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Abstract
Biomaterial science increasingly seeks more biomimetic scaffolds that functionally augment the native bone tissue. In this
paper, a new concept of a structural scaffold design is presented where the physiological multi-scale architecture is fully
incorporated in a single-scaffold solution. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) bioceramic scaffolds
with different bioinspired porosity, mimicking the spongy and cortical bone tissue, were studied. In vitro experiments,
looking at the mesenchymal stem cells behaviour, were conducted in a perfusion bioreactor that mimics the physiological
conditions in terms of interstitial fluid flow and associated induced shear stress. All the biomaterials enhanced cell adhesion
and cell viability. Cortical bone scaffolds, with an aligned architecture, induced an overexpression of several late stage genes
involved in the process of osteogenic differentiation compared to the spongy bone scaffolds. This study reveals the exciting
prospect of bioinspired porous designed ceramic scaffolds that combines both cortical and cancellous bone in a single
ceramic bone graft. It is prospected that dual core shell scaffold could significantly modulate osteogenic processes, once
implanted in patients, rapidly forming mature bone tissue at the tissue interface, followed by subsequent bone maturation in
the inner spongy structure.

Graphical Abstract

1 Introduction

Human bone includes a heterogeneous combination of
strong, stiff cortical bone with a functional, low modulus
cancellous core [1]. Although it has a certain capability for
regeneration and self-repair, large segmental bone defects
caused by trauma, cancer surgical removal, or congenital
disorders can only be repaired by bone grafting [2, 3]. In
bone scaffold design, several features are fundamental in
influencing the biological response and guide the tissue
regeneration: (i) implant raw material; (ii) surface chem-
istry; (iii) size, shape and porosity; (iv) biodegradability [4–
6]. The main goal is to mimic the extra cellular matrix

* Silvia Panseri
silvia.panseri@istec.cnr.it

1 Institute of Science and Technology for Ceramics, National
Research Council, Faenza, Italy

2 Belgian Ceramic Research Centre, Avenue Gouverneur Cornez 4,
B-7000 Mons, Belgium

3 Université Polytechnique Hauts-de-France, Laboratoire des
Matériaux Céramiques et Procédés Associés, 59313
Valenciennes, France

4 University of Limerick, Bernal Institute, Limerick V94 T9PX,
Ireland

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1007/s10856-020-06486-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10856-020-06486-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10856-020-06486-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10856-020-06486-3&domain=pdf
http://orcid.org/0000-0002-8099-7132
http://orcid.org/0000-0002-8099-7132
http://orcid.org/0000-0002-8099-7132
http://orcid.org/0000-0002-8099-7132
http://orcid.org/0000-0002-8099-7132
mailto:silvia.panseri@istec.cnr.it


microenvironment achieving the complex cell/material
interactions able to trigger and support the regeneration
process [7, 8]. Within the bone biomaterial world, bio-
ceramics play a pivotal role in tissue regeneration due to
their chemical mimesis of the inorganic component of bone
tissue. As the most representative bioactive ceramics, Ca–P
ceramics, including hydroxyapatite [HA, Ca10(PO4)6(OH)2]
and β-tricalcium phosphate [β-TCP, Ca3(PO4)2], have
compositions similar to the natural bone [9–11]. HA and
β-TCP are biocompatible and bioactive. Once implanted
in vivo, the multiple interactions between material and host
provide local adequate conditions for cell attachment, pro-
liferation and differentiation [10, 12–14].

Degradation products (i.e., released ions) can enter in cell
metabolism and create an alkaline and calcium rich milieu
to boost cell activity and make the tissue regeneration
process faster [3]. The major difference between HA and
β-TCP is related to the degradation rate in vivo. In fact
β-TCP is more degradable and becomes soluble more
rapidly; its degradation rate is 10–20 times higher than that
of HA [15]. Although enormous advancements have been
made in recent decades, large bone defect regeneration
remains a challenge in medicine [16, 17]. There are a
number of successful Ca-P ceramic scaffolds or fillers
already available on the market used in cancellous bone
replacement in non load-bearing indications (JectOS/ARE-
X®BONE, CustomBone®, CronOS®, Engipore®). Unfortu-
nately clinical solutions for cortical bone regeneration
remain extremely limited [9, 18–22].

