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Summary: Dynamic evolution of surface roughness
and influence of initial roughness (Sa ¼ 0.282–6.73 µm)
during friction and wear processes has been analyzed
experimentally. The mirror polished and rough surfaces
(28 samples in total) have been prepared by surface
polishing on Ti–6Al–4V and AISI 1045 samples.
Friction and wear have been tested in classical sphere/
plane configuration using linear reciprocating tribometer
with very small displacement from 130 to 200 µm. After
an initial period of rapid degradation, dynamic evolution
of surface roughness converges to certain level specific to
a given tribosystem. However, roughness at such
dynamic interface is still increasing and analysis of
initial roughness influence revealed that to certain extent,
a rheology effect of interface can be observed and
dynamic evolution of roughness will depend on initial
condition and history of interface roughness evolution.
Multiscale analysis shows that morphology created in
wear process is composed from nano, micro, and macro
scale roughness. Therefore, mechanical parts working
under very severe contact conditions, like rotor/blade
contact, screws, clutch, etc. with poor initial surface
finishing are susceptible to have much shorter lifetime
than a quality finished parts. SCANNING 36: 30–38,
2014. © 2013 Wiley Periodicals, Inc.
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Introduction

Initial surface roughness can have significant influ-
ence on friction and wear processes in tribological
contacts under fretting conditions (Kubiak and
Mathia, 2009; Sokoloff et al., 2012; Stahlmann et al.,
2012). Damage induced by fretting is considered as a
plague for modern industry and can be found in many
engineering applications (Fu et al., 1998) for example in
transport industry, electrical contacts, bridge cable lines,
rotor/blade contact of jet engine, but also in dental
implants and brackets (Rapiejko et al., 2009), hip and
knee prosthesis. Degradation of such contact is a
dynamic process and conditions at interface are
constantly changing (Jerier and Molinari, 2012). Wear
process, abrasion in contact and creation of third body
will influence dynamic evolution of interface roughness.
For very severe contact conditions (Kasarekar et al.,
2008) often encountered in fretting, initial surface will be
totally removed and newly created surface will usually
be very complex due to physical and chemical processes
taking place at interface. Therefore, multiscale analysis
approach should be used to evaluate interface morphol-
ogy. Along with statistical parameters, used to evaluate
roughness height and spatial characteristic, many
researchers started to use multiscale decomposition
method (Bouchbinder et al., 2006; Bigerelle et al.,
2007, 2012). Fourier transform, wavelet transformation
and fractal methods are more often used (Brown and
Siegmann, 2001; Ungar et al., 2003; Kang et al., 2005;
Scott et al., 2005). Taking into account multiscale
roughness of interface and dynamic nature of friction
and wear processes, it is important to analyze the
interface roughness evolution during sliding and wear
(Elliott et al., 1998). From a practical point of view,
initial roughness in manufacturing process is much
easier to control. It is frequently used to obtain
specific functionalities of final parts and components.
Therefore, in this article we will focus on initial
roughness and its influence on friction and wear process
dynamics.
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Experimental Procedure

Tested Materials

Two commonly used engineeringmaterials were selec-
ted in this study: lowcarbonalloy (AISI1045)and titanium
alloy (Ti–6Al–4V). Two relatively hard materials were
selected as counterbodies to simplify analysis and avoid
high wear rate: AISI 52100 ball bearing steel and Al2O3

ceramicball. For analysisof initial roughness influenceand
dynamic evolution of interface roughness the plane speci-
mensAISI 1045were tested against AISI 52100 ball and a
plane Ti–6Al–4V specimens against ceramic ball.

Rough Surface Preparation

The experimental specimensweremachined into small
rectangular blocks and they were polished to obtain an
uniformroughnessontheirworkingsurface.Subsequently
different grit size were involved to produce surfaces with
Sa roughness ranging from 0.035 to 6.73 µm. Tests
performed to analyze dynamic evolution of surface
roughnesswere carried out directly on the “almostmirror”
polished surfaces with Sa ¼ 0.035 µm. However, influ-
ence of initial surface roughness was also investigated
using specimens with different initial roughness ranging
from Sa ¼ 0.282 to 6.73 µm. Commercially available
spheres fromball bearingwereusedascounterbodies, they
are characterizedby smooth surfaceof aboutSa ¼ 0.2 µm
and no additional treatment were used in this case.

