
HAL Id: hal-03472153
https://uphf.hal.science/hal-03472153v1

Submitted on 27 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Less is more: general variable neighborhood search for
the capacitated modular hub location problem

Marija Mikić, Raca Todosijević, Dragan Urošević

To cite this version:
Marija Mikić, Raca Todosijević, Dragan Urošević. Less is more: general variable neighborhood search
for the capacitated modular hub location problem. Computers and Operations Research, 2019, 110,
pp.101-115. �10.1016/j.cor.2019.05.020�. �hal-03472153�

https://uphf.hal.science/hal-03472153v1
https://hal.archives-ouvertes.fr


Computers and Operations Research 110 (2019) 101–115

Less is more: General variable neighborhood search 
for the capacitated modular hub location problem
Marija Miki ć 
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a b s t r a c t

In this paper, we study the capacitated modular hub location problem. The problem belongs to the class

of the single assignment hub location problems, where a terminal can be assigned to only one hub.

In addition, the problem imposes capacity constraints, on both hubs and edges that connect them. The

observed problem is directly related to the real problem. Namely, in air traffic, the number of flights

between two cities directly determines the conditions of the capacity. In order to tackle the problem we

propose a general variable neighborhood search (GVNS) based heuristic. We have performed exhaustive

testing that led to the conclusion that the GVNS method gave superior results in comparison to the pre- 

vious methods. This is especially reflected in the number of best solutions that were obtained in a much

shorter time. Additionally, we applied statistical tests which showed that GVNS is undoubtedly superior

with respect to the previously observed methods.
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. Introduction

Hub location problems belong to a very important sub-field of

ocation science. As such they represent a fertile area for inter-

isciplinary researchers from operations research, transportation,

eography, network design, telecommunications, regional science,

conomics, etc. The term hub refers to the special facility which

erves as switching, transshipment and sorting point in a distri-

ution system (see Alumur and Kara (2008) ). Existence of such

acilities enables the flow to be redirected through them instead

f directly linking each origin and each destination. Main features

f hub locations problems as indicated in Campbell (1994) and

ampbell and O’Kelly (2012) are: 

• Demand is associated with flows between origin-destination

(OD) pairs;
• Flows are allowed to go through hub facilities;
• Hubs are facilities to be located;
• There is a benefit of routing flows via hubs (or a requirement

to route flows via hubs);
• There is an objective that depends on the locations of hub fa-

cilities and the routing of the flows.
i  

s  

S  

p  

DOI : 10.1016/j.cor.2
In addition, most hub location problems impose two additional

ssumptions: 

• Paths between OD pairs visit at most two hubs;
• Direct OD flows are not allowed.

Papers that relax the last two assumptions are, for ex-

mple, Brimberg et al. (2019) ; Contreras et al. (2010, 2017) ;

ahmutogullari and Kara (2015) ; Taherkhani and Alumur (2018) .

n Mahmutogullari and Kara (2015) and Taherkhani and

lumur (2018) the direct flows are allowed, while in pa-

ers Brimberg et al. (2019) ; Contreras et al. (2010) and

ontreras et al. (2017) paths between OD pairs may con-

ain more than two hubs. Contreras et al. (2010) and

ontreras et al. (2017) consider structured non-fully connected

ackbone networks (e.g., tree-of-hubs and the cycle-of-hubs),

hile Brimberg et al. (2019) relax the assumption that triangle

nequality holds for costs. 

The main applications of hub location problems have been in

ransportation, telecommunications and postal services. For exam-

le, in air transport it is unreasonable to establish direct flights

etween each pair of cities due to extremely high prices for do-

ng so. For this reason, a different approach is used. Namely, pas-

engers in air traffic are redirected through intermediate airports.

uch airports are called hubs. On the other hand, hub location

roblems in telecommunications include the location of hubs (i.e.,
019.05.020 1
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hardware such as switches, routers, and concentrators) through

which the flow between origin and destination is directed. Apart

from this example, which has its everyday application, hub loca-

tion problems are present in the maritime industry, freight trans-

port companies, public transit and message delivery networks (for

more details see Farahani et al. (2013) ). For surveys on hub location

problems we refer the reader to Campbell and O’Kelly (2012) and

Alumur and Kara (2008) . 

In this paper, we study the capacitated single assignment hub

location problem with modular link capacities (CSHLPMLC). The

CSHLPMLC is defined on a backbone/tributary network. In this kind

of network, each node is defined either as a terminal or as a hub.

Terminal nodes are nodes that represent origins and destinations.

As the flow must be routed from origins to destinations, and di-

rect origin–destination connections are economically unprofitable,

as has been previously noticed, the flow is routed through nodes

called hubs . The network that connects the terminal nodes to the

hubs (to which they are assigned) is called a tributary network . The

network that connects the hubs is called the backbone network . The

CSHLPMLC considers a fully connected backbone network and each

terminal is assigned to exactly one hub. Also, it is not allowed

to directly connect the terminals. Therefore, every flow between

each two terminals must be done through at least one hub. In ad-

dition, the CSHLPMLC assumes that at most two hubs are used

in each path to route the flow. Therefore, there are two options.

The first option is that the flow from one terminal to another is

routed through the path Terminal1–Hub–Terminal2 (if both termi-

nals are assigned to the same hub). Alternatively, if the terminals

do not share a common hub, the flow is routed through the path

Terminal1–Hub1–Hub2–Terminal2. 

We consider fixed costs of installing hubs and fixed costs of in-

stalling the needed capacity on each edge. The capacity needed to

route the flow on an edge is provided by the installation of an in-

teger number of links of fixed capacity. The link capacity can be

different for the backbone and for the tributary edges. Given a

flow matrix, which represents the flow between terminal nodes,

the CSHLPMLC problem consists of determining the set of nodes

to serve as hubs, assigning each terminal node to exactly one hub

and installing capacities on edges, so that all the flow is routed re-

specting the capacity constraints. The aim is to minimize the total

cost of establishing a network, which is the sum of hub installation

costs and link costs. 

In the work by Yaman and Carello (2005) the CSHLPMLC

problem was introduced for the first time. In this paper a branch-

and-cut algorithm and a tabu search metaheuristic were presented.

To solve larger instances, Corberán et al. (2016) used a heuristic

method based on the strategic oscillation (SO). Their method is

based on constructive and destructive algorithms which work

together with associated local search procedures, to balance diver-

sification and intensification. The initial solution is constructed in

a greedy manner. The destructive procedure works on a complete

solution, from which it removes a fixed number of hubs and termi-

nals. On the other hand, the constructive procedure repairs a par-

tial solution created by the destructive procedure in order to have

a complete solution which is used as the initial solution for the

local search procedures. Local search procedures are based on two

neighborhoods: one which exchanges terminal-hub assignments of

two terminals assigned to two different hubs (the first terminal is

reassigned to the hub associated with the second terminal and vice

versa) and another that changes hub-terminal assignment of single

terminal by assigning it to another hub. Hoff et al. (2017) proposed

a new heuristic, named adaptive memory procedure (AMP), to

solve the CSHLPMLC. Their method is an iterative procedure that

employs the constructive procedure and the local search proce-

dure. The constructive procedure uses adaptive memory structures

which means that instead of randomization, it keeps track of past
DOI : 10.1016/j.co
ub appearances to discourage their selection in future construc-

ions. The constructive procedure provides an initial solution for

he local search procedure. The local search procedure, in addition

o the neighborhood structures proposed in Corberán et al. (2016) ,

xploits neighborhood structures that open or close a hub. Also,

t uses the neighborhood structure in which a terminal becomes

 hub, while the hub it is assigned to is being closed. In this

ase, all terminals that were assigned to the closed hub, as well

s the closed hub itself, are being assigned to the newly opened

ub. At the end of the iterative procedure, the path relinking

rocedure is launched on the elite solutions encountered during

he run of the iterative procedure. The problems related to the

SHLPMLC have been studied recently by Rastani et al. (2016) and

anash et al. (2017) . Rastani et al. (2016) considered a hub

roblem with multi-level capacities where hubs and hub links

ake capacity from a given set of capacities. In the paper by

anash et al. (2017) a hub location problem is considered where

ow-dependent transportation costs are modeled using modular

ink costs. The authors presented two mixed integer programming

ormulations and propose a Lagrangean relaxation for one of them.

ased on this relaxation, and on a heuristic algorithm, they devel-

ped a branch and bound producing good computational results

n benchmark instances with up to 75 nodes. For a more detailed

urvey on problems related to the CSHLPMLC, we refer the reader

o Hoff et al. (2017) , Mohri et al. (2018) and Momayezi et al.

2018) . 

In this paper, we propose a heuristic based on variable

eighborhood search metaheuristic. It examines just two neigh-

orhood structures. One neighborhood structure is already used

n Hoff et al. (2017) , while another neighborhood structure is an

xtension of a neighborhood structure from Hoff et al. (2017) and

orberán et al. (2016) . This extension allows that a hub is closed

uring the intensification phase or opened during the shaking

diversification) phase. In Hoff et al. (2017) , the authors considered

eighborhood structures that open and close a hub as well. In

heir implementation, when a hub is opened, a new assignment

f terminals to hubs is made as well. On the other hand, when

 hub is closed, all terminals assigned to it are reassigned to the

emaining hubs. The difference in our implementation is that we

o not consider these two neighborhood structures at all. We

ather allow that when we change a terminal-hub assignment we

ay open/close a hub. More precisely, if only a single terminal is

ssigned to an individual hub (the hub itself), it is allowed to be

eassigned to another hub, therefore enabling it to be closed. Simi-

arly, we allow a non-hub node to become a hub assigned to itself.

n this way, we accomplish the opening/closing of the hub, simply,

ithin the neighborhood that changes terminal-hub assignments.

lthough, this neighborhood structure has been considered in

off et al. (2017) and Corberán et al. (2016) , in these papers it was

ot allowed to change a hub set while exploring this neighbor-

ood, i.e., while changing terminal-hub assignment. For this rea-

on, in Hoff et al. (2017) the authors introduce two more complex

eighborhood structures in order to possibly improve the current

olution by changing the cardinality of a hub set. Beside this, we

ntroduce auxiliary data structures that speed up the exploration

f the used neighborhoods. The proposed heuristic is tested

n benchmark instances from the literature. The obtained results

emonstrate its superiority over existing state-of-the-art heuristics.

n sum, the contributions of the paper are three-fold: the exten-

ion of existing neighborhood structures used for the CSHLPMLC;

n efficient way of exploring neighborhood structures using aux-

liary data structures; and establishment of new state-of-the-art

esults. 

