological point of view, the first decisions
lead to the adoption of a high-level programming language to
perform closed world reasoning (Python or Java for instance),
NoSql database/json/URI for objects management, graphical and
dynamic representation of rules and requirements to provide a
graphical knowledge modelling and representation of user
interface.

The main issue is related to the high number of occurrences
(millions of occurrences, as stated above). The storage in itself is
not really an issue, because state-of-the-art databases are able
to handle such a data size [13]. However, this high number of
occurrences, as well as a potential strong intricacy (or conflict)
between business rules might have a strong impact on the
process time to apply/check business rules over the while
system.

This is still a work in progress, and will be further detailed in a
future publication.

7. Conclusion

The next generation of enterprise information systems requires
richer information, knowledge integration, and automated pro-
cesses to assist designers and manufacturers with their work. This
DOI : 10.1016/j.com
raises important issues, like how to reconcile the SE process with
product-centric information systems available in PLM or BIM. The
question of business rules is an illustration of this issue because
business rules are the expression of business knowledge; they are
applied during the SE process, but they must be verified with
regards to the product data. In this paper, we propose a business
rules management process made of different stages, and show the
importance of generic meta models to support the implementation
of automated rule processing. We show that ontological repre-
sentations are adapted to that, but current tools face some
limitations. To provide perspective, we suggest an architecture to
implement the proposed conceptualization.

References

[1] B.K. Aichernig, R. Schumi, Property-based testing with FsCheck by deriving
properties from business rule model, Software Testing, Verification and
Validation Workshops (ICSTW) (2016), doi:http://dx.doi.org/10.1109/
ICSTW.2016.24.

[2] M. Bajec, M. Krisper, A methodology and tool support for managing business
rules in organisations, Inf. Syst. 30 (6) (2005) 423–443.

[3] I. Bajwa, B. Bordbar, M. Lee, SBVR vs OCL: a comparative analysis of standards,
14th IEEE International Multitopic Conference (INMIC 2011) (2011) 261–266,
doi:http://dx.doi.org/10.1109/INMIC.2011.6151485.

[4] T.H. Beach, Y. Rezgui, H. Li, T. Kasim, A rule-based semantic approach for
automated regulatory compliance in the construction sector, Expert Syst. Appl.
42 (12) (2015) 5219–5231.

[5] M.L. Bernardi, M. Cimitile, C. Di Francescomarino, F.M. Maggi, Do activity
lifecycles affect the validity of a business rule in a business process? Inf. Syst.
62 (2016) 42–59, doi:http://dx.doi.org/10.1016/j.is.2016.06.002.

[6] C.H.T. Bizer, T. Berners-Lee, Linked data-the story so far, Int. J. Semantic Web
Inf. Syst. 5 (3) (2009) 1–22, doi:http://dx.doi.org/10.4018/jswis.2009081901.

[7] A. Burattin, F. Maggi, W. Van der Aalst, A. Sperduti, Techniques for a posteriori
analysis of declarative processes, 16th IEEE International Enterprise
Distributed Object Computing Conference (EDOC2012) (2012), doi:http://dx.
doi.org/10.1109/EDOC.2012.15.

[8] S. Chang, D. Castro-Lacouture, F. Dutt, P.P.J. Yang, Framework for evaluating and
optimizing algae façades using closed-loop simulation analysis integrated
with BIM, Energy Procedia 143 (2017) 237–244, doi:http://dx.doi.org/10.1016/
j.egypro.2017.12.677.

[9] B.H. Cheng, J.M. Atlee, Research directions in requirements engineering, 2007
Future of Software Engineering, IEEE Computer Society, 2007, pp. 285–303.

[10] J. Choi, J. Choi, I. Kim, Development of BIM-based evacuation regulation
checking system for high-rise and complex buildings, Autom. Constr. 46 (2014)
38–49.

[11] A. Cornière, V. Fortineau, T. Paviot, S. Lamouri, J.L. Goblet, A. Platon, C. Dutertre,
Modelling requirements in service to PLM for long lived products in the
nuclear field, IFIP International Conference on Advances in Production
Management Systems (2014) 650–657, doi:http://dx.doi.org/10.1007/978-3-
662-44736-9_79.

[12] J. Dick, E. Hull, K. Jackson, Requirements Engineering, Springer, 2017.
[13] N. Elgendy, A. Elragal, Big data analytics: a literature review paper, in: P. Perner

(Ed.), Advances in Data Mining. Applications and Theoretical Aspects. ICDM
2014. Lecture Notes in Computer Science, vol. 8557, Springer, 2014, doi:http://
dx.doi.org/10.1007/978-3-319-08976-8_16.

[14] D.M. Fernández, S. Wagner, M. Kalinowski, M. Felderer, P. Mafra, A. Vetrò, et al.,
Naming the pain in requirements engineering, Empirical Softw. Eng. 22 (5)
(2017) 2298–2338.