Preparation of the surface by abrasive polishing can
generate initial compressive residual stress near to the
surface. However, high local contact stress during fretting
will lead to relaxation of initial residual stress after few
cyclesingrossslipregime(Kubiaketal.,2010)whenwhole
contact area is subjected to relative sliding. Therefore,
in this study carried out in gross slip regime, the initial
residual stress will not be taken into account.

Surface Roughness Measurements

The initially polished surfaces and the specimens with
different initial roughness prepared on AISI 1045 and
Ti–6Al–4V were measured by Wyko NT3300S optical
interferometric profiler. Vertical Scanning Interferometry
(VSI) mode was used to measure the surfaces. The
measurementprinciple is thatunfilteredwhite lightbeamis
split in two. Half of a beam is directed through a
microscope objective and reflected from the surface and
half is reflected from the reference mirror. When reflected
beamscombine together theyproduce interferencefringes,
where the best‐contrast fringe occurs at best focus. In VSI
mode the objective moves vertically to scan the surface at
various heights. A 3D surface is reconstructed by analysis
of fringes at every pixel. VSI mode uses algorithms to

process fringemodulation data from the intensity signal to
calculate surface heights. In our measurements an objec-
tive with 5�magnification was used and resulting sampl-
ingof obtainedprofilewas 1.6 µm inX andYdirection and
vertical resolution was 10 nm. For results consistency all
measurements were done in VSI mode. All the surfaces
were anisotropic and sliding direction between plane and
sphere was perpendicular to the initial surface texture.
Examples of measured 3D topologies on AISI 1045 and
Ti–6Al–4V material are presented in Figure 1. It can be
noted that an initial anisotropic surface roughnesshas been
totally removed from the surface during a wear process.
Traces of fretting reveals abrasive character of fretting
wear andpresenceof thirdbody in the contact causingvery
deep scratches in center of wear trace. More abrasive
character can be observed for titanium alloy.

Experimental Setup for Friction and Wear Tests

The experimental analysis of initial surface roughness
influence on friction, wear, and dynamic evolution of
interface morphology were carried out using linear
micro‐displacement tribometer (Kubiak et al., 2011).
Reciprocating displacement motion with a frequency F
of 15 Hz is generated by electrodynamic shaker. Test is
controlled by imposing constant displacement. Figure 2
shows schematic diagram of used tribometer and
interface contact configuration. During the tests, normal
load in the contact was applied by fixed mass and was
kept constant at P ¼ 10 and 20 N. Tangential force (Q)
and relative displacement (d) were recorded continu-
ously, using that signals, various tribological parameters
can be calculated and displacement amplitude is used in
feedback loop to keep displacement amplitude constant
during the test (Kubiak et al., 2005, 2006).

Results and Discussion

Friction and wear are complex phenomena involving
physical and chemical interactions of interface and also
mechanical deformations of near surfacematerial. During
dry contact friction, even for the conditions involving only
elastic contact deformation in macroscopic scale, due to
roughness of real surface, contact between two solids take
place first on asperities peaks. Stress distribution in local
contact spots can however exceed the elastic limit and
materials on a smaller scale will be deformed plastically.
Therefore, by controlling surface morphology one can
control how the contact between solids will take place.