It should be noted that our method uses a smaller number of

eighborhood structures than the current state-of-the-art adaptive

emory based procedure (AMP) proposed by Hoff et al. (2017) . In
r.2019.05.020 2
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ddition, it uses a very simple procedure to construct an initial so-

ution. Consequently, the proposed approach may be classified as

 less is more approach (LIMA). Less is more approach is a re-

ent approach in solving optimization problems (see Mladenovi ́c

t al. (2016) , Brimberg et al. (2017) and Costa et al. (2017) ). LI-

As main idea is to find the minimum number of search in-

redients in solving some particular optimization problem, that

akes some heuristic more efficient than the ones currently con-

idered to be the best in literature. In other words, the goal

s to make heuristic as simple as possible, but at the same

ime, more effective and efficient than the current state-of-the-art

euristic. 

The rest of this paper is organized as follows. In Section 2 , we

ive the mathematical formulation of problem. In Section 3 , we

ntroduce our approach. We give details of proposed Basic Vari-

ble Neighborhood Descent (BVND), general variable neighborhood

earch (GVNS) and shaking procedure. In Section 4 , we present the

omputational results and we compare them with previous results.

n Section 5 , we give conclusion remarks and outline some possible

esearch directions. 

. Problem formulation

In this paper, we consider the single assignment hub location

roblem. The problem considered here consists in selecting a sub-

et of nodes to be hubs, and assigning the rest of the nodes to

hem, in such a way that the transportation cost is minimized

hile satisfying the capacity constraints. 

Let G = (V, E) be a complete graph, where V = { 1 , 2 , . . . , n } rep-

esents a set of nodes (terminals), while E denotes a set of edges.

ach edge { i, j } ∈ E , has two arcs associated, i.e., arcs ( i, j ) and ( j, i ).

ence, the set of all arcs is defined as A = { (i, j) : i, j ∈ V } . 
In the CSHLPMLC, the number of hubs is not imposed. The cost

f opening a hub at the node k is fixed and it is given as c kk , while

he cost of assigning node i to hub k is given as c ik . 

For any pair of nodes i, j ∈ V, t ij denotes the flow to be trans-

orted from node i to node j . 

The flow is routed through hubs in a way that passes through

t least one and at most two hubs. For each hub opened at node

 there is a limit, Q 

h 
k
, on the amount of flow it can accommodate.

his limitation directly affects the number of terminals that can be

llocated to the observed hub. 

We will distinguish two types of edges which connect nodes:

ccess edges and backbone edges. Terminals are connected to hubs

sing the access edges, while hubs are connected using backbone

dges. Each backbone edge has a maximum flow capacity (in each

irection), and it is given as Q 

b . 

On an edge { k, l } we may install several backbone edges. The

umber of installed edges was denoted by w kl and the cost of in-

talling one backbone edge on edge { k, l } by r kl . Then, the maxi-

um flow that we can transport on edge { k, l }, in each direction,

s Q 

b w kl and the associated cost of establishing backbone edges

s w kl r kl . Since each backbone edge connects two hub nodes, the

aximum number of links that may be installed on certain edge

onnecting hubs h 1 and h 2 is given as � max { Q h 
h 1

,Q h 
h 2 

} 
Q b

� . 
In order to formulate CSHLPMLC as a mixed integer non-

inear program the following variables are used (see Yaman and

arello (2005) ): 

• the variable x ii takes the value of 1 if node i receives a hub, and

0 otherwise. The variable x ik is equal to 1 if node i is allocated

to hub k , and 0 otherwise;
• the non-negative variable z kl , which denotes flow on an arc ( k,

l ) ∈ A ;
• the variable w kl , which denotes the number of links on the edge
{ k, l } ∈ E . I

DOI : 10.1016/j.cor.2
The formulation is, then: 

in 

∑

i ∈ V

∑

k ∈ V
c ik x ik + 

∑

{ k,l}∈ E 
r kl w kl (1) 

ubject to: 
∑

k ∈ V
x ik = 1 , ∀ i ∈ V (2) 

x ik ≤ x kk , ∀ i ∈ V, ∀ k ∈ V \{ i } (3) 

∑

i ∈ V

∑

j∈ V
(t i j + t ji ) x ik −

∑

i ∈ V

∑

j∈ V
t i j x ik x jk ≤ Q 

h 
k x kk , ∀ k ∈ V (4) 

z kl ≥
∑

i ∈ V

∑

j∈ V
t i j x ik x jl , ∀ (k, l) ∈ A (5) 

Q 

b w kl ≥ z kl , Q 

b w kl ≥ z lk , ∀{ k, l} ∈ E (6) 

x ik ∈ { 0 , 1 } , ∀ i ∈ V, ∀ k ∈ V (7) 

w kl ≥ 0 and integer , ∀{ k, l} ∈ E. (8) 

The objective function in (1) calculates the cost of establishing

he network. Constraints (2) require that exactly one hub is as-

igned to each node, while constraints (3) ensure that node k must

e a hub if node i is assigned to a node k . Constraints (4) do not

llow that the total flow which goes through hub k to be greater

han its capacity Q 

h 
k 

. In this case, subtracting the second mem-

er on the left-hand side of the inequality ensures that there is

o double-counting between the pairs of nodes assigned to the

ame hub. Constraints (5) regulate flow through the observed arc

 k, l ), while constraints (6) determine the number of links needed

n each backbone edge. Finally, constraints (7) and (8) define the

ntegrality properties of the variables and their domains. 

. Solution method

In this section, we give a thorough description of the proposed

pproach. First, we describe how the solution of the problem is

epresented in our approach and which data structures are used

o accomplish this. After that, we present neighborhood structures

ollowing the introduced solution representation. Finally, we de-

cribe how these neighborhood structures are explored within a

ariable neighborhood descent scheme as well as within a variable

eighborhood search scheme. 

.1. Solution representation 

A solution of capacitated modular hub location problem is de-

ermined by a set of hubs, the node-to-hubs assignments, and the

ravel paths for each pair of nodes. More precisely, we represent a

olution as S = (H, A ) , where H is a set containing hubs, while A is

 series of assignments, i.e., A [ i ] represents hub assigned to node i .

or example, if node 12 is assigned to hub 1, then A [12] = 1 . 

Each hub together with its assigned terminals form a set ( clus-

er ) in the network. The size of the cluster CL k that corresponds

o the hub k is the number of terminals assigned to hub k (the

ub is assigned to itself and thus it is counted as well). We ob-

erve different types of flow in the network. Node to Cluster Flow

NCF) represents sent and received flow from a node to a clus-

er (for the cluster with a node i as a hub, flow t ii is not taken

nto account), Cluster to Node Flow (CNF) represents sent and re-

eived flow from a cluster to a node (for the cluster with a node

 as a hub, flow t ii is not taken into account again), and Cluster to

luster Flow (CCF) represents the flow sent between two clusters.

hese additional data structures will be used to speed up the ex-

loration of the solution space as it will be explained subsequently.

n Corberán et al. (2016) , the authors used just data structure CCF. 
019.05.020 3
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3.2. Initial solution 

The initial solution of the CSHLPMLC problem is constructed as

follows. First, each node is designed to be a hub. In other words,

the set H contains all nodes. After the initial set of hubs H is deter-

mined, each node (hub) is assigned to itself. This means that each

cluster contains only one element, i.e., a hub. Finally, we calculate

matrices NCF, CNF, CCF, and the objective function value of the ini-

tial solution. 

3.3. Neighborhood structures 

In this article, we consider two neighborhood structures in or-

der to improve a solution. Neighborhood structures are defined by

operators that change a set of chosen hubs or node to hub assign-

ments. More precisely, for a given solution S = (H, A ) , we define

the following neighborhood structures: 

• Replacement of the Terminal and Hub within the Cluster (RTHC ( S ) )

contains all solutions that may be obtained by changing of a

hub within a cluster, i.e., the hub in a cluster changes its status

to become a terminal and one of the terminals in this cluster is

the new hub of the cluster, if its capacity allows this. The rest

of the terminals in the cluster remain the same but are now

assigned to the new hub. For example, if node 2 is a hub in the

cluster, and nodes 3,13 and 15 are terminals in the same clus-

ter, then A [3], A [13] and A [15] are equal 2. After replacement, if

node 13 becomes a hub and node 2 becomes a terminal, then

A [2] = 13 . Also, for all unchanged terminals j ∈ {3, 15} in that

cluster, we have A [ j] = 13 .

As RTHC limits the exploration to changes within a clus-

ter, there is no need to recalculate the number of links on

the backbone edges to compute the value of the new solu-

tion. Hence, in order to calculate the value of some new so-

lution S′ = (H 

′ , A 

′ ) generated by such a replacement, it suf-

fices to update the cost of node to hub assignments. This

may be accomplished by recalculating the assignment cost of

each node in the cluster whose corresponding hub has been

changed.

This neighborhood structure has been used in

Hoff et al. (2017) as well as in Ilic et al. (2010) .
• Moving the Terminal from one Cluster to another Cluster

(MTCC ( S ) ) , as the name says, contains all solutions that may be

obtained by moving the terminal from one cluster to another,

i.e., the terminal from one cluster becomes a terminal in an-

other cluster if its capacity allows this. Note that the size of

the cluster from which the terminal is ejected decreases by one,

while the size of the cluster to which the terminal is moved in-

creases by one. For example, if node 2 was a terminal assigned

to hub 1 in some cluster, then A [2] was equal 1. After replace-

ment, if node 2 becomes a terminal assigned to hub 11 in an-

other cluster, then A [2] = 11 . Note that if the cluster contains

only one terminal (i.e., hub itself), then we can close this hub

as well as the corresponding cluster by moving this terminal

(hub) to another cluster. 