[15] V. Fortineau, A. Cornière, T. Paviot, S. Lamouri, Modeling domain knowledge
using inference ontologies: an application to business rules management, IFAC
Pap. Online 48 (3) (2015) 573–578, doi:http://dx.doi.org/10.1016/j.
ifacol.2015.06.142.

[16] V. Fortineau, T. Paviot, A. Guissé, S. Lamouri, A transformation model to express
business rules from natural language to formal execution: an application to
nuclear power plant, IFAC Proc. 46 (9) (2013) 1096–1101, doi:http://dx.doi.org/
10.3182/20130619-3-RU-3018.00186.

[17] V. Fortineau, T. Paviot, S. Lamouri, Improving the interoperability of industrial
information systems with description logic-based models-the state of the art,
Comput. Ind. 64 (4) (2013) 363–375, doi:http://dx.doi.org/10.1016/j.
compind.2013.01.001.

[18] V. Fortineau, T. Paviot, X. Fiorentini, L. Louis-Sidney, S. Lamouri, Expressing
formal rules within ontology-based models using SWRL: an application to the
nuclear industry, Int. J. Prod. Lifecycle Manag. 7 (1) (2014) 75–93, doi:http://dx.
doi.org/10.1504/IJPLM.2014.065458.

[19] M. Garetti, S. Terzi, N. Bertacci, M. Brianza, Organisational change and
knowledge management in PLM implementation, Int. J. Prod. Lifecycle Manag.
1 (1) (2005) 43–51, doi:http://dx.doi.org/10.1504/IJPLM.2005.007344.

[20] T. Gordon, G. Governatori, A. Rotolo, Rules and norms: requirements for
rule interchange languages in the legal domain, Lect. Notes Comput. Sci.
5858 (2009) 282–296, doi:http://dx.doi.org/10.1007/978-3-642-04985-
9_26.
pind.2018.10.001 11

[21] S. Greenspan, J. Mylopoulos, A. Borgida, On formal requirements modeling
languages: RML revisited, Proceedings of the 16th International Conference
Onsoftware Engineering (1994) 135–147.

[22] A. Hatchuel, B. Weil, CK design theory: an advanced formulation, Res. Eng. Des.
19 (4) (2009) 181.

[23] D. Hay, K.A. Healy, J. Hall, C. Bachman, J. Breal, J. Funk, J. Healy, et al., Defining
Business Rules. What are They Really? Tuch. rep., The Business Rules Group,
2000.

[24] IS0-15288, Systems and Software Engineering -System Life Cycle Processes,
International Standard Organization, 2015.

[25] D. Kiritsis, Closed-loop PLM for intelligent products in the era of the internet of
things, Comput.-Aided Des. 43 (5) (2011) 479–501, doi:http://dx.doi.org/
10.1016/j.cad.2010.03.002.

[26] D. Knuplesch, M. Reichert, A visual language for modeling multiple
perspectives of business process compliance rules, Softw. Syst. Model. 16
(3) (2017) 715–736.

[27] K.H. Kung, C.F. Ho, W.H. Hung, C.C. Wu, Organizational adaptation for using
PLM systems: group dynamism and management involvement, Ind. Mark.
Manag. 44 (2015) 83–97, doi:http://dx.doi.org/10.1016/j.
indmarman.2014.04.018.

[28] B. Marconnet, F. Demoly, D. Monticolo, S. Gomes, An assembly oriented design
and optimization approach for mechatronic system engineering, Int. J. Simul.
Multidiscip. Des. Optim. 8 (A7) (2017), doi:http://dx.doi.org/10.1051/smdo/
2016016.

[29] P. Mauborgne, S. Deniaud, E. Levrat, E. Bonjour, J.P. Micaëlli, D. Loise,
Operational and system hazard analysis in a safe systems requirement
engineering process- application to automotive industry, Saf. Sci. 87 (2016)
256–268, doi:http://dx.doi.org/10.1016/j.ssci.2016.04.011.

[30] G.J. Nalepa, S. Bobek, Rule-based solution for context-aware reasoning on
mobile devices, Comput. Sci. Inf. Syst. 11 (1) (2014) 171–193, doi:http://dx.doi.
org/10.2298/CSIS130209002N.

[31] P.B.F. Njonko, S. Cardey, P. Greenfield, W. El Abed, RuleCNL: A controlled
natural language for business rule specifications, International Workshop on
Controlled Natural Language (2014) 66–77, doi:http://dx.doi.org/10.1007/978-
3-319-10223-8_7.

[32] I. Nonaka, H. Takeuchi, The Knowledge-Creating Company, Oxford University
Press, 1995.