Dynamic Evolution of Roughness During Wear Process

Dynamic evolution of surface morphology has been
evaluated by analysis of surface profiles after tests with
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different number of cycles. Initially mirror polished
surface of Ti–6Al–4V has been tested in sphere/plane
configuration for 2,000, 5,000, 7,500, and 10,000
cycles. Profiles of worn plane surface in direction

perpendicular to sliding direction are plotted in
Figure 3. Spherical shape of wear scars has been
removed from profile and only roughness is plotted and
analyzed. Already after the first 2,000 cycles, a

Fig 1. 3Dmorphologies with different initial surface roughness (Processes 1, 2 and 3) prepared by abrasive polishing on a low carbon alloy
AISI 1045 and titanium alloy Ti–6Al–4V. Test conditions: P ¼ 10 N, d* ¼ 200 µm, F ¼ 15 Hz, N ¼ 5,000 cycles, contact configuration
plane/sphere AISI 1045/AISI 52100 and Ti–6Al–4V/Al2O3 respectively.

Fig 2. Fretting test: (a) contact configuration, (b) fretting loop, and (c) fretting wear scar (Ti–6Al–4V) (after Kubiak et al., 2011).
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significant surface degradation and increase in rough-
ness can be observed. Summary of roughness
parameters evolution can be found in Table I. Slight
increase in roughness can be observed between 2,000
and 5,000 cycles, but no further degradation was
observed for this configuration. Note that tests were
performed on mirror polished surface and therefore
influence of initial roughness is very limited in this
case and each test will have similar rheological history.
Evolution of wear on sphere counterbodies have
similar tendency to evolution on plane surface.
Observed wear has abrasive character and after initial
period of intensive degradation, an equilibrium state
between material removal from peaks and valleys of
asperities is reached. Roughness of interface will in this
case slightly increase but it is already at very high
level.

Influence of Initial Surface Roughness on Dynamic
Evolution of Interface

Influence of initial roughness on dynamic evolution of
interface morphology was analyzed on specimens pre-
paredonAISI1045andTi–6Al–4Vmaterialwithdifferent
initial roughness. In this case, testswere carried out against
AISI 52100 sphere. Profiles of the middle cross section of
wear scars on Ti–6Al–4V measured in direction perpen-
dicular to sliding direction are presented in Figure 4. Three
surfaces with different initial roughness can be directly
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Fig 3. Dynamic evolution of roughness profiles during wear pro-
cess, 2Dprofile taken in amiddle cross section in direction perpendi-
culartocontactslidingdirection(a) initialprofile,(b)weartrace(plane
material Ti–6Al–4V, P ¼ 20 N, d* ¼ 130 µm, F ¼ 15 Hz).

TABLE I Dynamic evolution of surface morphology during wear
process, measured at different number of cycles in a wear trace on
surface with removed spherical form and filtered with Gaussian
filter 0.08 mm (plane material Ti–6Al–4V, P ¼ 20 N, d* ¼ 130
µm, F ¼ 15 Hz)

Cycles Initial 2,000 5,000 7,000 10,000

Height parameters
Sq (µm) 0.045 2.09 1.82 1.5 1.56
Ssk 0.229 �0.249 �0.214 �0.228 �0.802
Sku 3.23 3.77 5.05 3.27 5.16
Sp (µm) 0.197 15.3 19.9 12.4 12.9
Sv (µm) 0.272 15.3 23.1 16.5 17.2
Sz (µm) 0.47 30.6 43 28.9 30.2
Sa (µm) 0.035 1.61 1.43 1.22 1.23

Functional parameters
Smc (µm) 0.058 2.66 2.17 1.97 1.87
Sxp (µm) 0.083 4.72 4.05 3.04 3.52

Feature parameters
Spd (1/mm2) 277 184 94.7 137 113
Spc (1/mm) 7.81 319 547 324 422
S10z (µm) 0.32 23.5 31.4 18.7 25
S5p (µm) 0.12 10.3 16.1 9.14 9.51
S5v (µm) 0.20 13.2 15.3 9.56 15.5

Length = 1.50 mm  Pt = 9.64 µm  Scale = 20.0 µm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 mm

µm

-10

-5

0

5

10

Length = 1.53 mm  Pt = 9.51 µm  Scale = 20.0 µm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 mm

µm

-10

-5

0

5

10

Length = 1.50 mm  Pt = 11.4 µm  Scale = 20.0 µm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 mm

µm

-10

-5

0

5

10

Process 1

Process 2

Process 3

Wear scareInitial surface Initial surface

Fig 4. 2D profiles of fretting wear scar, middle plane perpendi-
cular to sliding direction at maximum wear depth, material
Ti–6Al–4V, for displacement amplitude 200 µm.
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compared after the test with identical tribological
conditions. Summary of roughness parameters measured
inside the fretting scars is presented in Tables II and III for
Ti–6Al–4Vand AISI 1045 material respectively.