In order to update the value of some new solution S ′ =
(H 

′ , A 

′ ) generated by such a move, we first have to update

the cost of node to hub assignment for a terminal that has

been moved to another cluster. In addition, the number of

established backbone edges has to be recalculated between

the cluster whose configuration has been changed and each

other cluster. More precisely, let us assume that terminal n

is moved from cluster i to cluster j . Then the number of re-

quired backbone edges between a cluster j and cluster k is

given as: 

� max { C C F [ j][ k ] + NC F [ n ][ k ] , C C F [ k ][ j] + CNF [ k ][ n ] } /Q � .
b 

DOI : 10.1016/j.co
Similarly, the number of required backbone edges between a

cluster i and cluster k is given as: 

� max { C C F [ i ][ k ] − NC F [ n ][ k ] , C C F [ k ][ i ] − CNF [ k ][ n ] } /Q b � .
Finally, the number of required backbone edges between clus-

ters i and j is given as: 

� max { C C F [ i ][ j] − NCF [ n ][ j] + C NF [ i ][ n ] , C C F [ j][ i ]

−CNF [ j][ n ] + NCF [ n ][ i ] } /Q b � .
The next two properties give information about time complex-

ity needed to evaluate a neighboring solution as well as time

complexity to update data structures after accepting a solution

from the neighborhood MTCC ( S ) to be new incumbent solution.

roperty 3.1. Evaluating each solution in the neighborhood MTCC ( S )

equires O (| H |) operations. 

roperty 3.2. Updating data structures NCF and CNF after accepting

 solution from the neighborhood MTCC ( S ) to be the new incumbent

olution, requires O (| V |) operations, while updating data structure CCF

equires O (| H |) operations. 

Note that the straightforward computation in the change

f required backbone edges requires O ( 
∑ 

k ∈ H,k 
 = i, j | C L k | (| C L i | −
) + 

∑ 

k ∈ H,k 
 = i, j | C L k | (| C L j | + 1) + (| CL i | − 1)(| CL j | + 1)) opera-

ions. It may be verified that O ( 
∑ 

k ∈ H,k 
 = i, j | C L k | (| C L i | − 1) +
 

k ∈ H,k 
 = i, j | C L k | (| C L j | + 1) + (| CL i | − 1)(| CL j | + 1)) ≥ O ( 
∑ 

k ∈ H CL k ) =
O (| V | ) . The equality in the last inequality holds when, for example,

 CL i | = | CL j | = 1 . Since it usually holds that | H | � | V | significant

avings may occur by using the auxiliary data structure. For exam-

le, if we assume that we have only three hubs ( | H| = 3 ) and each

luster contains | V |/3 nodes, than the straightforward computation

n the change of required backbone edges has complexity O (| V | 2 ),

hile using auxiliary data structures just O (| H |) operations is

eeded to do so. In addition, updating auxiliary data structures,

hich does not occur so often, requires O (| V |) which is again less

han O ( V 

2 ). 

The following two propositions provide information on the car-

inalities of the neighborhood structures RTHC ( S ) and MTCC ( S ). 

roperty 3.3. The cardinality of neighborhood RTHC ( S ) is

 ( 
∑

i ∈ H CL i ) = O (| V | ) .
roperty 3.4. The cardinality of neighborhood MTCC ( S ) is O (| V || H |) . 

.4. Basic sequential variable neighborhood descent (BVND) 

The variable neighborhood descent (VND) passes iteratively

hrough several neighborhood structures in order to improve

he current solution if it is possible. In the paper authored by

ansen et al. (2017) , it is underlined that the main principle of

ND stems from the fact that it is much more likely that the global

inimum will be achieved if the solution is a local minimum with

espect to several neighborhood structures, instead of just one. 

In this paper, we used the basic sequential VND (BVND) proce-

ure in the following way. Namely, starting from the given solu-

ion S , BVND procedure iteratively goes through the neighborhood

tructures RTHC ( S ) and MTCC ( S ), one after another. As soon as an

mproved solution is reached in some neighborhood structure, the

VND procedure continues search in the first neighborhood struc-

ure with a new, currently best-performing solution. The whole

rocess ends if the current solution can not be improved in any

f the considered neighborhood structures. 

The steps of the basic sequential VND using the best improve-

ent search strategy are given in Algorithm 1 . 
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Algorithm 1: Basic Sequential Variable Neighborhood Descent. 

Function BVND ( S); 

k ← 1 ; 

while k ≤ 2 do 

if k = 1 then 

k ← 2 ; 

S ′ ← LocalSearch (S, N MT CC ) ;

else 

k ← 3 ; 

S ′ ← LocalSearch (S, N RT HC ) ;

end 

if S ′ better than S then 

S ← S ′ ; 
k ← 1 ; 

end 

end 

return S’ 
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.5. Shaking procedure 

In order to diversify the search and avoid optima traps, we use

he shaking procedure which requires solution S and parameter k

t the input. The parameter k represents the number of iterations

f the shaking procedure. Within each of the iterations, the cur-

ent solution is replaced by a randomly chosen solution from the

TCC ( S ) neighborhood structure. 

More precisely, by utilising the shaking procedure, we select a

luster in an arbitrary way and select a terminal inside that clus-

er in an arbitrary way, too. Then, we arbitrarily choose the second

luster where we move the selected terminal from the first clus-

er (respecting the capacity of the second cluster). Note that we

llow that the terminal is moved to either an existing cluster or it

s designated to be a hub, i.e., a new cluster is formed containing

ust this terminal (which is at the same time a hub). 

The output of the shaking procedure is the solution obtained in

he k -th iteration. In Algorithm 2 , key steps of the shaking proce-

ure are shown. 

Algorithm 2: Shaking procedure. 

Function shaking( S, k ) ; 
1 for i = 1 to k do 

2 Select S ′′ in MT C C (S) at random; 

3 S ← S ′′ ; 
end 

4 return S; 

.6. General variable neighborhood search (GVNS) 

In this paper, we propose a heuristic based on variable neighbor-

ood search (VNS) that uses basic sequential variable neighborhood

escent (BVND). Variable neighborhood search (VNS) is a meta-

euristic suggested by Mladenovi ́c and Hansen (1997) . It contains

wo main phases: improvement phase, used to possibly get an im-

roved solution, and the so-called shaking phase, used to hope-

ully avoid local optima traps generated in the improvement phase.

ithin the variable neighborhood search scheme, the improve-

ent and shaking phases are executed alternately until the pre-set

topping criteria are achieved. 

The most common and widely used VNS variant is General VNS

GVNS). Unlike basic VNS (BVNS) which uses simple local search in

he improvement, GVNS uses a more advanced improvement pro-
DOI : 10.1016/j.cor.2
edure that examines several neighborhood structures. The most

ommon improvement methods used in GVNS are variable neigh-

orhood descent variants (VND), such as sequential VND, nested

ND, cyclic VND, etc. 

For more information about VND and VNS we refer to

ansen et al. (2017) . 

Algorithm 3: General VNS. 

Function GVNS ( S, k max , T max ); 

1 S ′ ← initial solution(); 

2 S ← BVND ( S ′ ) ;
3 repeat 

4 k ← 1 ; 

5 while k ≤ k max do 

6 S ′ ← shaking ( S, k ) ;
7 S ′′ ← BVND ( S ′ ) ;
8 k ← k + 1 ; 

9 if S ′′ is better then S then 

10 S ← S ′′ ; k ← 1 ; 

end 

end 

11 T ← CpuTime() ; 
until T > T max ; 

12 Return S; 

In this paper, we develop a GVNS heuristic ( Algorithm 3 ) which

ses the BVND and the previously described shaking procedure.

ur GVNS heuristic has two parameters: the first one denoted by

 max represents maximum CPU time allowed to be consumed by

VNS, while the second one, named k max , represents the maxi-

um number of iterations that can be executed within the shaking

rocedure. In this case, we have taken that k max = 

n 
8 and T max = n

econds (see Section 4.1 ). 

Note that the feasibility of solutions is maintained throughout

he entire solution process. Our GVNS starts from a feasible solu-

ion and accepts only feasible solutions as new incumbent solu-

ions within both the BVND and the shaking procedure. Moreover,

he neighborhood structures considered in the BVND and the shak-

ng procedure contain only the feasible solutions. 

. Computational results

In this section, we present the results of the computational ex-

eriments that we have performed with the aim of examining the

ffectiveness and efficiency of the proposed approach. 

The proposed GVNS algorithm is coded in C and executed on an

ntel(R) Core(TM) i5-3470 with CPU 3.20GHz and 16GB RAM. 

For testing purposes, we have used 170 instances generated

y Corberán et al. (2016) which have been considered as bench-

ark instances in previous publications on the CSHLPMLC. These

nstances were derived from three standard hub problem sets (i.e.,

AB ( O’Kelly (1987) ), AP ( Ernst and Krishnamoorth (1996) ) and

SA423 ( Peiró et al. (2014) )) by imposing associated modular ca-

acities as well as costs for installing hubs and edges. Accord-

ngly, the examined instances are classified in the following three

roups: 

• The CAB data set is derived from the Civil Aeronautics Board

survey of 1970 of passenger data in the United States of Amer-

ica and has 23 instances. The number of nodes in these in-

stances ranges from 10 to 25.
• The AP data set is based on real data from the Australian Postal

service and has 70 instances. The number of nodes in these in-

stances ranges from 10 to 200.
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Table 1

Summary results for GVNS: different values of k max parameter.

k max

� n /2 � � n /4 � � n /8 � � n /16 � � n /32 �
Size Value CPU Value CPU Value CPU Value CPU Value CPU

Small 288954.39 11.69 288821.20 11.75 289206.30 8.67 291686.98 9.85 306274.08 0.21

Medium 556104.09 55.04 553399.55 50.58 550214.43 53.48 554480.38 52.57 579025.39 34.39

Large 913636.96 106.86 906940.43 101.45 902068.65 97.36 903647.91 97.05 936216.14 96.64

Extra Large 739253.38 137.68 736167.85 139.97 734874.66 128.77 735598.41 127.74 74 4 492.26 129.91

Huge 620177.04 168.99 613322.69 164.57 610267.93 168.90 606278.31 163.01 610050.89 154.25

Average 623625.17 96.05 619730.34 93.67 617326.39 91.43 618338.40 90.05 635211.75 83.08

Table 2

Summary results for GVNS: different values of T max parameter.

