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Adaptive nonlinear active suspension control 
based on a robust road classifier with a 
modified super-twisting algorithm
Yechen Qin · Jagat Jyoti Rath · Chuan Hu · Chouki Sentouh · Rongrong Wang

Abstract For the suspension system equipped with
nonlinear hydraulic actuators and excited by external
road conditions, a road adaptive intelligent suspen-
sion control strategy is developed. In this work, (1)
a multi-phase intelligent road adaptive control archi-
tecture is developed to enhance the ride comfort in the
presence of varying road excitations; (2) a modified
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algorithm is proposed to improve the system perfor-
mance. Initially based on the nonlinear system dynam-
ics, a sliding mode controller based on an improved
super-twisting algorithm is proposed. In the Off-line
phase, the optimized control parameters based on par-
ticle swarm optimization (PSO) approach for each road
level are determined and supplied to a probabilistic neu-
ral network (PNN)-based classifier for training. In the
On-line phase, the PNN classifier employs the mea-
sured unsprungmass acceleration to determine the road
level and supplies the information to the controller
database. Based on the classified road level, corre-
sponding control parameters as determined by PSO
are then selected. These control parameters are then
supplied to the nonlinear controller which provides the
active control. The closed-loop stability of the proposed
approach is proved, and the simulation results for differ-
ent road levels are presented to show the effectiveness
of the proposed approach.

Keywords Active suspension control · Nonlinear
control · Sliding mode control · Classification · Road
adaptive control

1 Introduction

Increasing consumer demand and evolving market
trends in recent years have led to the development
of road adaptive active suspension systems (ASS),
contributing toward improved passenger comfort and
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controller was designed to improve passenger comfort
of a suspension system using estimated road roughness
based on a H-∞ observer. Employing stereo cameras,
the road condition informationwas obtained in [21] and
a model predictive control (MPC)-based preview con-
troller was designed to improve the passenger comfort.
Considering the works [13,15,18–20], only linear sus-
pension dynamics without any hydraulic actuator were
used in the design of controllers. In [13,14], design
of road adaptive suspension controllers with variable
damping coefficient was discussed for linear suspen-
sions. However, the aspect of active control with non-
linear hydraulic actuators and sensitivity of classifi-
cation w.r.t. control performance was not discussed.
Similarly, closed-loop active nonlinear suspension con-
trol was not discussed in [16]. The works proposed in
[18,20] considered only bumps, potholes as road dis-
turbances and no random road, i.e., ISO standard roads
were considered for analysis.

To address the above issues, we propose a novel road
adaptive intelligent suspension control (RAISC) archi-
tecture in this paper. For a suspension system equipped
with nonlinear hydraulic actuators, a robust higher-
order non-singular terminal sliding mode controller
(HOSM-NSTSM) using the modified super-twisting
approach (STA) is proposed. Accordingly, in this work,
(a) a multi-phase road adaptive control architecture is
proposed for an active suspension system equipped
with nonlinear hydraulic actuators by integrating a
PNN-based classifier for road level identification with
a robust optimizedHOSM-NSTSMcontroller based on
modified STA for active feedback control. (b) Address-
ing issues of control parameter influence on classi-
fier performance, the closed-loop stability of the adap-
tive controller is rigorously established by Lyapunov
analysis. (c) Performance results of road classification,
robustness to parametric uncertainties, sensor noise and
comparison with passive suspension, integral HOSM
(I-HOSM) [22] control and artificial neural networks
(ANN)-based [10] controller are shown for multiple
road conditions. Further, extensive discussions on per-
formance of RAISC w.r.t classification interval, selec-
tion of superior features and controller performance
are also presented. For performance analysis, the pro-
posed control architecture was evaluated for a Class D
sedan vehicle equipped with hydraulic actuators over
a sequence of three random road levels, i.e., Level A,
Level B and Level C.

road holding capabilities [1,2]. Typically, the use of 
hydraulic actuators-based ASS has been widespread in 
commercial vehicles [3,4] due to their reliability and 
ease of control capabilities.

The design of commercial ASS controllers has 
focused in improving the passenger comfort as the vehi-
cle traverses variable road conditions such as bumps, 
potholes [5] and International Standard Organization 
(ISO) standard road levels [6] with high velocities. 
Based on the road and driving conditions, active con-
trollers employing robust strategies have been designed 
and implemented. Various robust control approaches 
such as backstepping control [1], sliding mode con-
trol [7], H∞ control [8], fuzzy control [9] and artifi-
cial neural network control [10] have been employed to 
provide active suspension control. In the above works, 
the robust state feedback controllers were designed to 
improve the performance of the system considering the 
road conditions as disturbance to the suspension sys-
tem. Various works such as [11,12] have employed 
road profile models based on power spectral density 
(PSD) analysis for the design of road condition estima-
tors. In contrast, using disturbance observers to esti-
mate road conditions, robust output feedback control 
approaches for suspension system were proposed in 
[4,7]. In these works, the observers were designed to 
estimate road conditions modeled in time–frequency 
domains [11,12]. Considering practical limitations and 
cost of sensors, the observers-based road estimation 
and data-driven road identification approaches offer 
feasible solutions for the design of adaptive ASSs. 
However, in comparison with the observer-based tech-
niques [4,13], the data-driven approaches can cater to 
wider range of road conditions for varying driving sce-
narios [14–17]. Such data-driven approaches are then 
used to develop road classifiers/estimators to identify 
different road conditions. In the works of [13,14], a 
roughness PSD function based on estimated amplitude 
was employed for road classification. Based on prede-
fined upper and lower levels of road, thresholds were 
used to classify the road. Similarly, in [16], the road lev-
els were classified based on time–frequency analysis.

In [18], a road adaptive controller was designed 
using the information of suspension stoke (i.e., dis-
placement). For this design, the control action switched 
between soft and stiff suspension behaviors based on 
the measured stroke. Similarly, in [19,20], the road con-
dition information was employed to switch between 
active and passive configurations. In [13], a LPV/H-∞
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The rest of this paper is organized as follows. In
Sect. 2, the nonlinear active suspension system model
and road profile model are described. In Sect. 3, the
intelligent classifier and road-aided robust controller
are presented. In Sect. 4, simulation results and discus-
sion are carried out to validate the proposed algorithm.
The conclusions are presented in Sect. 5.