It can be noted that there are differences in the
surface roughness inside the fretting traces after the
test. They are related to initial surface roughness.
This confirms that the rheological evolution and

TABLE II Roughness parameters measured on initial surface and
inside of wear scars, spherical form of wear scar have been
removed and Gaussian filter 0.08 were used, material Ti–6Al–4V,
P ¼ 10 N, d* ¼ 200 µm, N ¼ 5,000 cycles, F ¼ 15 Hz

Process#

Initial surface Wear trace

1 2 3 1 2 3

Height parameters
Sq (µm) 1.43 0.441 0.365 1.88 2.41 2.92
Sp (µm) 6.48 2.2 2.06 14.4 16.4 15.4
Sv (µm) 6.73 1.61 1.71 10.7 11.2 19.6
Sz (µm) 13.2 3.81 3.77 25.1 27.5 35.1
Sa (µm) 1.11 0.339 0.282 1.43 1.89 2.14

Functional parameters
Smc (µm) 1.79 0.554 0.459 2.3 2.76 3.13
Sxp (µm) 3.13 0.82 0.667 3.85 5.55 7.97

Feature parameters
Spd (1/mm2) 280 827 986 314 294 194
Spc (1/mm) 51.9 31.3 29.3 398 436 412
S10z (µm) 7.25 3.33 3.17 18.7 22.7 31.1
S5p (µm) 3.83 1.85 1.81 10.4 14.5 14.4
S5v (µm) 3.41 1.48 1.36 8.29 8.22 16.7

TABLE III Roughness parameters measured on initial surface and
inside of wear scars, spherical form of wear scar have been
removed and Gaussian filter 0.08 were used, material AISI 1045,
P ¼ 10 N, d* ¼ 200 µm, N ¼ 5,000 cycles, F ¼ 15 Hz

Process#

Initial surface Wear trace

1 2 3 1 2 3

Height parameters
Sq (µm) 2.88 0.52 0.377 0.974 1.02 0.792
Sp (µm) 11.7 2.5 2.07 9.19 6.19 3.51
Sv (µm) 15.7 2.46 1.46 6.09 5.23 4.19
Sz (µm) 27.4 4.97 3.53 15.3 11.4 7.7
Sa (µm) 2.16 0.409 0.282 0.712 0.756 0.593

Functional parameters
Smc (µm) 3.24 0.662 0.466 1.11 1.24 0.93
Sxp (µm) 7 0.982 0.689 1.84 2.02 1.68

Feature parameters
Spd (1/mm2) 107 800 741 492 437 749
Spc (1/mm) 78.1 35 27.7 337 136 118
S10z (µm) 11.4 3.82 3.17 11.9 8.8 5.62
S5p (µm) 4.72 1.95 1.88 7.52 4.67 2.56
S5v (µm) 6.72 1.87 1.29 4.4 4.13 3.05

Fig 5. Surface morphology and Averaged Power Spectral Density function of AISI 1045 (Process 1) surface before a test.
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history of the contact degradation have an influence
on friction and wear processes. However, influence
of the material and microstructure should be further
investigated.

Multiscale Power Spectral Density Analysis

Further analyses of interface evolution during friction
process were carried out using power spectral density

Fig 6. Analysis of texture direction of (a) initial and (b) worn interface roughness and its variation during fretting test with AISI 1045,
P ¼ 10 N, d* ¼ 150 µm, F ¼ 15 Hz, N ¼ 5,000 cycles.
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analysis on 3D measured initial and worn surfaces. It
represents a square value of amplitudes of surface
roughness profiles as a function of wavelength. In this
case, an averaged value of the consecutives lines of 3D
surface is represented. Therefore, obtained spectrum will
depend on the direction of analysis.