[33] H. Panetto, M. Zdravkovic, R. Jardim-Goncalves, D. Romero, J. Cecil, I.
Mezgár, New perspectives for the future interoperable enterprise systems,
Comput. Ind. 79 (2016) 47–63, doi:http://dx.doi.org/10.1016/j.
compind.2015.08.001.
DOI : 10.1016/j.compin
[34] T. Paviot, V. Cheutet, S. Lamouri, A PLCS framework for PDM/ERP
interoperabilty, Int. J. Prod. Lifecycle Manag. 5 (2–4) (2011) 295–313, doi:
http://dx.doi.org/10.1504/IJPLM.2011.043182.

[35] M. Pesic, H. Schonenberg, W. vVn der Aalst, DECLARE: full support for
looselystructured. Processes, 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC2007) (2007), doi:http://dx.doi.org/
10.1109/EDOC.2007.25.

[36] T.A. Pham, N. Le Thanh, A rule-based language for integrating business
processes and business rules, The 9th International Web Rule Symposium
(RuleML) 1417 (2015) 8.

[37] D. Romero, F. Vernadat, Enterprise information systems state of the art: past,
present and future trends, Comput. Ind. 79 (2016) 3–13, doi:http://dx.doi.org/
10.1016/j.compind.2016.03.001.

[38] R. Sacks, L. Ma, R. Yosef, A. Borrmann, S. Daum, U. Kattel, Semantic enrichment for
building information modeling: procedure for compiling inference rules and
operators for complex geometry, J. Comput. Civil Eng. 31 (6) (2017) 04017062.

[39] J. Stark, Product lifecycle management, Product Lifecycle Management 1, Springer,
Cham, 2015, pp. 1–29, doi:http://dx.doi.org/10.1007/978-3-319-17440-2_1.

[40] S. Terzi, A. Bouras, D. Dutta, M. Garetti, D. Kiritsis, Product lifecycle
management : from its history to its new role, Int. J. Prod. Lifecycle Manag.
4 (4) (2010) 360–389, doi:http://dx.doi.org/10.1504/IJPLM.2010.036489.

[41] S. Tsuchiya, Improving knowledge creation ability trough organizational
learning, Proceedings of International Symposium on the Management of
Industrial and Corporate Knowledge, ISMICK, Compiègne (1993).

[42] R. Volk, J. Stengel, F. Schultmann, Building information modeling (BIM) for
existing building - literature review and future needs, Autom. Constr. 38 (2014)
109–127, doi:http://dx.doi.org/10.1016/j.autcon.2013.10.023.

[43] F. Wortmann, K. Fliichter, Internet of things, Bus. Inf. Syst. Eng. 57 (3) (2015)
221–224.

[44] W. Yao, A. Kumar, ConFLexFlow: integrating flexible clinical pathways into
clinical decision support systems using context and rules, Decis. Support Syst.
55 (2) (2013) 499–515, doi:http://dx.doi.org/10.1016/j.dss.2012.10.008.

[45] G. Zayaraz, et al., Concept relation extraction using naive bayes classifier for
ontology based. Question answering systems, J. King Saud Univ.-Comput. Inf.
Sci. 27 (1) (2015) 13–24, doi:http://dx.doi.org/10.1016/j.jksuci.2014.03.001.

[46] N. Zeichner, J. Berant, I. Dagan, Crowdsourcing inference-rule evaluation July,
Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Short Papers vol. 2 (2012) 156–160.

[47] J. Zhao, H. Boley, J. Dong, A fuzzy logic-based approach to uncertainty
treatment in the rule interchange format: from encoding to extension,
Uncertainty Reasoning for the Semantic Web II, Springer, 2013, pp. 197–216.
d.2018.10.001 12

	Automated business rules and requirements to enrich product-centric information
	1 Introduction
	2 Towards the next generation of industrial enterprise systems
	2.1 PLM, BIM, closed-loop
	2.2 Problem statement: implementing business rules in a product-centric information system
	2.3 Difficulties of checking rules
	2.4 The lack of a generic, time-based approach

	3 Contribution: a rule and requirement engineering process
	3.1 Why rules should not be checked
	3.2 The relationship between business rules and requirements
	3.2.1 Definition of requirements regarding the notion of business rules
	3.2.2 Formalization of business rules

	3.3 When to apply rules
	3.4 Processing time-based rules and requirements
	3.4.1 Stage 1: expressing the rule (what the rule means)
	3.4.2 Stage 2: activating the rule (when the rule applies)
	3.4.3 Stage 3: applying the rule (what the rule implies)
	3.4.4 Stage 4: checking the corresponding requirements (consistency with the product data)

	4 The DALTON model supporting processing rules and requirements
	4.1 A generic meta-model based on triples
	4.2 A generic rule and requirement model

	5 Ontological validation of the model
	5.1 A SWRL ontology for model validation
	5.2 Limits due to SWRL expressivity

	6 Discussion and perspectives
	6.1 A graphical vision of rules and requirement processing
	6.2 The interoperability of applicable models
	6.3 Towards a DALTON-based architecture
	6.4 Implementation challenges

	7 Conclusion
	References