2 System dynamics

The advent of the independent wheel configurations
in modern commercial automobiles [6] focuses on the
design of controllers specific to a quarter wheel con-
figuration. Under the assumptions that roll and pitch
motions of the vehicle are negligible, the active sus-
pension control problem for a quarter wheel vehicle
is formulated and the classifier-based control design is
discussed consequently. For the quarter wheel config-
uration, motion is regulated by the dynamics of wheel
hop, vehicle chassis and the road–wheel interactions,
as shown in Fig. 1. To provide active suspension con-
trol, hydraulic actuators [1,23] have been employed in
the commercial vehicles [3,4] and considered in this
paper.

The governing dynamics for the sprung and
unsprung masses can be given as [6,7]:{
mbẍb = − Fs − cp(ẋb − ẋw) + Fa,
mw ẍw = Fs − kt(xw − x f ) + cp(ẋb − ẋw) − Fa,

(1)

Fig. 1 Two-degree-of-freedom model of the active suspension
system

wheremb,mw denote the sprung and unsprungmasses,
respectively, xb, xw represent the sprung and unsprung
mass vertical displacements, x f is the external input
from road, Fa is the active force generated by the
hydraulic actuator, Fs is the nonlinear spring force and
cp, kt denote the suspension damping and tire stiffness
coefficients, respectively. The nonlinear spring force is
modeled as:

{
Fs = ks (xb − xw) + ϕa,

ϕa = kn(xb − xw)3,
(2)

where ks is the spring stiffness and ϕa denotes the non-
linear component, with kn representing the nonlinear
spring force [4]. The effect of the road excitation on
the suspension system is represented by the external
disturbance x f acting as dynamic vertical tire load.

Under the assumption that road profile is a homoge-
neous and isotropic Gaussian random process [11], the
dynamic model of road excitation can be written as:

Gq(ns) = Gq(no)

(
ns
no

)−W

, (3)

where Gq(ns) is the PSD of the road excitation, ns is
the spatial frequency, Gq(no) represents the excitation
energy and W = 2 represents the road structure as
per ISO-8608 [11]. Consequently, based on the PSD
values, various levels of roads, i.e., Level A–Level H,
can be modeled as per the harmony function superpo-
sition method [24], which approximates the road PSD
with a series of harmonic functions. For a given fre-
quency range [ f1, f2], we can equally divide it into
M parts. The middle frequency fmid−K is then taken
to replace the K th (K = 1, 2, . . . M) frequency range.
According to the Plancherel theorem, the integral of a
function’s squared modulus is equal to the integral of
the squared modulus of its frequency spectrum. There-
fore, the amplitude of K th part can be written as:

AK = √
Gq ( fmid−K ) · Δ fK . (4)

By summing M sine functions with frequency and
amplitude defined by fmid−K and (5), respectively, the
generated road profile can be analytically expressed as:

q (t) =
M∑

K=1

√
2 · Gq ( fmid−K ) · f2 − f1

M

sin (2π fmid−K t + ΦK ) , (5)
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whereΦK is an independent and identically distributed
random phase shift in the range (0, 2π).

The active force Fa is generated by a four valve
hydraulic actuator based on the control input which is
generally a current/voltage signal. The control force,
Fa, can be obtained as Fa = PL Ap, where the valve
piston area is Ap and the pressure drop across the piston
is denoted as PL . The dynamics of the PL is given as
[1,25]:

ṖL = λ1(Ps, PL)U − CtpαPL − A2
pα(ẋb − ẋw), (6)

where α = 4βe
Vt

, U is the control current/voltage, Vt is
the actuator volume, βe is the effective bulk modulus,
Ctp is the total piston leakage coefficient, λ1 is the load
flow, which can be expressed as:

λ1 = ApCdωα√
ρ

√∣∣∣∣Ps − sign(U )PL
Ap

∣∣∣∣, (7)

where Cd is the discharge coefficient, ω is the spool
valve area gradient, ρ is the fluid density and Ps is the
supply pressure.

Integrating the above dynamics, a nonlinear state
space model can be formulated with the states as:

x = [
x1 x2 x3

]T = [
xb − xw ẋb − ẋw MFa

]T
.

The state dynamics can then be expressed as:⎧⎨
⎩
ẋ1 = x2,
ẋ2 = x3 + ϕ1(x, t) + fu(t),
ẋ3 = λu(x, t)U + ϕ2(x, t),

(8)

where

λu = ApCdωα√
ρ

√∣∣∣∣Ps − sign(U )x3
MAp

∣∣∣∣,
ϕ1 = − Mϕa − ksMx1 − cpMx2,

ϕ2 = − λ2x3 − Mλ3x2,

λ2 = Ctpα, λ3 = A2
pα,

M = mb + mw

mbmw

, fu = kt(xw − xr )

mw

.

(9)

measured by the reduction in the sprungmass accelera-
tion, ẍb. Similarly, the stability of vehicle, i.e., its capa-
bility to stay on the road, is measured by the tire deflec-
tion, i.e., Tdef = (xw − x f ). It is of note that typically
based on the control objective, either the road holding
or passenger comfort can be considered as a constraint
for ease of design [1,4,6]. On similar lines, a multi-
phase intelligent road adaptive control architecture is
proposed to improve the vehicle ride comfort, while
considering road holding as a necessary constraint to
be satisfied. Based on road holding, mechanical design
and actuator limits, the following constraints for the
controller design are considered:

1. The suspension stroke xb − xw is constrained by
± 0.08 m.

2. The maximum force Fa generated by the hydraulic
actuator is constrained by ± 1500 N.

3. The road holding ability is defined by Sc = Fdyn
Fst

<

1,where Fdyn = kt(xw−x f ) is the dynamic vertical
tire load and Fst = (mw+mb)g is the static vertical
tire load.

3 Intelligent classifier and robust controller

The control objective for the proposed work is to
improve passenger comfort while considering safety
constraints such as road holding, suspension stroke
and actuator limitations. To achieve this, we propose a
multi-phase design where a robust HOSM-based non-
linear control law is used in conjunction with a PNN-
based road classifier. The architecture of the proposed
approach is first discussed followed by the design of
controller, classifier and classifier-based control subse-
quently.

3.1 Proposed architecture

The design of the proposed RAISC for the suspension
system integrates a robust HOSM-NSTSM-based non-
linear feedback robust control with a PNN-based road
level classifier. Based on classified road level informa-
tion, optimized control parameters are used to provide
effective control in real time. To realize this, the archi-
tecture is developed over two phases, i.e., (1) Off-line
phase for training of classifier and (2) On-line phase
for classifier validation and controller action with the
controller database interlinking these phases as shown
in Fig. 2.