Multilevel analysis is revealing important changes in
distribution of Power Spectral Density function on initial
roughness and morphology created during wear process.
Initial surface morphology prepared by abrasive polish-
ing is composed from frequencies corresponding to the
wavelength, i.e. peaks on PSD graph in Figure 5. These
kind of dominant frequencies are likely to indicate
surface anisotropy, which in this case is very high and
only 2.7% of isotropy, has been calculated on initial
surface (Fig. 6). Isotropy in tribological contact is
increasing during the fretting test and after 5,000 cycles
is about 64.5% (Fig. 6). Sliding direction is perpendicu-
lar to initial surface roughness texture and as it can be
observed in Figures 5 and 7 due to wear process initial
surface is totally removed and new rough surface is
created. However, this is a very dynamic process and
final roughness of interface will depend on the history of

contact and roughness evolution during the friction
process.

The results of PSD obtained for initial surface
morphology are rather intuitive and they are similar
for other surfaces prepared by polishing and other
unidirectional processes like milling or turning, where
rather single motif corresponding to the tool feed step,
will be dominant in PSD distribution.

Multiscale analysis of surface morphology inside the
fretting scar shows increasing and regularly distributed
Power Spectral Density function with tendency to reduce
the maximum wavelength in spectrum (Fig. 7). This
means that morphology created in wear process is
composed from nano, micro, and macro scale roughness.
Therefore, abrasive wear process take place at all scale
levels. Analyzing obtained PSD for worn surface, one
can expect to find self‐similarity at different levels.
Figure 8(a,b) confirm that hypothesis showing similar
roughness profiles of surface created by abrasive wear
process at different scale levels. Isotropy of worn surface
is increasing comparing to initial surface, however first
direction of motives change from initial polishing
direction to direction of sliding of interfaces.

Fig 7. Power spectral density analysis of AISI 1045 (Process 1) surface after the test with P ¼ 10 N, d* ¼ 150 µm, F ¼ 15 Hz,
N ¼ 5,000 cycles.
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Conclusions

Dynamic evolution of surface roughness during
friction and wear processes has been analyzed using
first series of mirror polished Ti–6Al–4V samples and
second series of samples with different initial roughness
(Sa ¼ 0.282–6.73 µm) prepared on Ti–6Al–4VandAISI
1045 samples.

Analysis of dynamic evolution of roughness during
friction process shows that the degradation of material in
abrasive wear process rapidly change the roughness in
tribological contact. After an initial period of rapid
degradation, condition of the interface will stabilize and
roughness increase is much slower. However, analysis of
initial roughness influence revealed that to certain extent
a memory effect of interface exist and dynamic evolution
of roughness will depend on initial condition and
rheology of interface roughness evolution. Therefore,
mechanical parts exposed to friction with poor initial
finishing are susceptible to have much shorter lifetime
than quality finished parts. This especially can concern
the parts working under very severe contact conditions
like rotor/blade contact, screws, clutch, etc.

Multiscale analysis shows that new surface created
during abrasive wear process is rather uniform at
different scales. That confirms that morphology created
in wear process is composed from nano, micro, and
macro scale roughness. Depending on specific applica-
tion, initial surface morphology can be used to manage
the friction and wear processes in more controllable way.

Nomenclature

F (Hz) frequency of sinusoidal displacement
P (N) normal load in contact
Q (N) tangential load in contact
d (µm) relative displacement in contact
N number of cycles in fretting test
Sq (µm) root mean square height
Ssk skewness
Sku kurtosis
Sp (µm) maximum peak height
Sv (µm) maximum pit height
Sz (µm) maximum height
Sa (µm) arithmetic mean height
Smc (µm) inverse areal material ratio
Sxp (µm) extreme peak height
Spd (1/mm2) density of peaks
Spc (1/mm) arithmetic mean peak curvature
S10z (µm) ten point height
S5p (µm) five point peak height
S5v (µm) five point pit height
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