Although many studies have focussed on developing
“the perfect biomaterial” with a combination of suitable
physico-chemical, mechanical and biological properties,
the complete regeneration of critical bone defects remains
a great challenge in medicine. Natural bone, in fact, shows
a multi-scale structure that confers unique features on the
type and location of the tissue. Broadly, bone can be
divided into two types: cancellous, distributed inside the
bone, and cortical bone located at the surface on the bone.
Several techniques have been employed in bone scaffold
design in order to reach the closest biomimesis of this
hard tissue. Unfortunately so far there are no commer-
cially available bone grafts that recapitulate both struc-
tures [23–25] in a single construct. In addition, to be
successful, a bone regeneration strategy must consider the
bioactivity of the bone graft itself as well as its topo-
graphy and macrostructure, as the chemistry plays a fun-
damental role in modulating cell behaviour and
orchestrating the complex regenerative process [26–28].
Of all the biomaterials, CaP based bioceramics still
represent the best biomimetic materials reproducing the
chemistry of the organic bone phase and able to com-
municate to the cells accurate signals promoting bone
regeneration [29–31].

The present work can be characterised as a new concept
design where the physiological multi-scale structure is fully
included in one-scaffold solution, opening new horizons in
complex architecture bone scaffold materials. Cortical bone
plays a fundamental role in bone biomechanics, so its
morphological features can usefully be considered and
inform the strategy for regeneration of critical bone defects
[1, 32]. In this study, we analysed the stem cell behaviour in
response to different porosity morphologies and distribu-
tions in both HA and β-TCP ceramic bone scaffolds that
mimic in detail both the spongy and cortical bone tissue
architecture. The spongy-like scaffold was prepared by
replica technique from polymer beads, and the cortical-like
scaffold via freeze casting [33]. A perfusion bioreactor was
used as predictive tool to better replicate the physiological
human body process and it allows long term cell culture
in vitro. Moreover, a preliminary biological evaluation was
performed on a dual structure scaffold that recapitulates for
the first time both cortical and cancellous bone in a single
ceramic bone graft.

2 Materials and methods

2.1 Hydroxyapatite and β-TCP powder
manufacturing

HA and β-TCP powders were synthesized through aqueous
precipitation [34, 35]. A di-ammonium phosphate solution
(NH4)2HPO4 (Carlo Erba, France) is added in a controlled
manner to a calcium nitrate solution Ca(NO3)2 (Brenntag,
France), in a jacket reactor, under mechanical stirring.
Synthesis conditions such as precursors concentrations [36],
pH, temperature and maturing time varied as necessary to
yield the desired final product.

2.2 Spongy scaffold (SS) manufacturing

The polymeric scaffolds were made out of partially fused
polymethylmetacrylate beads (PMMA, Diakon TM Ineos
Acrylics, Holland) that acted as the sacrificial phase. After
being firmly packed in a mould, a solvent (acetone) was
added, triggering the slow surface dissolution of the poly-
mer, which induced fused interconnection between the
individual spherical bodies. This leads to the formation of
bridges between PMMA beads and a significant shrinkage
of the bead pile. For a given size range of beads, inter-
connection/bridge diameter can be related to this displace-
ment via a series of empirical equations and/or a
geometrical model based on the theoretical arrangement of
spheres [34]. In our case the size range chosen was between
500 and 600 µm with interconnections size of 150 µm. The
shrinkage value was obtained by averaging results from
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both models. Interconnection diameter was verified through
SEM imaging.

HA or β-TCP slurry was prepared with 65 wt % of
powder in distilled water. Deflocculating was achieved via a
commercial organic agent, Darvan C (1.5 wt. % dry matter
content, R.T Vanderbilt Co., USA). Mixing took place in a
milling jar for 1 h. Slurry was then transferred to a beaker
under magnetic stirring for the addition of adjuvants [33].
The slurry was poured over the scaffold until its complete
immersion in a plaster mould. Once dried, the scaffold was
removed from the mould and the excess of material was
manually removed. Before sintering, the porogens were
cleanly eliminated via a slow thermal treatment: 220 °C for
20 h, followed by 250 °C for 4 h. The scaffold was densified
at 1250 °C for 3 h in the case of HA SS and at 1100 °C for
3 h in the case of β-TCP SS.