The design of the active suspension control is a 
multi-objective task [6] where the contradicting aspects 
of the stability and the comfort must be accounted for. 
The performance of any active suspension controller 
in terms of the passenger comfort enhancement can be
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Fig. 2 Architecture of the proposed RAISC scheme

The Off-line phase of operation consists of two
modules—(i) control parameters set generation mod-
ule (ii) training of the PNN-based classifier. Based on
the control law to be discussed later, first a set of con-
trol parameters C j is determined. Accordingly, in con-
trol parameter set generationmodule, PSO is employed
to generate the optimal control parameter sets cor-
responding to individual road levels. These optimal
control parameter sets C j are then stored in the con-
troller database unit and also provided to the training
phase of the PNN classifier. Subsequently, the PNN
classifier then selects the insensitive frequency ranges
w.r.t the optimized control parameter sets. Based on
the extracted features, the classifier is trained and the
information provided to the classifier validation stage
of the On-line phase. In the On-line phase, the opera-
tion is categorized into (i) validation of the PNN classi-
fier followed by road level identification and (ii) robust
HOSM-NSTSM control action generation for the sus-
pension system. Based on real-time excitation of the
suspension for various road conditions, the unsprung
mass acceleration is measured. After sampling of this
signal at a rate of 100 Hz, it is fed to the PNN classi-
fier in real time. Based on the information from the
Off-line classifier training module and the sampled
unsprung mass acceleration signal, the classification
validation module generates the information of road
level ζ which is supplied to the controller database.
Using this information of road level, the optimal con-
trol parameters set C j which were obtained previously
during the Off-line phase are directly selected from the

controller database and provided to the controller in
real time. Thus, the controller database unit acts as a
lookup table from which optimal control parameters
generated in the Off-line phase can be directly selected
in the On-line phase. The use of control database unit
prevents any unwarranted switching between the Off-
line and On-line phase and simplifies the design.

3.2 Robust HOSM-NSTSM controller design

In this section, we discuss the design of the robust
higher-order non-singular terminal sliding mode con-
troller (HOSM-NSTSM) for the nonlinear active sus-
pension system (8) based on state feedback. Sliding
mode controller is widely applied for vehicle dynam-
ics control [26,27]. To design the active control U , a
recursive structure similar to [28] is followed, avoid-
ing the singularity in the design. In [28], a first-order
sliding mode term is employed for disturbance rejec-
tion and subsequent approximations of the discontinu-
ous term are done for design. Improving on the work
of [28], we discuss the design of a recursive NSTSM
controller employing a HOSM-based modified super-
twisting algorithm (STA) in this section. The control
problem is thus formulated as tracking the reference xd
for the suspension stroke. Further, as the relative degree
of control inputU w.r.t to the state x1 is 3, two recursive
terminal error surfaces can be designed as:⎧⎨
⎩

σ0 = x1 − xd,
σ1 = β1σ0 + σ̇

γ1
0 ,

σ2 = β2σ1 + σ̇
γ2
1 ,

(10)
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where β1, β2 > 0 are positive constants to be designed.
For the designed error surfaces, the parameters γi , i =
1, 2, 3 are designed as a ratio of two odd integers, i.e.,
γi = pi/qi , with the integers pi > qi > 0 chosen to
ensure a non-singular design. An integral non-singular
terminal sliding surfacewhich depends on the recursive
error surfaces σi is designed as:

S = σ2 + Θ

∫ t

0
σ

1
γ3
2 dt, (11)

where Θ > 0 and γ3 is designed similar to γ1, γ2. It is
of note that the selection of coefficients γi must obey
the condition, γi > 3 − i similar to [28]. Substituting
for the dynamics of the error surfaces σ2, σ1 and σ0,
the sliding surface dynamics from (11) can be written
as:

Ṡ = Θσ2
1
γ3 +β1β2σ̇0+ f1(x)σ̈0+ f2(x)σ̈

2
0 + f3(x)

...
σ 0,

(12)

where
⎧⎪⎨
⎪⎩

f1(x) = β2γ1σ̇
γ1−1
0 + β1γ2σ̇

γ2−1
1 ,

f2(x) = γ1γ2σ̇
γ2−1
1 σ̇

γ1−2
0 ,

f3(x) = γ1γ2σ̇
γ2−1
1 σ̇

γ1−1
0 .

(13)

The successive derivatives of the error surface σ0 can
then be given as:

⎧⎨
⎩

σ̇0 = x2 − ẋd,
σ̈0 = x3 + ϕ1 + fu − ẍd,...
σ 0 = MλuU + ϕ2 − ...

x d + ϕ̇1 + ḟu .
(14)

Substituting with the dynamics of σ0 in (10), (12) can
be then written as:

Ṡ = Θσ2
1
γ3 + Ψ (x, t) + f3(x)MλuU + Δ, (15)

where Δ is the disturbance, which can be described as:

Δ = f1(x) fu + f2(x) f
2
u + f3(x) ḟu, (16)

The nonlinear function Ψ (x, t) can be calculated as:

Ψ (x, t) = β1β2g1(x, t) + f1(x)g2(x, t)

+ f2(x)g2(x, t)
2 + f3(x)g3(x, t),

(17)

where g1(x, t) = x2 − ẋd, g2(x, t) = x3 + ϕ1 − ẍd,
g3(x, t) = ϕ2 − ...

x d + ϕ̇1. To ensure the convergence
of the sliding dynamics S = 0, in the presence of the
lumped disturbance term Δ, the feedback control U
will be presented.

The following lemmas are essential for the proof of
the consequent theorem [29,30].

Lemma 1 Assume z1 (t) and z2 (t) are two locally
absolute continuous functions, then the function:

V (t) = ζ T Pζ, (18)

is locally absolute continuous, where P ∈ �2×2 is a

p.d. matrix, where ζ = [ |z1|βsign (z1) z2
]T

and 1 >

β > 0.5.

Lemma 2 If a function V (t) is absolute continuous on
some interval, then V (t) is monotonously decreasing
if and only if V̇ is negative definite everywhere.

Theorem 1 For the considered active suspension sys-
tem with the sliding dynamics (15), the following con-
trol is proposed:

U = Γ (x)

[
−Θσ

1
γ3
2 − Ψ (x, t) + ur(S)

]
, (19)

where Γ (x) = 1
f3(x)Mλu

and the robust higher-order
sliding mode (HOSM)-based robust control ur(S) is
given as:

ur (S) = − κ1|S|βsign (S) − κ2

∫ t

0
|S|θ sign (S) dt,

(20)

where 1 − 2β + θ = 0 and 1 > β ≥ 0.5. κ1, κ2 > 0
are the positive gains to be designed. Employing the
nonlinear state feedback control (19), the sliding sur-
face attains the practical bounded stability around the
equilibrium in finite time.