T max

n � n /2 � � n /4 � � n /8 � � n /16 �
Size SO AMP Value CPU Value CPU Value CPU Value CPU Value CPU

Small 323124.50 307267.25 289206.30 8.67 289625.58 5.99 290106.55 3.11 290872.56 1.58 291427.83 0.80

Medium 631817.75 588495.75 550214.43 53.48 557188.48 25.99 560163.76 14.53 568210.50 6.88 578611.88 3.46

Large 1115154.75 991018.25 902068.65 97.36 920480.03 54.52 939337.38 27.43 1002182.91 14.44 1081973.59 7.02

Extra Large 936864.25 783344.25 734874.66 128.77 739376.88 70.72 748266.05 37.53 809699.78 19.89 1081820.83 10.22

Huge 789900.50 700929.50 610267.93 168.90 620214.00 86.34 626632.81 44.39 636339.80 22.29 653375.48 11.41

Average 759372.35 674211.00 617326.39 91.43 625376.99 48.71 632901.31 25.39 661461.11 13.01 737441.92 6.58
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• The USA423 data set is based on a data file concerning 423

cities in the United States of America and has 77 instances. The

number of nodes in these instances ranges from 20 to 250.

Each of the used instances includes the matrices ( t ij ), ( c ij ), ( r kl )

as well as the capacities for each backbone edge and each hubs.

Entire set of instances can be found at the following address:

www.optsicom.es . The first number in the instance name indicates

the number of nodes in the instance, while the letters indicate

whether the instance is derived from the CAB, AP or USA423 data

set. 

The instances have been divided into five groups according to

their size: 

• small (10 ≤ n ≤ 50);
• medium (55 ≤ n ≤ 100);
• large (110 ≤ n ≤ 150);
• extra-large (155 ≤ n ≤ 200);
• huge (205 ≤ n ≤ 250).

In the rest of the section, we first perform preliminary tests to

determine the best parameter setting for our GVNS. After that, ex-

tensive testing is conducted on benchmark instances and the re-

sults are compared with the state-of-the-art ones. 

4.1. Parameter calibration 

In order to tune our GVNS heuristic we perform tests on the

subset of 20 instances. Since the instances are divided in five

groups according to their size, from each group we choose one

smallest and one largest AP instance, as well as one smallest and

one largest USA instance. CAB instances were neglected because

these instances belong just to the set of small instances and the

largest instance has only 20 nodes. The chosen instances are: 

• small: 10_700_50_60_8_1_60_AP; 20_700_50_60_8_1_60_USA;

50_700_80_50_8_1_69_AP; 50_700_80_50_8_1_69_USA;
• medium: 55_50 0_60_69_60_1_50_AP; 55_50 0_60_69_60_1_50_

USA; 95_600_60_69_60_1_69_AP; 100_500_60_69_60_1_50_

USA;
• large: 110_500_60_69_60_1_50_AP; 110_700_80_60_89_1_60_

USA; 150_800_69_50_80_1_60_AP; 150_900_69_60_80_1_89_

USA;
DOI : 10.1016/j.co
• extra-large: 155_500_60_69_60_1_50_AP; 155_1000_69_60_

80_1_69_USA; 195_900_89_89_89_1_69_AP; 190_700_89_69_

89_1_89_USA;
• huge: 20 0_50 0_60_69_60_1_50_AP; 20 0_70 0_80_60_89_1_60_

USA; 20 0_80 0_69_50_80_1_60_AP;; 250_90 0_69_60_80_1_89_

USA.

.1.1. Evaluating performance of GVNS with different values of k max 

In order to tune the k max parameter, we executed our GVNS

ith 5 different choices of k max : � n /2 � , � n /4 � , � n /8 � , � n /16 � , and

 n /32 � . For each choice of k max , GVNS was executed 20 times on

ach instance, each time using a different random seed. In each

run, the time parameter t max was set to n seconds. The summary

results are provided in Table 1 . For each parameter setting, we re-

ort the average solution value and the average time-to-target. The

verages are calculated over 4 instances from the same set accord-

ng to the size. The time-to-target refers to the CPU time spent be-

ore reaching the final solution returned by our GVNS for the first

ime. 

From Table 1 , we may infer that under all settings, GVNS re-

uires a similar time-to-target. In addition, we infer that the for

 max = � n/ 32 � and k max = � n/ 2 � , we have the worst results on the

verage. These two cases may be considered as the ones with the

owest level of the diversification ( k max = � n/ 32 � ) and the high-

st level of the diversification ( k max = � n/ 2 � ). On the other hand,

much better results are obtained at the moderate levels of the di-

ersification ( k max = � n/ 4 � , � n/ 8 � and � n /16 � ). In these three cases

he average solution values and average times-to-target are very

imilar (e.g., values differ by less than 0.5%). However, the best av-

rage value on medium, large and extra large instances as well as

he best overall average is attained under the setting k max = � n/ 8 � .
Hence, in the rest of testing we set k max to � n /8 � .

.1.2. Evaluating performance of GVNS with different values of T max 

In this section, we perform tests with the time limit of GVNS,

 max , set to the one of the values from the set { n , � n /2 � � n /4 � � n /8 � ,
 n /16 � }. All values are expressed in seconds. For each choice of

T max , GVNS was executed 20 times on each instance, each time us-

ng a different random seed. In all tests, parameter k max was set

o � n /8 � due to findings presented in the precedent section. The

ummary results are presented in Table 2 and for each parameter
r.2019.05.020 6



Fig. 1. Impact of initial solution quality on the running time of GVNS.
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etting the average solution values and the average times-to-target

re reported. Again, the averages are calculated over 4 instances

rom the same size set. In addition, we report the results found by

he state-of-the-art methods, SO and AMP, on the considered in-

tances. According to the reported results, as expected, the more

PU time was allowed to GVNS, the better was the final result ob-

ained. If we compare the average values obtained for T max = n and

 max = � n/ 2 � , we see that the deviation between these values is

bout 1% (compare 617326.39 and 625376.99). This is also true if

e compare the average values for T max = � n/ 2 � and T max = � n/ 4 � .
owever, for the smaller values of T max , the average solution val-

es are worse. If we compare times-to-target, we may conclude

hat for each choice of T max , GVNS consumed a similar fraction of

 max to find the reported solution for the first time. More precisely,

s we double T max , the time-to-target usually doubles as well. If we

ompare the results reported by SO, AMP and GVNS, it follows that

or T max greater or equal to � n /4 � , GVNS finds better solutions for

he considered instances than SO and AMP. However, since the hub

ocation decisions are decisions at a strategic level, not solving the

roblem almost instantly may not be critical. Hence, we decide to

et T max to n seconds in all subsequent testings. This means that

ur GVNS requires 250 sec at most to solve an instance (i.e., this is

ime needed to solve the largest instance with 250 nodes). 

.2. Evaluating the impact of initial solution quality on the running 

ime of GVNS 

The initial solution which is constructed by opening all nodes

s hubs ( Section 3.2 ), may be far from the optimal one in most

ases. For this reason, such solution is improved by BVND before

tarting the main GVNS loop. Thus, BVND may be considered here

s an improving constructive procedure which returns a solution

f good quality. The similar approach was used for example in

elareh et al. (2019) . 

In order to check how the quality of initial solution im-

acts the running time of GVNS, we take the largest instance

50_900_69_60_80_1_89_USA and solve it by GVNS 10 0 0 times. In

ach run GVNS is fed with a different initial solution. The pool of

0 0 0 initial solutions is constructed by applying the shaking pro-

edure on the initial solution constructed by BVND 10 0 0 times.

he shaking parameter k is set to n /2. In order to ensure diversity

mong the solutions, different random seeds are used within the

haking procedure to generate solutions. Fig. 1 depicts the outcome

f the experiment. The x -axis provides the values of initial solu-

ions, while the y -axis provides the times-to-target. As we can ob-

erve from the figure, sometimes a high quality solution may lead

o high time-to-target and the opposite, a low quality solution may

ead to low time-to-target. Similar observations are made in the
DOI : 10.1016/j.cor.2
arlier empirical studies conducted on VNS (see e.g., Hansen and

ladenovi ́c (2006) ; Mjirda et al. (2017) ). This once again confirms

hat for VNS, and heuristic in general, a high quality solution may

tick a search in the deep local optimum valley, which further im-

lies that huge CPU time investment is required in order to resolve

his local optimum trap. On the other hand, if we have a worse

olution, such local optimum traps may be luckily avoided and the

earch may be ended with a much better solution. 