Proof Considering the sliding dynamics (15) and sub-
stituting the controlU , the derivate of S can be written
as:

Ṡ = f3(x)MλuΓ (x)

[
−Θσ

1
γ3
2 − Ψ (x, t) + ur(S)

]

+Θσ2
1
γ3 + Ψ (x, t) + Δ. (21)
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The convergence of the sliding dynamics employing
the feedback controlU is dependent on the nonsingual-
rity of the function f3(x) which affects the term Γ (x).
To avoid singularity, the following condition is invoked
for f3(x):

Ω ≡
{∏2

j=1 σ̇
γ j−1
j−1 , for

∣∣∣∏2
j=1 σ̇

γ j−1
j−1

∣∣∣ ≥ ε

ε otherwise

(22)

for j = 1, 2 and ε > 0 is a positive constant.
The above expression can be understood as a sat-
urated scenario for the nonlinear function f3(x). It
can be deduced from the above expression that now
two scenarios arise depending on the magnitude of
the error surfaces σ0 and σ1. In the first scenario

when
∣∣∣∏2

j=1 σ̇
γ j−1
j−1

∣∣∣ ≥ ε, the nonlinear function

f3(x) is not approximated and invertible, which can
avoid the singularity in control design. Thus, the slid-
ing dynamics in such a case can be expressed as:

Ṡ = ur (S) + Δ. (23)

The disturbance term Δ is a function of the non-
linear terms f1(x), f2(x), f3(x) and the road pertur-
bation fu . The nonlinear terms are the functions of
the error surfaces σ0, σ1 and their first-order deriva-
tives. As discussed in the singularity clause for the
design of the error functions, it can be ensured that
both σ̇0 and σ̇1 are differentiable. Further, for all prac-
tical purposes, the road disturbance fu and its suc-
cessive derivatives are bounded. Consequently, with
the assumptions on the boundedness of the road dis-
turbance fu , the bound of the perturbation Δ can be
established as |Δ̇| < δ, for δ > 0 being a positive
bound.

Define

η = − κ2

∫ t

0
|S|θ sign (S) dt + Δ,

ζ = [ |S|βsign (S) η
]T

.

(24)

Then, the derivate of ζ can be calculated as:

ζ̇ = 1

|S|1−β
Aζ + [

0 1
]T

Δ̇. (25)

where

A =
[−βκ1 β

− κ2|S|θ+1−2β 0

]

=
[−βκ1 β

− κ2 0

]
.

Since β, κ1, κ2 > 0, all the eigenvalues of A locate
in the negative real part. Then, the p.d. matrix P can be
chosen as:

PA + AT P = − Q < 0. (26)

The candidate Lyapunov function is chosen as:

V = ζ T Pζ. (27)

With e2 = [
0 1

]T
, the derivate of (27) is calculated

as:

V̇ = − 1

|S|1−β
ζ T Qζ + 2ζ T Pe2Δ̇

≤ − 1

|S|1−β
ζ T Qζ + 2

∣∣∣ζ T Pe2
∣∣∣ δ

≤ − 1

|S|1−β
ζ T Qζ + 1

ω
‖S‖ δ + ωeT2 P

T Pe2δ,

(28)

where ω is a positive number. Let ω = |ζ |1−β/μ, (28)
can be calculated as:

V̇ ≤ − 1

|S|1−β
ζ T (Q − μδ I ) ζ + |S|1−β

μ
eT2 P

T Pe2δ

≤ − λmin (Q − μδ I )
‖ζ‖2

|S|1−β
+ |S|1−β

μ
eT2 P

T Pe2δ.

(29)

Considering that

|S|β ≤ ‖ζ‖ ,

λmin (P) ‖ζ‖2 ≤ V ≤ λmax (P) ‖ζ‖2,
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(29) can be calculated as:

V̇ ≤ − λmin (Q − μδ I )
‖ζ‖2
|ζ | 1−β

β

+ |ζ | 1−β
β

μ
eT2 P

T Pe2δ

= − λmin (Q − μδ I ) ‖ζ‖3− 1
β + ‖ζ‖ 1

β
−1

μ
eT2 P

T Pe2δ

≤ − λmin (Q − μδ I )

(
V

λmax (P)

) 3β−1
2β

+
(

V

λmax (P)

) 1−β
2β 1

μ
eT2 P

T Pe2δ.

(30)

Denote

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z = V

λmax (P)
,

g1 = 3β − 1

2β
, g2 = 1 − β

2β
,

k1 = −λmin (Q − μδ I ),

k2 = 1

μ
eT2 P

T Pe2δ.

(31)

Define an auxiliary variable as:

z̃ = 1

1 − g2
z1−g2 .

When z > 0, the derivative of z̃ can be calculated
as:

˙̃z = z−g2 ż

= − k1x
g1−g2 + k2

= − k1(1 − g2)
g1−g2
1−g2 z̃

g1−g2
1−g2 + k2.

(32)

Define

V1 = |z̃|
g1−g2
1−g2

+1
,

and if

|z̃| >
1

1 − g2

(
k2
k1

) 1−g2
g1−g2

.

Then, it is not difficult to derive V̇1 < 0. Hence, one
can conclude that

lim sup
t→∞

|z̃| ≤ 1

1 − g2

(
k2
k1

) 1−g2
g1−g2

. (33)

According to (33), the supremum of V can be calcu-
lated as:

lim sup
t→∞

V ≤
⎛
⎝eT2 P

T Pe2δλmax(P)
2β−1
2β

μλmin (Q − μδ I )

⎞
⎠

β
2β−1

.

Further, by considering

|S| ≤ ‖ζ‖ 1
β ≤

(
V

λmin (P)

) 1
2β

,

The supremum of S is given as:

lim sup
t→∞

|S|

≤
(√

λmax (P)

λmin

) 1
2β

(
eT2 P

T Pe2δ

μλmin (Q − μδ I )

) 1
2(2β−1)

.

In the second scenario, when
∣∣∣∏2

j=1 σ̇
γ j−1
j−1

∣∣∣ < ε,

the saturated value of f3(x), i.e., ε is considered in the
design ensuring that there is no singularity. In such
a scenario, the sliding surface can be approximated
as:

∣∣Ṡ∣∣ ≤ f (x, δ, ν) = ν̄2.

The convergence of the sliding surface S to a finite
bound around the origin can be established. It is of note
that the perturbation affecting the system is nonvanish-
ing and hence the sliding surface attains only practical
convergence, i.e., convergence to a finite bound. The
magnitude of this bound is dependent on the value of
ε discussed earlier. ��

To ensure robust and optimal performance of the
proposed HOSM-NSTSM controller for each road
level, the gains of the controller are optimized using
PSO technique in the Off-line phase. The results of the
PSO-based optimization for each controller are stored
as an optimal control parameter set in the controller
database block as shown in Fig. 2. In this work, the
focuswasonoptimizing the robust control performance
and subsequently based on the chosen values of Θ and
γi such that the singularity condition is avoided, and
the optimal control parameter sets are formulated as

C j = [
κ1 j κ2 j β1 j β2 j

]
, (34)

123
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where j = A, B,C signifies the individual controllers,
i.e., Controller A, Controller B and Controller C.
With the nonlinear controller designed, we now discuss
the intelligent classifier which generates the informa-
tion of the road level on basis of which the controller
database block decided the appropriate control param-
eter set.

Remark 1 Considering the function λu can be written
as:

λu = ApCdωα√
ρ

√
|Ps − sign(U )x3

MAp
|, (35)

where Ps is the supply pressure of the fluid, Ap is
the piston area, Cd is the discharge coefficient, ω is
the valve width, α is a function of bulk modulus of
fluid and U is the control input. It can be seen that the
function λu is non-singular at all times except when

Ps = sign(U )x3
MAp

, i.e., when supply pressure is equiva-
lent to the pressure difference across the valves. How-
ever, for physical operating conditions of the hydraulic
actuator, the pressure difference across the valves does
not increase the supply pressure [25]. Thus, the func-
tion λu does not lead to a singularity in design as
required for the convergence of the sliding dynam-
ics.

3.3 Intelligent classifier design

To ensure high performance of the proposed RAISC
scheme, a PNN-based road classification technique
that is robust to the optimized controller parameter
C j variations is proposed in this work as shown in
Fig. 3a. It should be noted that in [13,14], a rough-
ness PSD function based on estimated amplitude was
employed for road classification with predefined upper
and lower levels of road for threshold selection. For
the design of RAISC, we propose to use twelve sta-
tistical features, employ mRMR for superior feature
selection and then train a PNN-based classifier to find
the superior features. Subsequently, the classifier then
identifies the roads without the use of any predefined
thresholds. The road classificationmethod is developed
based on the time–frequency analysis techniques simi-
lar to the work proposed in [16]. The sequential devel-
opment of the intelligent classifier is detailed as fol-
lows:

(a)

(b)

Fig. 3 a Proposed PNN-based classifier. b Six-layer structure
of WPT

Step 1: Selection of insensitive frequency ranges

In this work, the concept of signal sensitivity analy-
sis on basis of which insensitive frequency ranges are
determined is proposed. The objectives of introduc-
ing this procedure and hence the insensitive frequency
range selection were: (a) to determine which sys-
tem response (i.e., sprung mass/unsprung mass accel-
eration) is best suited for the classification of road
level (b) to ensure that the selected system response
is invariant to the effect of control parameter sets
C j .

To find the insensitive frequency ranges, frequency
characteristics curves for the measured system
responses are firstly computed. The road input for var-
ious levels of roads (3) has random nature; hence, the
generated frequency curves show high fluctuations in
the high-frequency range. A series of excitations Λp

are considered to decompose the standard road profiles
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defined by ISO-8608 into numbers of sine functions
and given as:

Λp =
√
2Gq( f p)(2π f pt), (36)

where the frequency range (0.33–28.3 Hz) into P
parts with f p defined as the pth middle frequency and
Gq( f p) is the PSD of f p. For time–frequency analy-
sis, a six-layer wavelet packet transformation (WPT)
is performed to partition the frequency characteris-
tics curve into six components as shown in Fig. 3b.
In this paper, a frequency range of 0.33–28.3 Hz has
been considered for analysis purposes. Owing to the
down-sampling of the WPT, an approximated range of
0.8–31.3 Hz has been adapted as shown in the var-
ious frequency components in Fig. 3b. In order to
select the insensitive frequency range based on the
system response of each controller parameter set, the
following insensitive index which depicts the inci-
dence of individual frequency range caused by differ-
ent controller parameter setsC j is proposed as follows:

θη =
∣∣∣∣∣1 − Σi=1,3wi

(
Σ

gη

dη
Γi ( f p)

Σ
gη

dη
Γ2( f p)

)∣∣∣∣∣∀η = 1, . . . , 6,

(37)

where η represents the ηth frequency component gen-
erated by the WPT, gη, dη are the upper and lower
frequency limits of η, wi is the weighting factor and
Γi ( f p) is the RMS (root mean square) of the sys-
tem response generated under action of the typical
controller parameter set C j with the excitation fre-
quency f p. In this paper, it is considered that all con-
troller parameters have the equal importance and sub-
sequently wi = 0.5, i = 1, 3 are chosen. The obtained
insensitive index θη is then sorted in the ascending
order, and the first three indexes with the lowest values
are denoted as Ω1, Ω2 and Ω3, respectively.

Further, to ensure that proper information is avail-
able for the classification, the following constraint is
defined:

dη

λ
≥ 3 s−2, (38)

the constraint (38) is justified: (a) to ensure a limited
effect of the reduction in information in (37) as a result
of fewer availability of PSD points in low-frequency
ranges. This typically occurs due to the use of constant
bandwidth PSD computation method (b) to limit the
existing bias of the sampled signal which influences
the classification accuracy significantly. Satisfying the
constraint (38) thus ensures that sufficient information
is available for classification of road level during On-
line phase of operation. It should be noted that Ω1, Ω2

and Ω3 obtained from (37) are used to determine the
applicable system response. For robustness, a variable
γ is then defined as

γ=Ω1 + Ω2 + Ω3

3
. (39)

The response with the smallest γ is then used as the
only measured signal for the road classification.

Step 2: Extraction of superior features

After selection of the insensitive frequency ranges, the
statistical features of both time and frequency domains
are calculated according to the basic features set and the
superior features are then selected by a feature selec-
tion method. Based on previous studies for road exci-
tation classification [16], variance (VAR), square root
of amplitude (SRA) and RMS were established as the
most suitable statistical features. With the basic fea-
tures established, the statistical features’ database for
the selected insensitive frequency ranges Ω1,Ω2,Ω3

and in time domain is shown in Table 1 with Ψν , ν =
1, . . . , 12 representing the features index. Although all
12 features can be used as the input of the classifier, they
are not of the same importance and there exists data
redundancy [16]. Thus, maximal relevance and mini-
mummutual redundancy (mRMR)method is employed
in this paper for the feature selection [16].