.3. Comparison with the state-of-the-art methods 

We compare the proposed GVNS with the method SO based on

trategic Oscillation ( Corberán et al. (2016) ), the method based on

daptive memory denoted by AMP ( Hoff et al. (2017) ) and with

olutions found by CPLEX MIQCP 12.8 solver used to solve mixed

nteger quadratically constrained program (MIQCP) presented in

ection 2 . The time limit for CPLEX MIQCP 12.8 solver was set to

 h. The computation experiments using CPLEX MIQCP 12.8 solver

ere performed using CPLEX Callable Library. We have used the

ollowing metrics to measure the performance of our procedure: 

• Value : Average objective value of the best solutions obtained

with the algorithm on the instances considered in the experi-

ment;
• Best : The number of instances for which a procedure is able to

find the best-known solution;
• CPU : Average computing time in seconds employed by the al-

gorithm;
• Dev_Avg_SO : Average percentage deviation of the value re-

turned by GVNS from the SO value. It is calculated as

100 × (SO _ v alue − GV NS _ v al ue ) /SO _ v al ue ;
• Dev_Avg_AMP : Average percentage deviation of the value re-

turned by GVNS from the AMP value. It is calculated as

100 × (AMP _ v alue − GV NS _ v alue ) /AMP _ v alue ;
• Dev_Best_SO : Percentage deviation of the best solution value

returned by the considered method from the SO value. It is cal-

culated as

100 × (SO _ best _ v alue − GV NS _ best _ v al ue ) /SO _ v al ue ;
• Dev_Best_AMP : Percentage deviation of the best solution value

returned by the considered method from the AMP value. It is

calculated as

100 × (AMP _ best _ v alue − GV NS _ best _ v al ue ) /AMP _ v al ue ;
• Dev_SO_CPLEX : The percentage deviation of the SO value from

the CPLEX value. It is calculated as

100 × (CP LEX _ v alue − SO _ v alue ) /CP LEX _ v alue ;
• Dev_AMP_CPLEX : The percentage deviation of the AMP value

returned by GVNS from the CPLEX value. It is calculated as

100 × (CP LEX _ v alue − AMP _ v al ue ) /CP LEX _ v al ue ;
• Dev_GVNS_CPLEX : The percentage deviation of the best solu-

tion value returned by GVNS from the CPLEX value. It is calcu-

lated as

100 × (CP LEX _ v alue − GV NS _ best _ v alue ) /CP LEX _ v alue .

Now, we compare our procedure, denoted GVNS, with the best

revious methods. GVNS is executed 20 times and the obtained re-

ults are shown in Tables 3–9 . 

Table 3 reports the summary results of the comparison be-

ween the our procedure and the Strategic Oscillation method, SO,

y Corberán et al. (2016) , and between the our procedure and

MP_50 (50 corresponds to a termination criteria of 50 execu-

ions), by Hoff et al. (2017) . For each of the above methods and
019.05.020 7



Table 3

Comparison with best previous methods.

Dev (%) CPU Best

Size Num. Instance Dev_Avg_SO Dev_Avg_AMP SO AMP GVNS SO AMP GVNS

Small 45 6.66 3.93 2.96 1.02 5.77 0 5 45

Medium 36 13.10 7.12 37.81 37.24 53.06 0 0 36

Large 27 18.46 7.68 310.36 359.64 108.06 0 0 27

Extra-large 37 18.45 6.24 1606.35 772.55 137.45 0 0 37

Huge 25 21.36 9.77 4916.33 2866.40 186.70 0 0 25

Summary 170 14.63 6.56 1130.69 654.95 87.30 0 5 170

Table 4

Comparison with CPLEX.

CPLEX SO AMP GVNS

Instance Value CPU Value CPU Dev_SO_CPLEX Value CPU Dev_AMP_CPLEX Best Value CPU Dev_GVNS_CPLEX

10_600_89_60_40_1_60_CAB 234243 19.65 237701 0.22 -1.48 234243 0.01 0.00 234243 0.00 0.00

10_700_50_60_8_1_60_AP 242031 10.94 273801 0.23 -13.13 249318 0.00 -3.01 242031 0.00 0.00

10_700_50_60_8_1_60_CAB 243854 20.83 253255 0.22 -3.86 243854 0.01 0.00 243854 0.00 0.00

10_700_69_40_8_1_50_CAB 246610 18.37 257691 0.22 -4.49 246610 0.01 0.00 246610 0.00 0.00

10_800_60_60_6_1_69_AP 213201 9.29 245513 0.23 -15.16 232104 0.01 -8.87 213201 0.00 0.00

10_800_60_60_6_1_69_CAB 238144 16.75 24 4 417 0.58 -2.63 238144 0.00 0.00 238144 0.00 0.00

10_800_60_80_8_1_80_CAB 240872 18.5 247078 0.22 -2.58 240872 0.00 0.00 240872 0.00 0.00

15_500_50_60_40_1_60_CAB 2640 0 0 7639.54 289339 0.36 -9.60 286027 0.03 -8.34 2640 0 0 0.82 0.00

15_600_80_89_6_1_69_CAB 268618 19423.08 293075 0.44 -9.10 289839 0.03 -7.90 268618 1.41 0.00

15_600_80_89_8_1_60_CAB 276975 28802.29 308168 0.41 -11.26 300251 0.03 -8.40 276975 0.71 0.00

15_700_89_60_40_1_60_CAB 264299 6758.23 289953 0.39 -9.71 285965 0.03 -8.20 264299 0.69 0.00

15_800_50_60_40_1_60_CAB 264 4 49 13372.56 290026 0.39 -9.67 285274 0.03 -7.87 264 4 49 1.19 0.00

15_900_80_89_40_1_60_CAB 264596 7450.27 290134 0.41 -9.65 285390 0.03 -7.86 264596 1.12 0.00

20_700_50_60_8_1_60_AP 386296 28804.29 406266 0.98 -5.17 389589 0.08 -0.85 340118 0.01 11.95

20_700_50_60_8_1_60_CAB 183115 28802.1 176142 1.03 3.81 174048 0.09 4.95 173194 0.30 5.42

20_700_50_60_8_1_60_USA 117896 13551.51 127058 0.92 -7.77 117986 0.02 -0.08 117896 0.01 0.00

20_700_69_40_8_1_50_AP 405389 28805.18 408538 1.03 -0.78 408293 0.10 -0.72 355910 0.00 12.21

20_700_69_40_8_1_50_CAB 186146 28802.19 187305 0.84 -0.62 178275 0.09 4.23 177419 0.39 4.69

20_800_60_60_6_1_69_CAB 168675 28802.98 164351 0.73 2.56 164568 0.10 2.43 164270 5.02 2.61

20_800_60_80_8_1_80_AP 357944 28803.56 363247 1.19 -1.48 363247 0.09 -1.48 322126 2.47 10.01

20_800_60_80_8_1_80_CAB 171822 28802.49 170069 0.75 1.02 168204 0.11 2.11 167005 3.29 2.80

20_800_60_80_8_1_80_USA 115154 13270.68 121071 0.87 -5.14 115370 0.02 -0.19 115154 0.00 0.00

20_900_80_89_40_1_80_CAB 151650 28803.58 151342 0.80 0.20 151324 0.10 0.21 150191 0.02 0.96

25_600_80_60_6_1_40_CAB 230498 28803.69 210578 1.70 8.64 2084 4 4 0.26 9.57 207136 2.84 10.14

25_600_80_89_6_1_69_CAB 206423 28801.13 192213 1.39 6.88 192900 0.27 6.55 190297 0.44 7.81

25_600_80_89_8_1_60_CAB 223489 28803.49 214944 1.64 3.82 206386 0.25 7.65 204157 0.79 8.65

25_650_69_69_6_1_50_CAB 217497 28804.56 210278 1.84 3.32 201993 0.24 7.13 200351 4.66 7.88

25_650_69_69_6_1_70_CAB 174138 28804.4 162862 2.14 6.48 161398 0.32 7.32 156302 5.42 10.24

25_800_89_60_40_1_80_CAB 184882 28804.11 179893 1.86 2.70 179948 0.28 2.67 179817 0.45 2.74

25_900_80_89_40_1_80_CAB 188774 28804.18 181207 1.61 4.01 180600 0.30 4.33 179969 1.44 4.66
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for each observed set of instances the average percentage deviation

(Column 'Dev'), the running time in seconds (Column 'CPU')

(time when the solution reported as final has been found for the

first time) and the number of best solutions (Column 'Best') are

reported. 

The last row provides summary results: the total number of in-

stances, average CPU times and percentage deviations, and the to-

tal number of best-known solutions found by each method. The

detailed comparison of these methods is presented in Tables 5–9

(see Appendix ). 

Table 3 shows that our procedure gives far better results in

comparison with SO and AMP methods. 

Our method found 170 best-known solutions of which 165 solu-

tions are newly established by our heuristic. Moreover, our method

gives significantly lower solution values, which makes this method

more favorable compared to the previous ones. The average im-

provements over SO and AMP are 14.63% and 6.56%, respectively.

These improvements are in some instances greater than 20%. The

superiority of our method over the previous methods has been

confirmed by a Wilcoxon test. More precisely, we have performed a

Wilcoxon test on SO values and ours ( p = 1 . 206708 e −29 ), as well as

the AMP values and our own ( p = 7 . 987178 e −29 ). The resulting p -

value < 0.0 0 01 in both cases confirms the superiority of our GVNS.
DOI : 10.1016/j.co
Our method shows an average computing time of 87.30 sec. An

verage computing time obtained by SO is 1130.69 sec, while that

f AMP is 654.95 sec. It should be emphasized here that SO and

MP heuristics were tested on faster CPUs than ours. SO was ex-

cuted on an Intel(R) Core(TM) i7-3770 at 3.40 GHz, AMP on an

ntel Xeon E3-1270 at 3.40 GHz, while our method was executed

n an Intel(R) Core(TM) i5-3470 at 3.20GHz. According tothe Pass-

ark CPU scores available at www.cpubenchmark.net , our CPU has

he lowest score, meaning that it is the slowest (the Passmark CPU

cores of Intel(R) Core(TM) i7-3770 at 3.40 GHz, Intel Xeon E3-1270

t 3.40 GHz and Intel(R) Core(TM) i5-3470 at 3.20GHz are 9283,

238 and 6712, respectively). 

As we can see, our method gives us results for large instances

large, extra-large, huge) much faster than the previous methods.

o, this fact demonstrates the usefulness of auxiliary data struc-

ures introduced to explore neighborhood structures. 