Table 1 Statistical features indexes

Domain Features (V AR) (SRA) (RMS)

Time domain 1 2 3

Frequency domain Ω1 4 5 6

Ω2 7 8 9

Ω3 10 11 12where λ is the classification interval and dη is the lower 
frequency bound discussed in (37). The necessity of
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Fig. 4 Structure of the PNN

Step 3: Generation of classifier and validation

The computed superior features in STEP 2 are then
fed to a classifier which then outputs excitation level
accordingly. Based on the appropriate chosen training
and testing data sets, the classifier then provides the
information of the estimated road excitation. It is of
note that to improve signal quality and classification
accuracy, low-pass filtering and framing are employed
as the signal preprocessing techniques. In this paper,
based on the predefined features and categories, PNN
[31] uses a training set to develop a distribution function
to calculate the likelihood of features within different
categories as shown in Fig. 4, and the structure of the
PNN-based classifier is shown in Fig. 3a.

The weighted sum of each neuron is calculated as
per a nonlinear activation function:

Φ (Ii ) = e
Ii−1

σ2 , (40)

where Ii is the i th weight between the input and the
pattern layer, and σ is a smoothing factor.

Then, a final output is obtained which indicates the
typical road level ζ , i.e., Road Level A, B or C, respec-
tively, as shown in Fig. 3a in the On-line phase of oper-
ation. For further details, refer [31]. This output of the
classifier is then provided to the controller database
block in the On-line stage as discussed earlier.

Remark 2 In this work, mRMR and PNN are uti-
lized for feature selection and classifier generation,
respectively. It is of note that there are various other
approaches such as improved distance evaluation
method [17] and adaptive neuro-fuzzy inference sys-
tem (ANFIS) [17] which can be employed to solve
the above problem. In this work, these two techniques
are employed to illustrate the feasibility of the pro-
posedmethod and can be replaced by the othermethods
described above based on design.

3.4 Classification-aided controller RAISC

The controller database block forms the link between
the Off-line and the On-line phases, acting as a deci-
sion module which generates the controller parameters
specific to the typical road excitation level. It should
be noted that there is no switching between the On-
line and Off-line phase to obtain control parameters.
Based on the road level ζ information obtained from
the PNN-based classifier, a simple switching rule is
then employed to select the appropriate controller con-
trol parameter C j set in the controller database block.
The switching only occurs in the On-line phase when
different road levels are detected. Thus, if the road level
switches form Level A to Level B, the typical control
parameters are selected from the controller database.
This entire operation occurs in the On-line phase and
is supplemented by that fact that the controller database
is the only unit which is part of the Off-line and On-
line phases as shown in Fig. 2. With the controller
parameter set identified, the proposed control law (19)
ensures the convergence of the sliding surface in finite
time as discussed in Theorem 1. The convergence of
the sliding surfaces ensures robust closed-loop state
feedback operation and hence improvement in the pas-
senger comfort. In contrast to the previous approaches
[19], in this work the classifier proposed is insensi-
tive to the PSO-based optimized control gains. Further,
the influence of classification interval and selection of
superior features is considered such that accurate infor-
mation of the road level is obtained. Thus, in the case of
various road levels the closed-loop robust performance
of the controller can be established.

4 Simulation results and discussion

In this section, the evaluation of the proposed adaptive
control scheme for three levels of roads, i.e., Level A,
Level B and Level C, is presented. The selection of
optimal control gains based on PSO technique for con-
trollers for each road class, the classifier to estimate the
road excitation and the adaptive controller based on the
classifier information is subsequently discussed.

4.1 Parameter selection

The evaluation of the proposed RAISC scheme was
performed on the signal responses obtained by the sim-
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ulation of suspension dynamics of a Class D sedan. For
the considered vehicle, the system parameters for the
quarter car dynamics (1) were chosen as [4] sprung
massmb = 342.5 kg, unsprung massmw = 40 kg, tire
stiffness kt = 268,000 Nm, suspension spring stiff-
ness ks = 18,000 Nm, suspension damping coefficient
cp = 1000 Ns/m, supply pressure Ps = 1.034 × 107

Pa, piston area Ap = 3.35 × 10−4 m2, α = 4.515 ×
1015 N/m5, spool valve area ω = 1.436 × 10−2 m2,
discharge coefficient Cd = 0.61 and fluid density
ρ = 858 kg/m3. The gains for the super-twisting term
are selected as β = 0.6 and θ = 0.2 [29]. The nonlin-
ear coefficients γi chosen as γ1 = 0.33, γ2 = 1.66 and
γ3 = 3 to avoid the singularity condition are discussed
earlier.With the parametersΘ and ζ chosen as 0.01 and
0.8, respectively, three levels of road excitation as per
the ISO standard, i.e., Level A, Level B and Level C,
were considered for the performance evaluation. Under
the assumption that the vehicle was traveling at a fixed
longitudinal speed of 40 km/h, extensive simulations
were then carried out.

4.2 PSO-optimized gains and classifier training

The Off-line phase was initiated with the design of
a PSO [32]-based approach to optimize the control
parameter sets C j for the proposed nonlinear feed-
back control (19). For every road level, each of the
controllers, i.e., Controller A, Controller B and Con-
troller C, was employed and based on the PSO the
optimized parameters were computed. To apply the
standard PSO technique in searching the optimal con-
troller parameters, each particle was defined as X =
C j = [

κ1 j κ2 j β1 j β2 j
]
. Consequently, the particles

Table 2 Optimized controller parameters generated by PSO

Parameter Optimized parameters generated by PSO

Range CA CB CC

κ1 [0, 1000] 332 440 417

κ2 [0,1000] 365 512 990

β1 [0, 50] 14 39 14

β2 [0, 50] 1.7 7.8 2.6

parameters sets C j , the classifier was then generated
according to the procedure given in Sect. 3. In accor-
dance with the objectives of choosing the insensitive
index as discussed in Sect. 3, it was found that the
unsprung mass acceleration measurement is invariant
to the variations in the control parameter sets similar
to [16]. To further illustrate this, the influence of con-
trol parameter sets on the sprung mass and unsprung
mass acceleration frequency responses are shown in
Fig. 5 for a Level A road. It can be seen that, in com-
parison with sprung mass acceleration, the unsprung
mass acceleration has minimal variation under vary-
ing controller sets. Similar observations were obtained
for the other levels of roads. Accordingly, considering
unsprungmass accelerations as candidate response, the
insensitive indexes of various road levels were com-
puted. In this work, a classification interval of λ = 1
s was selected. The computed insensitive indexes for
road levels A , B and C are shown in Fig. 6a. It can
be seen from Fig. 6a that the insensitive frequency
ranges for all three road levels were aD4, aD2 and
d A3 with Ω1 = aD4, Ω2 = aD2 and Ω3 = d A3.
With the selected insensitive frequency ranges, the sta-
tistical features databases, i.e., VAR, SRA and RMS,
were computed. Consequently, the superior features
were automatically selected by mRMR as RMS (time
domain), SRA(aD4), SRA (aD2) and SRA (d A3)
ensuring the diversity of inputs for classifier with both
the time and the frequency domain features considered.
Employing these features database, the PNN classifier
is then trained with the training set as shown in Table 3.
To evaluate classifier performance, theF-score criterion
[14] was adopted where

F-score = 2
pr

p + r
, (41)

where p = RCC/(RCC + IRC), r = RCC(RCC +
RIN). The classification levels are then given asRCC—

were able to automatically search for a optimal solu-
tion according to the objective function. In this work, 
the particle size is selected as 20 and the total num-
ber of iterations is iter = 100. As discussed earlier, 
road holding is ensured by considering the dynamic tire 
force constant Sc ≤ 1 as a constraint for PSO. Based 
on such design, the optimized control parameters for 
different control sets are shown in Table 2.

Employing the generated parameters by the PSO, 
the performance of the proposed control was eval-
uated for each road class. Consequently, the above 
generated parameters for the controllers A, B and C 
as shown in Table 2 were then stored in the con-
troller database block. With the optimized controller
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Fig. 5 Influence of
controller parameters for
road level A on a sprung
mass, b unsprung mass
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Fig. 6 a Computed insensitive indexes for various road levels,
b performance of the intelligent classifier

Road Classified Correctly, IRC—Incorrect Road Clas-
sified, RIN—RoadNot Identified, TN—The road is not
classified due to not being present (i.e., true negative).
Based on the these classification levels, the correct clas-
sification and false outputs can be defined based on the
specific degree Pspd and the sensitivity degree Psed as:

Pspd = RCC

RCC + RIN
, Psed = IRC

IRC + TN
. (42)

Subsequently, the receiver operating characteristic
(ROC) curve showing the classification result for test-
ing set is presented in Fig. 6b.

It can be concluded from Fig. 6b that the intelligent
classifier can accurately classify road levelwith F-score

Table 3 Setting for training, testing and validation processes

Term Value

Classification interval λ = 1 s

Filter cutoff frequency 50 Hz

Overlapping 50% (100 points) for λ = 1 s

Setting of training set 150 s for each class

Sequence of training set A, B, C Road with controller B

Setting of testing set 100 s for each class controller

Sequence of testing set A-A,A-B,A-C,C-A,C-B,C-C

B-A,B-B,B-C (road controller)

Setting of validation 10 s for each road level

Sequence of validation Road level: A-B-C

equal to 0.987 for the testing data set. Due to the fram-
ing and overlap of 50%, no output can be obtained in
the first second which leads to a RIN error. Based on
the illustrated results for road classification, it can be
deduced that the proposed classifier is invariant to con-
troller parameter variations.

4.3 On-line phase: classification-aided controller

The selection of the optimized gains of the three con-
trollers based on PSO and the generation of the clas-
sifier for training completed the Off-line phase. Sub-
sequently, with the validation set given in Table 3. In
the On-line phase, first the unsprung mass accelera-
tion signal with the smallest average insensitive index
value (γ ) is obtained and then the superior features are
extracted. The road level is then identified by the trained
PNN classifier. It should be noted that in the Off-line
phase, the optimized control parameters w.r.t different
road levels sets are stored in the controller database.
Subsequently, in the On-line phase once the road level
is detected, the specific controller parameter set from
the controller database can be directly employed. This
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Fig. 7 Performance of the
proposed RAISC over
different road levels
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Fig. 8 System constraints a actuator force (Fa), b suspension stroke (xb − xw), c dynamic tire force (Fdyn)

maintaining road holding as shown in Fig. 8c. Further,
the constraints on mechanical design and actuator lim-
itations are also satisfied as shown in Fig. 8a, b.

5 Discussion

The effective implementation of the proposed RAISC
is subject to both the classifier and the controller per-
formance. Specifically, the influence of classification
interval, selection of superior features and robustness
of the controller which affect the closed-loop perfor-
mance are critical.

The performance of classifier with various selected
classification intervals such as 1 s, 2 s and 5 s, with 100
points from the previous frame, i.e., overlap for 66%,
50%, 33% and 16%, respectively, was detected.

It can be seen from Fig. 9a that with the increase
in classification intervals the F-score value decreases.
This occurs because a high value of λ slows down the
adaption process and deteriorates the RAISC perfor-
mance especially in complex road conditions typically
for higher vehicle velocities. Similarly, if a very low
classification interval, i.e., λ � 1s, is selected, then
very little data are available for the road classifica-
tion and the performance deteriorates. Consequently,

procedure ensures less computational time spent dur-
ing the On-line phase. For the varying road conditions 
and controller parameters set, the proposed road clas-
sifier accurately estimated the road level with F-score 
equal to 0.947. Three errors appear in the first second 
and transition of two adjacent levels, and can be inter-
preted as framing and changing of dynamic response. 
This information of the estimated road level was then 
provided to the controller database block. The perfor-
mance of the classification-aided controller for the road 
sequence as discussed in Table 3 is shown in Fig. 7.

It can be deduced from Fig. 7 that the proposed 
classification-aided control strategy effectively 
improved the passenger comfort levels in compari-
son with a passive system. Employing the proposed 
RAISC, it was found that the RMS value of sprung 
mass acceleration reduced by 42.9% for Level A road, 
by 37.8% for the Level B road and by 40.3% for the 
Level C road, respectively. With the reduction in sprung 
mass acceleration leading to increase in ride comfort, 
it was further ensured that the constraints on suspen-
sion stroke and actuator force along with road holding 
were maintained as shown in Fig. 8. Thus, the pro-
posed RAISC control architecture for road adaptive 
active suspension control ensures the improvement in 
passenger comfort over different road conditions while
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Fig. 9 F-scores showing a influence of classification interval, b effect of superior features selection

in this paper, a mid-range value λ = 1 s which has high
F-score of 0.981 and satisfies the constraint (38) was
selected.

The selection of superior features according to the
insensitive frequency ranges θη also affects the per-
formance of the classifier along with the classifica-
tion interval as shown in Fig. 9b. To analyze the same,
three cases were considered as: (i) Cs-1: Selection of
the superior features from the time and the frequency
domain while considering the insensitive frequency
ranges, i.e., the proposed work, (ii) Cs-2: Selection of
the features from the time and the frequency domain
without considering the insensitive frequency ranges,
(iii) Cs-3: Selection of the features from the time
domain only without considering the insensitive fre-
quency ranges. For both combination 1 and 2, the num-
ber of superior features are set to be 4, and candidate
features number are 12 and 21 (six frequency ranges
and time domain for three basic features), respectively.
All of the combinations were used for PNN training
with training set using the parameters given in Table 3.
The comparison analysis of all three cases are presented
in Fig. 9b.