Moreover, the superiority in terms of computing time of our

VNS over SO and AMP heuristics, has been confirmed by the

ilcoxon test. In both cases, comparing GVNS and SO as well as

omparing GVNS and AMP, the Wilcoxon test returned p -values

ess than 0.0 0 01, which confirms the superiority of our procedure. 

It should be noted that our method uses a smaller number

f neighborhood structures than the current state-of-the-art AMP
r.2019.05.020 8
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ethod. Hence, less may yield more (see Mladenovi ́c et al. (2016) ,

rimberg et al. (2017) and Costa et al. (2017) ). 

Table 4 reports the results comparison among SO, AMP, GVNS

nd CPLEX MIQCP 12.8 solver used to solve the mathematical for-

ulation presented in Section 2 . In particular, the table reports

he values found by each method and the computing time used

y each method. In addition, the percentage deviations of values

rovided by SO, AMP and GVNS from the corresponding values

ound by CPLEX are reported. The results are reported for 30 small

nstances. For larger instances results are not reported because

PLEX failed to provide a feasible solution either due to the im-

osed time limit or memory requirements. The optimal solutions

alues found by CPLEX are boldfaced. 

From results in Table 4 , it follows that GVNS was able to find

ptimal solutions on fifteen instances CPLEX does, and in addition,

t obtained better solutions for the remaining instances in very

hort computing times. On the other hand, AMP and SO, exhib-

ted worse performances, failing to reach equal or better solutions

han CPLEX on several instances. Moreover, AMP failed to reach 10

nown optimal solutions, while SO found none. 

. Conclusions

Hub location problems are optimization problems that greatly

ttract the attention of the researchers. 

In this paper, we have studied a capacitated modular hub lo-

ation problem. To solve this problem, a heuristic method based

n the general variable neighborhood search (GVNS) framework is

roposed. A powerful local search is applied within the heuristic

hat uses a sequential structure with two neighborhoods. One of

he neighborhoods is considered in this paper for the first time.

n addition, auxiliary data structures are used to explore neighbor-

oods in an efficient way. We test the heuristic on benchmark in-

tances from the literature. Our experiments show that GVNS is
DOI : 10.1016/j.cor.2
apable of exploring the solution space efficiently and effectively,

utperforming existing approaches. The results obtained demon-

trate the superiority of the GVNS heuristic over the best previous

ethods in terms of both solution quality and CPU run time. 

As future research direction, we propose to examine other

earch strategies within GVNS framework such as nested, mixed-

ested strategies etc. (see Hansen et al. (2017) ). Future research

ay also apply the GVNS framework to other types of hub lo-

ation problems. In addition, the problem studied here assumes

hat the flow between each origin–destination pair is routed via

t most two hubs. This assumption may be relaxed in the future

ork by considering structured non-fully connected backbone net-

orks as the tree-of-hubs or the cycle-of-hubs location problem.

ence, future work may include extensions of the studied prob-

em which would consider different backbone network types and

evelopment of corresponding mathematical models and solution

pproaches. 
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Table 5

Results and comparisons of the SO, AMP and GVNS on small size instances.

SO AMP GVNS

Instance Value CPU Value CPU Best Value Value CPU Dev_Best_SO Dev_Best_AMP Dev_Avg_SO Dev_Avg_AMP

10_600_89_60_40_1_60_CAB 237701 0.22 234243 0.01 234243 234243.00 0.00 1.45 0.00 1.45 0.00

10_700_50_60_8_1_60_AP 273801 0.23 249318 0.00 242031 242031.00 0.00 11.60 2.92 11.60 2.92

10_700_50_60_8_1_60_CAB 253255 0.22 243854 0.01 243854 243854.00 0.00 3.71 0.00 3.71 0.00

10_700_69_40_8_1_50_CAB 257691 0.22 246610 0.01 246610 246610.00 0.00 4.30 0.00 4.30 0.00

10_800_60_60_6_1_69_AP 245513 0.23 232104 0.01 213201 213201.00 0.00 13.16 8.14 13.16 8.14

10_800_60_60_6_1_69_CAB 24 4 417 0.58 238144 0.00 238144 238144.00 0.00 2.57 0.00 2.57 0.00

10_800_60_80_8_1_80_CAB 247078 0.22 240872 0.00 240872 240872.00 0.00 2.51 0.00 2.51 0.00

15_500_50_60_40_1_60_CAB 289339 0.36 286027 0.03 2640 0 0 2640 0 0.0 0 0.82 8.76 7.70 8.76 7.70

15_600_80_89_6_1_69_CAB 293075 0.44 289839 0.03 268618 268618.00 1.41 8.34 7.32 8.34 7.32

15_600_80_89_8_1_60_CAB 308168 0.41 300251 0.03 276975 276975.00 0.71 10.12 7.75 10.12 7.75

15_700_89_60_40_1_60_CAB 289953 0.39 285965 0.03 264299 264299.00 0.69 8.85 7.58 8.85 7.58

15_800_50_60_40_1_60_CAB 290026 0.39 285274 0.03 264 4 49 264 4 49.00 1.19 8.82 7.30 8.82 7.30

15_900_80_89_40_1_60_CAB 290134 0.41 285390 0.03 264596 264596.00 1.12 8.80 7.29 8.80 7.29

20_700_50_60_8_1_60_AP 406266 0.98 389589 0.08 340118 340118.00 0.01 16.28 12.70 16.28 12.70

20_700_50_60_8_1_60_CAB 176142 1.03 174048 0.09 173194 173194.00 0.30 1.67 0.49 1.67 0.49

20_700_50_60_8_1_60_USA 127058 0.92 117986 0.02 117896 117896.00 0.01 7.21 0.08 7.21 0.08

20_700_69_40_8_1_50_AP 408538 1.03 408293 0.10 355910 355910.00 0.00 12.88 12.83 12.88 12.83

20_700_69_40_8_1_50_CAB 187305 0.84 178275 0.09 177419 177419.00 0.39 5.28 0.48 5.28 0.48

20_800_60_60_6_1_69_CAB 164351 0.73 164568 0.10 164270 164270.00 5.02 0.05 0.18 0.05 0.18

20_800_60_80_8_1_80_AP 363247 1.19 363247 0.09 322126 324569.95 2.47 11.32 11.32 10.65 10.65

20_800_60_80_8_1_80_CAB 170069 0.75 168204 0.11 167005 167089.00 3.29 1.80 0.71 1.75 0.66

20_800_60_80_8_1_80_USA 121071 0.87 115370 0.02 115154 115154.00 0.00 4.89 0.19 4.89 0.19

20_900_80_89_40_1_80_CAB 151342 0.80 151324 0.10 150191 150191.00 0.02 0.76 0.75 0.76 0.75

25_600_80_60_6_1_40_CAB 210578 1.70 2084 4 4 0.26 207136 207550.60 2.84 1.63 0.63 1.44 0.43

25_600_80_89_6_1_69_CAB 192213 1.39 192900 0.27 190297 190297.00 0.44 1.00 1.35 1.00 1.35

25_600_80_89_8_1_60_CAB 214944 1.64 206386 0.25 204157 204360.50 0.79 5.02 1.08 4.92 0.98

25_650_69_69_6_1_50_CAB 210278 1.84 201993 0.24 200351 200744.05 4.66 4.72 0.81 4.53 0.62

25_650_69_69_6_1_70_CAB 162862 2.14 161398 0.32 156302 156323.55 5.42 4.03 3.16 4.01 3.14

25_800_89_60_40_1_80_CAB 179893 1.86 179948 0.28 179817 179830.05 0.45 0.04 0.07 0.03 0.07

25_900_80_89_40_1_80_CAB 181207 1.61 180600 0.30 179969 179969.00 1.44 0.68 0.35 0.68 0.35

30_600_80_89_8_1_60_AP 383188 3.46 351284 0.19 339114 339114.00 2.94 11.50 3.46 11.50 3.46

30_700_69_40_8_1_50_USA 211640 2.93 211382 0.42 187883 188111.55 11.48 11.23 11.12 11.12 11.01

35_600_80_89_8_1_60_AP 448064 3.98 438722 1.07 411669 418633.50 4.97 8.12 6.17 6.57 4.58

35_600_80_89_8_1_60_USA 206472 4.40 202473 0.60 201456 201466.35 2.38 2.43 0.50 2.42 0.50

35_700_80_50_8_1_69_AP 436550 4.23 432959 1.06 414636 415244.00 4.92 5.02 4.23 4.88 4.09

40_600_80_89_8_1_60_USA 288503 6.19 276510 2.92 268109 268239.95 14.28 7.07 3.04 7.02 2.99

40_700_80_50_8_1_69_AP 478470 6.43 458982 1.86 446397 447314.95 13.36 6.70 2.74 6.51 2.54

40_700_80_50_8_1_69_USA 282629 6.01 270601 2.83 263301 263479.05 16.64 6.84 2.70 6.78 2.63

45_600_80_89_8_1_60_AP 521958 8.44 515630 2.69 475399 479020.60 17.69 8.92 7.80 8.23 7.10

45_700_69_40_8_1_50_AP 589832 8.63 586276 2.70 527410 533589.00 16.88 10.58 10.04 9.54 8.99

45_700_69_40_8_1_50_USA 345335 6.83 301809 4.23 294768 295998.25 20.85 14.64 2.33 14.29 1.93

50_600_80_89_8_1_60_USA 347675 12.34 318016 6.24 311022 312238.10 19.99 10.54 2.20 10.19 1.82

50_700_69_40_8_1_50_AP 598636 11.50 599205 4.93 535571 541255.95 30.49 10.53 10.62 9.59 9.67

50_700_80_50_8_1_69_AP 562786 11.23 545111 4.61 487366 491959.55 27.57 13.40 10.59 12.58 9.75

50_700_80_50_8_1_69_USA 328853 10.87 316654 6.64 303791 304886.15 21.56 7.62 4.06 7.28 3.72

DOI : 10.1016/j.cor.2019.05.020 10



Table 6

Results and comparisons of the SO, AMP and GVNS on medium size instances.