It can be seen from Fig. 9b that in the cases where
insensitive frequencies are considered for selection
of superior features, the classification performance is
high. Further, for worsening road levels, i.e., B and
C, it can be seen that the proposed method outper-
forms both the cases where features from time and
frequency domain without considering insensitive fre-
quency ranges were considered and when only fea-
tures from time domain were considered. It can be
hence deduced that for the nonlinear suspension system
with varying active control provided, the selection of
superior features considering the insensitive frequency
ranges from both the time and the frequency domain
generates the best result.

Table 4 Reduction in RMS of sprung mass acceleration

Roads Passive ANN IHOSM RAISC

A 0.233 0.175 (25%) 0.147 (37%) 0.133 (43%)

B 0.444 0.337 (24%) 0.306 (31%) 0.276 (38%)

C 0.933 0.668 (28%) 0.595 (36%) 0.557 (40%)

All 0.611 0.445 (27%) 0.401 (34%) 0.396 (40%)

The closed-loop performance of the proposed
classification-aided controller is also affected by selec-
tion of the control gains. To select optimal gains, PSO
technique was employed in this paper as discussed in
Sect. 4.2. The percentage improvement in ride comfort
indicated by the decrease in sprung mass acceleration
when the controllers designed above were employed to
the three road levels is shown in Table 4. To compute
the percentage decrease in sprung mass acceleration,
the following expression was used:

%Decrease = 1−(RMS(ẍb)active)/((RMS(ẍb)passive)).

(43)

It can be seen fromTable 4 that in comparison with a
passive system, a backstepping-based controller based
on IHOSM [22] and an ANN-based controller [10], the
proposed RAISC design leads to better improvement in
ride comfort by the decrease in sprung mass accelera-
tion. It is of note that to ensure the optimal gains for
the controllers, PSOwas employed for all three designs,
i.e., I-HOSM,ANNcontroller and the proposedRAISC
design. The RAISC controller outperforms the other
controllers in each road level and also for the entire
testing sequence. For the suspension system, the fre-
quency domain ride performance is often evaluated by
the computing the PSD of the sprungmass acceleration
[4,33]. Accordingly, the performance of the proposed
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Fig. 10 PSD of sprung mass acceleration compared for a Level A, b Level B, c Level C roads

Table 5 RMS of sprung mass acceleration in the presence of noise and uncertainty using RAISC

Type Conditions % Decrease RMS ẍb

Parameter Uncertainty A B C

Uncertainty mb 5% 40.3 34.1 37.3

7.5% 38.1 31.9 35.5

ks 10% 38.9 37.1 35.8

20% 34.3 32.3 30.5

cp 10% 37.7 32.6 30.5

20% 32.2 27.7 25.8

βe,Ctp 5% 37.7 32.9 31.5

7.5% 34.7 29.9 28.2

Sensor noise xb − xw 25 × 10−4 39.1 33.1 35.1

5 × 10−3 38.2 32.2 30.7

in the range of 30–40%. Particularly, it can be seen that
even for a Class C road, with parametric uncertainty in
suspension damping up to 20%, the reduction in sprung
mass acceleration remains fairly good. Similar results
can be seen for various parametric uncertainties over
road levels A, B and C. Further, the results with the
presence of sensor noise in the suspension stroke, con-
sidered as measured output for the controller design
also exhibits good reduction in sprung mass accel-
eration. This implies that passenger comfort is duly
enhanced for the uncertain suspension system. Based
on the results shown in Table 5, the robust performance
of the proposed RAISC approach under uncertain para-
metric behavior and sensor noise can be established.

However, the approach is subject to some limita-
tions such as the selection of a reference tracking and
effect of varying control strategies. Thus,when the con-
trol strategy is changed, the whole procedure afore-
mentioned should be performed again to formulate a

RAISC design in compassion with the other controllers 
is shown in Fig. 10 for road levels A, B and C. It can 
be seen that for the considered frequency range, the 
proposed design has better performance than the other 
controllers.

The performance of RASIC in the presence of sensor 
noise and parametric uncertainties was also analyzed 
for robustness analysis. For the suspension system, var-
ious parameters such as spring stiffness, leakage coef-
ficient of actuator and bulk modulus of liquid used 
exhibit uncertain behavior [4,23] with temperature 
variations and component condition deterioration. The 
performance of RAISC in the presence of different lev-
els of uncertainties in the suspension, hydraulic actua-
tor parameters and sensor noise is shown in Table 5.

As  shown inTable 5, for different levels of parameter 
uncertainty in sprung mass, spring stiffness, damping, 
effective bulk modulus and piston leakage coefficient, 
the percentage reduction in sprung mass acceleration is
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new classifier. This is, however, a general limitation of
data-driven-based road classification methods with the
specific control objectives. During the course of per-
formance evaluations, it was considered that xd = 0
similar to the work in [4,8]. This is generally consid-
ered because the suspension stroke tracking is not gen-
erally quantified as a measure of the suspension per-
formance. Having said that in [23], a polynomial refer-
ence signal based on the time of convergence was pro-
posed. However, this approach was applied to track the
sprung mass displacement and has not been employed
for the suspension stroke signal. Based on above con-
clusions, we have considered zero reference even when
the road disturbance is random in nature and the per-
formance is shown. In future work, we would look to
develop/propose a reference signal based on perfor-
mance criteria suited for random roads similar to works
of [23,34].

6 Conclusion

In thiswork, an intelligent robust state feedback control
approach was proposed for the active control of a non-
linear suspension system equippedwith hydraulic actu-
ators and by varying road disturbance levels as per ISO
standards. Initially, the control was formulated using
the robust higher-order terminal slidingmode approach
and the control parameters for each road level were
optimized using PSO. Subsequently, a novel classifica-
tion approach which is invariant to the control param-
eter variations was proposed to identify the road levels
in real time. Integrating the information classified road
levels and the optimized control parameters, the nonlin-
ear control was implemented for a sequence of vary-
ing road levels. Simulation scenarios presented show
the efficiency of the proposed intelligent controller in
comparisonwith other control approaches for improve-
ment in the ride comfort. Extensive discussions were
provided detailing the influence of classification inter-
val and features selection to show the efficiency of the
proposed scheme.
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