SO AMP GVNS

Instance Value CPU Value CPU Best Value Value CPU Dev_Best_SO Dev_Best_AMP Dev_Avg_SO Dev_Avg_AMP

55_500_60_69_60_1_50_AP 551996 12.28 528434 7.32 462324 474258.85 36.42 16.25 12.51 14.08 10.25

55_500_60_69_60_1_50_USA 356419 11.51 313285 8.42 308568 309088.45 23.53 13.43 1.51 13.28 1.34

55_800_69_50_80_1_60_AP 627685 13.65 623632 6.71 558601 564359.20 32.01 11.01 10.43 10.09 9.50

55_800_69_50_80_1_60_USA 356039 10.31 324208 8.80 317505 319791.85 27.43 10.82 2.07 10.18 1.36

60_500_60_69_60_1_50_AP 597551 14.23 556315 9.56 508142 512160.95 34.53 14.96 8.66 14.29 7.94

60_600_60_69_60_1_69_USA 324245 14.34 310881 12.01 299143 301254.85 35.21 7.74 3.78 7.09 3.10

60_800_69_50_80_1_60_AP 664374 13.32 643873 10.31 592124 597716.15 39.30 10.87 8.04 10.03 7.17

60_800_69_50_80_1_60_USA 375981 14.96 337606 11.04 325076 327100.60 39.09 13.54 3.71 13.00 3.11

65_500_60_69_60_1_50_AP 594 96 8 19.49 591705 13.08 540231 548160.45 45.41 9.20 8.70 7.87 7.36

65_600_60_69_60_1_69_AP 596768 19.06 572237 12.69 528391 537145.25 37.67 11.46 7.66 9.99 6.13

65_600_60_69_60_1_69_USA 366133 21.09 330 0 06 17.42 305931 319389.10 38.34 16.44 7.30 12.77 3.22

65_800_69_50_80_1_60_USA 405756 21.08 366629 16.35 329712 343814.05 44.68 18.74 10.07 15.27 6.22

70_500_60_69_60_1_50_AP 664745 24.56 613848 16.81 586095 592651.90 48.85 11.83 4.52 10.85 3.45

70_600_60_69_60_1_69_AP 615656 22.25 60 0 082 18.08 567843 577114.15 41.02 7.77 5.37 6.26 3.83

70_600_60_69_60_1_69_USA 383492 29.03 345887 21.84 335079 347997.65 35.68 12.62 3.12 9.26 -0.61

70_800_69_50_80_1_60_AP 769108 27.27 740056 18.55 683197 692843.15 50.41 11.17 7.68 9.92 6.38

75_500_60_69_60_1_50_USA 552080 29.14 524031 31.68 413458 417824.50 49.62 25.11 21.10 24.32 20.27

75_600_60_69_60_1_69_AP 665111 35.23 650554 22.03 601062 611731.05 57.12 9.63 7.61 8.03 5.97

75_600_60_69_60_1_69_USA 519474 31.44 475886 30.33 394072 400542.85 53.26 24.14 17.19 22.89 15.83

75_800_69_50_80_1_60_AP 828245 32.87 787150 21.92 715753 731646.75 55.69 13.58 9.07 11.66 7.05

80_500_60_69_60_1_50_AP 722632 40.25 692408 29.76 655138 664824.55 59.25 9.34 5.38 8.00 3.98

80_500_60_69_60_1_50_USA 632672 35.09 586997 45.36 483450 485892.50 63.70 23.59 17.64 23.20 17.22

80_800_69_50_80_1_60_AP 837210 39.53 815360 31.50 770193 779047.85 55.08 8.00 5.54 6.95 4.45

80_800_69_50_80_1_60_USA 673561 36.57 615377 46.32 498337 503758.80 62.24 26.01 19.02 25.21 18.14

85_500_60_69_60_1_50_AP 762920 62.71 760980 38.37 698844 714903.25 57.44 8.40 8.17 6.29 6.05

85_500_60_69_60_1_50_USA 777825 53.17 690770 74.37 585420 590433.70 71.63 24.74 15.25 24.09 14.53

85_800_69_50_80_1_60_AP 903683 60.42 871710 38.25 821306 832180.30 66.44 9.12 5.78 7.91 4.53

90_500_60_69_60_1_50_USA 804494 53.98 695573 80.35 594821 60 0 080.15 76.92 26.06 14.48 25.41 13.73

90_600_60_69_60_1_69_AP 759377 70.56 736086 48.27 696307 717533.65 62.43 8.31 5.40 5.51 2.52

90_600_60_69_60_1_69_USA 708086 54.34 642502 72.99 564666 570261.45 67.51 20.25 12.11 19.46 11.24

90_800_69_50_80_1_60_AP 966669 70.72 903969 51.35 864325 876440.35 69.54 10.59 4.39 9.33 3.05

95_500_60_69_60_1_50_AP 905808 75.52 815931 56.49 786329 798399.90 69.95 13.19 3.63 11.86 2.15

95_500_60_69_60_1_50_USA 780646 64.88 691424 103.14 616060 632274.05 71.12 21.08 10.90 19.01 8.55

95_600_60_69_60_1_69_AP 826451 82.84 798566 56.01 754236 758446.45 77.61 8.74 5.55 8.22 5.02

95_600_60_69_60_1_69_USA 714260 65.63 651071 102.89 584572 599009.20 74.12 18.16 10.21 16.14 8.00

10 0_50 0_60_69_60_1_50_USA 792405 77.82 713698 150.43 644955 659063.95 79.86 18.61 9.63 16.82 7.65
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Table 7

Results and comparisons of the SO, AMP and GVNS on large size instances.

SO AMP GVNS

Instance Value CPU Value CPU Best Value Value CPU Dev_Best_SO Dev_Best_AMP Dev_Avg_SO Dev_Avg_AMP

110_500_60_69_60_1_50_AP 996975 150.65 954372 108.51 885138 899690.75 89.11 11.22 7.25 9.75 5.73

110_600_60_69_60_1_69_AP 934826 142.15 906009 118.71 844228 858263.20 96.13 9.69 6.82 8.19 5.27

110_700_80_60_89_1_60_USA 1122255 105.91 915625 265.08 797473 814999.65 92.67 28.94 12.90 27.37 10.99

110_800_69_50_80_1_60_USA 1039753 117.52 903544 228.90 783675 806214.15 91.82 24.63 13.27 22.46 10.77

110_900_69_50_89_1_60_USA 1105052 105.43 938808 258.70 814244 837426.50 102.88 26.32 13.27 24.22 10.80

120_500_60_69_60_1_50_AP 1123004 206.13 1031226 164.92 960 0 01 972060.25 94.33 14.51 6.91 13.44 5.74

120_500_60_69_60_1_50_USA 1117652 151.31 948970 328.15 828556 856817.10 105.47 25.87 12.69 23.34 9.71

120_700_80_60_89_1_60_USA 1219108 163.57 1010735 389.88 884353 930874.85 106.90 27.46 12.50 23.64 7.90

120_900_69_50_89_1_60_USA 1175745 146.52 1067450 415.56 890011 924 84 9.60 102.46 24.30 16.62 21.34 13.36

125_500_60_69_60_1_50_AP 1145428 192.06 1085187 192.29 993929 1003098.50 105.91 13.23 8.41 12.43 7.56

125_800_69_50_80_1_60_AP 1371476 208.84 1244985 207.28 1170346 1192964.65 101.86 14.67 6.00 13.02 4.18

130_600_60_69_60_1_69_AP 1158759 291.91 1068564 262.15 996212 1018072.40 104.86 14.03 6.77 12.14 4.73

130_600_60_69_60_1_69_USA 1040651 180.23 949318 446.82 843063 906759.25 116.96 18.99 11.19 12.87 4.48

130_800_69_50_80_1_60_USA 1264063 227.08 1061879 481.97 923684 959534.85 108.91 26.93 13.01 24.09 9.64

135_600_60_69_60_1_69_AP 1229722 335.92 1119159 316.02 1036416 1051339.75 109.55 15.72 7.39 14.51 6.06

135_800_69_50_80_1_60_USA 1405752 251.49 1066218 672.35 952019 971985.90 119.43 32.28 10.71 30.86 8.84

140_500_60_69_60_1_50_AP 1412597 357.75 1252721 370.81 1141082 1159504.00 107.75 19.22 8.91 17.92 7.44

140_700_80_60_89_1_60_USA 1490 0 07 286.76 1199339 335.99 1012166 1087732.10 130.50 32.07 15.61 27.00 9.31

140_800_69_50_80_1_60_AP 1570932 377.44 1400828 395.23 1299407 1325545.00 119.15 17.28 7.24 15.62 5.37

140_900_69_50_89_1_60_USA 14 4 4192 275.01 1213396 350.83 1030811 1077125.15 128.20 28.62 15.05 25.42 11.23

145_600_80_69_60_1_50_AP 1462902 352.66 1343050 452.93 1218987 1245029.20 106.46 16.67 9.24 14.89 7.30

145_600_80_69_60_1_50_USA 596573 710.75 492827 430.37 461934 480880.55 93.48 22.57 6.27 19.39 2.42

145_800_69_50_80_1_60_AP 1603039 357.12 1480588 456.14 1340027 1381779.80 116.82 16.41 9.49 13.80 6.67

145_800_69_50_80_1_60_USA 654681 647.73 587954 412.61 527006 541510.95 101.32 19.50 10.37 17.29 7.90

150_10 0 0_69_60_80_1_69_USA 612031 837.07 553365 499.78 500649 511838.20 116.87 18.20 9.53 16.37 7.50

150_800_69_50_80_1_60_AP 1734477 424.82 1563951 646.73 1414743 1425748.1 127.50 18.43 9.54 17.80 8.84

150_900_69_60_80_1_89_USA 606912 775.96 530125 501.58 460547 467836.1 120.19 24.12 13.12 22.93 11.76
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Table 8

Results and comparisons of the SO, AMP and GVNS on extra-large size instances.

SO AMP GVNS

Instance Value CPU Value CPU Best Value Value CPU Dev_Best_SO Dev_Best_AMP Dev_Avg_SO Dev_Avg_AMP

155_10 0 0_69_60_80_1_69_USA 650419 919.46 563085 551.45 508757 518557.25 123.29 21.78 9.65 20.27 7.90

155_500_60_69_60_1_50_AP 1427231 635.50 1206831 557.88 1134570 1137122.7 125.05 20.51 5.99 19.91 5.78

155_800_69_50_80_1_60_AP 1602365 604.55 1371004 558.30 1330656 1354263.75 126.22 16.96 2.94 15.48 1.22

160_600_60_69_60_1_69_AP 685604 950.80 595141 373.73 548103 550911.75 118.04 20.06 7.90 19.65 7.43

160_700_80_60_89_1_60_USA 704872 1010.66 534598 758.45 504782 519238.55 140.94 28.39 5.58 26.34 2.87

160_800_69_50_80_1_60_AP 826772 1042.87 739445 383.80 692752 698629.20 109.08 16.21 6.31 15.50 5.52

160_900_80_50_60_1_69_AP 775178 1008.39 733757 398.09 672197 674808.30 114.69 13.28 8.39 12.95 8.03

160_900_89_50_60_1_69_USA 530376 1048.41 483740 663.18 428126 4 4 4753.25 132.82 19.28 11.50 16.14 8.06

165_10 0 0_69_60_80_1_69_USA 665409 1302.26 589474 734.50 537354 551992.25 145.63 19.24 8.84 17.04 6.36

165_800_69_50_80_1_60_AP 876244 1109.94 725874 405.87 666657 671511.30 115.08 23.92 8.16 23.36 7.49

165_800_69_50_80_1_60_USA 704389 1302.59 643904 742.05 565765 579758.10 122.97 19.68 12.14 17.69 9.96

170_500_60_69_60_1_50_AP 714822 1152.12 550621 504.30 526730 531015.35 130.47 26.31 4.34 25.71 3.56

170_600_89_60_69_1_80_USA 551600 1304.46 4 9534 9 772.88 435001 464120.55 135.22 21.14 12.18 15.86 6.30

170_700_80_60_89_1_60_USA 609581 1361.95 561585 968.87 491041 522690.60 145.19 19.45 12.56 14.25 6.93

170_900_69_60_80_1_89_USA 613150 1403.26 578471 735.98 509648 532364.95 137.01 16.88 11.90 13.18 7.97

170_900_80_50_60_1_69_AP 754262 1251.03 718370 562.75 659823 662272.55 132.09 12.52 8.15 12.20 7.81

175_500_60_69_60_1_50_AP 64 914 8 1427.86 598241 554.70 538843 544367.75 140.13 16.99 9.93 16.14 9.01

175_600_60_69_60_1_69_AP 648587 1664.50 611906 591.87 543091 553413.95 138.84 16.27 11.25 14.67 9.56

175_800_69_50_80_1_60_USA 716778 1625.83 653231 915.04 592725 606469.75 143.54 17.31 9.26 15.39 7.16

175_900_69_60_80_1_89_USA 602257 1434.86 560301 919.48 513347 537165.55 151.18 14.76 8.38 10.81 4.13

180_10 0 0_69_60_80_1_69_USA 740453 1970.72 639398 938.22 571404 593325.85 138.02 22.83 10.63 19.87 7.21

180_600_60_69_60_1_69_AP 746918 1804.62 613648 673.60 565706 571364.20 150.57 24.26 7.81 23.50 6.89

180_600_89_60_69_1_80_USA 558479 1739.88 495902 1122.06 457943 479568.35 149.75 18.00 7.65 14.13 3.29

180_800_89_69_89_1_89_AP 797621 1921.67 739750 695.90 670205 677483.15 151.46 15.97 9.40 15.06 8.42

185_500_60_69_60_1_50_AP 858506 1872.10 614628 691.73 577981 583323.20 142.41 32.68 5.96 32.05 5.09

185_600_80_89_89_1_89_AP 700282 2029.67 651382 672.15 604816 613279.70 141.59 13.63 7.15 12.42 5.85

185_600_89_60_69_1_80_USA 530783 1880.00 488142 1202.84 438655 460694.50 161.08 17.36 10.14 13.20 5.62

185_800_69_50_80_1_60_AP 890070 1971.64 791304 688.01 734318 742650.75 144.01 17.50 7.20 16.56 6.15

185_900_69_60_80_1_89_USA 621650 2158.96 555466 1004.08 515851 529610.10 148.65 17.02 7.13 14.81 4.65

190_600_60_69_60_1_69_AP 773840 2200.58 633895 792.25 588436 598046.45 143.67 23.96 7.17 22.72 5.66

190_600_80_89_89_1_89_AP 800719 2288.98 654744 812.07 607448 618548.35 142.25 24.14 7.22 22.75 5.53

190_600_89_60_69_1_80_USA 522508 2190.87 485190 1515.13 4 4 4360 464953.95 151.26 14.96 8.42 11.01 4.17

190_700_89_69_89_1_89_USA 575933 2177.05 511453 1490.72 475010 483766.20 160.62 17.52 7.13 16.00 5.40

190_800_69_50_80_1_60_AP 1031614 2298.88 798755 800.36 742804 749382.55 145.88 28.00 7.00 27.36 6.18

195_600_60_69_60_1_69_AP 774165 2487.11 645712 941.72 594906 605348.00 123.83 23.16 7.87 21.81 6.25

195_800_69_50_80_1_60_AP 1107739 2431.53 822538 943.84 750916 759244.25 137.45 32.21 8.71 31.46 7.69

195_900_89_89_89_1_69_AP 1093874 2449.22 852008 946.40 794826 80 0 052.50 125.54 27.34 6.71 26.86 6.10
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Table 9

Results and comparisons of the SO, AMP and GVNS on huge size instances.

SO AMP GVNS

Instance Value CPU Value CPU Best Value Value CPU Dev_Best_SO Dev_Best_AMP Dev_Avg_SO Dev_Avg_AMP

20 0_50 0_60_69_60_1_50_AP 661633 2686.72 635108 1045.68 507726 510934.95 146.27 23.26 20.06 22.77 19.55

20 0_70 0_80_60_89_1_60_USA 7434 4 4 2976.42 610310 1927.87 589535 601545.25 157.30 20.70 3.40 19.30 1.43

20 0_70 0_89_69_89_1_89_USA 608272 2985.89 539340 1852.44 524124 545375.55 167.20 13.83 2.82 10.34 -1.12

20 0_80 0_69_50_80_1_60_AP 763358 2731.83 738765 1068.13 576823 582509.05 150.17 24.44 21.92 23.69 21.15

20 0_80 0_89_69_89_1_89_USA 645449 2995.71 555040 1895.10 527897 554984.15 168.25 18.21 4.89 14.02 0.01

205_800_69_50_80_1_60_USA 800686 3086.01 693477 1681.57 595820 615530.60 173.19 25.59 14.08 23.12 11.24

205_900_69_60_80_1_89_USA 670343 3570.73 608148 1705.52 521221 544901.55 171.67 22.25 14.29 18.71 10.40

210_800_69_50_80_1_60_USA 811601 3832.57 730273 1790.77 596435 627439.65 161.73 26.51 18.33 22.69 14.08

210_900_69_60_80_1_89_USA 699431 3743.74 593529 1743.47 528108 546343.45 164.18 24.49 11.02 21.89 7.95

215_800_69_50_80_1_60_USA 897348 3927.14 758429 2085.28 632980 665461.20 184.61 29.46 16.54 25.84 12.26

215_900_69_60_80_1_89_USA 736413 3653.79 619427 1928.71 545942 571192.40 191.88 25.86 11.86 22.44 7.79

220_800_69_50_80_1_60_USA 872528 4275.09 723734 2473.09 628389 647428.90 195.77 27.98 13.17 25.80 10.54

220_900_69_60_80_1_89_USA 725843 4485.24 647915 2328.85 557527 573798.50 187.12 23.19 13.95 20.95 11.44

225_800_69_50_80_1_60_USA 978703 4993.80 868963 2775.11 706599 739865.85 190.97 27.80 18.68 24.40 14.86

225_900_69_60_80_1_89_USA 812905 4668.05 732658 2681.13 631859 657980.25 196.22 22.27 13.76 19.06 10.19

230_800_69_50_80_1_60_USA 994501 6096.23 858609 3213.37 715126 748980.55 197.94 28.09 16.71 24.69 12.77

230_900_69_60_80_1_89_USA 859790 5934.23 726502 3065.26 633090 660826.60 206.59 26.37 12.86 23.14 9.04

235_800_69_50_80_1_60_USA 1067897 6223.85 967074 3838.36 788643 836837.25 193.99 26.15 18.45 21.64 13.47

235_900_69_60_80_1_89_USA 967918 6017.28 795102 3698.01 712840 738641.40 206.16 26.35 10.35 23.69 7.10

240_800_69_50_80_1_60_USA 1106592 6079.38 9814 4 4 4 4 47.55 820219 863668.15 205.13 25.88 16.43 21.95 12.00

240_900_69_60_80_1_89_USA 914468 6852.66 798589 4358.11 748671 764124.20 213.66 18.13 6.25 16.44 4.32

245_800_69_50_80_1_60_USA 1209802 7913.75 970942 5020.98 805618 865575.95 197.86 33.41 17.03 28.45 10.85

245_900_69_60_80_1_89_USA 913041 7197.28 823255 4956.09 722742 756280.90 198.66 20.84 12.21 17.17 8.14

250_800_69_50_80_1_60_USA 1132659 7800.79 997938 4978.50 822817 882979.55 215.68 27.36 17.55 22.04 11.52

250_900_69_60_80_1_89_USA 991167 8180.05 819535 5100.97 732975 746082.45 225.36 26.05 10.56 24.72 8.96
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