2.3 Cortical scaffold (CS) manufacturing

For the freeze casting material, slurries were prepared by
mixing distilled water and HA or β-TCP powder with a
small quantity (1.5 wt. % dry matter content) of ammonium
polymethacrylate (Dolapix CE64, Zschimmer & Schwarz,
Germany). Powder content was 68 wt. %. A small amount
of binding agent, 3 wt. %, of polyethylene glycol (Mw=
1000 mol.g−1, Merck, Germany) was added in the suspen-
sion [37]. The slurry was poured in Teflon® mould at −20°.
The freezing rate was regulated at 1 °C/min until −40 °C
was reached. The temperature was maintained until com-
plete solidification. The sample was then freeze-dried for
24 h (HETO CD8, Thermo Fisher Scientific, USA). The
green sample was sintered at 1250 °C for 3 h in the case of
HA CS and 1100 °C for 3 h in the case of β-TCP CS. Discs,
of the correct size, are then cut off from the sintered
samples.

2.4 Dual core (DC) shell structure manufacturing

The spongy core structure was firstly prepared by the
replica technique from PMMA bead scaffold impregnated
with calcium phosphate slurry. The as-prepared scaffold
was partially densified in order to reach its final post-
sintering size after the post-sintering step. Before placing it
at the centre of the freeze casting mould, a small volume of
suspension was poured at −20 °C. After, more suspension
was added until the complete submersion of the scaffold
[33]. The same freezing procedure was followed as pre-
viously described. The association of these 2 shaping
techniques, impregnation of a polymeric scaffold and freeze
casting, has yielded a dual porous architecture sample pre-
senting 2 distinct zones. The centre presents a network of
spherical interconnected pores, which is the negative of the
sacrificial PMMA scaffold. The outer structure exhibits the

classical lamellar morphology obtained by ice templating
[37]. Core and shell fractions were chosen so that each of
them represented ~50% of the final volume.

2.5 Ceramic scaffold characterization

The apparent density and porosity of the samples were
determined by measuring sample mass under different
conditions (dry, humid and under water) based on Archi-
medes’ principle using deionized water as the liquid med-
ium. The pore size was measured by image analysis of the
Scanning Electron Microscopy (SEM) micrographs (JEOL
JSM 5900 LV, Japan), the average values was determined
using 5 micrographs and more than 50 pores in total were
investigated for each structure specimen condition using
MESURIM software (ACCES, France). Three types of HA
ceramic scaffolds have been tested under compression to
determine the ultimate compressive strength as a function of
the macrostructure. The specimens were surface grinded in
order to obtain a cylinder with consistent and even surfaces
for testing. Compression tests were carried out on the
cylindrical samples specimens (height of 19 mm and dia-
meter of 11 mm for SS and CS or 16 mm for DC) parallel to
the freezing direction of the specimen, for cortical scaffolds
and dual core shell structure, using the Instron test machine
1114 (Instron, USA) at a crosshead speed of 0.5 mm/min−1.

2.6 In vitro stem cell culture

Human adipose tissue-derived stem cells (hADSCs,
ATCC) were used for the biological study. In detail
hADSCs were cultured in αMEM Glutamax (Gibco),
containing 15% Fetal Bovine Serum (FBS, Gibco) and 1%
penicillin-streptomycin (100 U/ml-100 µg/mL, Gibco),
10 ng/mL FGF. The cell culture was kept at 37 °C in an
atmosphere of 5% CO2. Cells were detached from culture
flasks by trypsinization, centrifuged and re-suspended. Cell
number and viability were assessed with the trypan-blue
dye exclusion test.

Each sample (diameter 8 mm, height 4 mm), sterilized by
autoclave prior to use, were pre-soaked in culture medium
for 72 h at 37 °C.

The samples, used for cell viability and cell morphology
at day 7, were seeded by carefully dropping 30 µl of cell
suspension (5.0 × 104 cells) onto the scaffold upper surface,
and allowing cell attachment for 20 min in the incubator,
before the addition of 1 ml of osteogenic culture medium
(αMEM Glutamax, 10% FBS, 1% penicillin-streptomycin
100 U/ml-100 µg/mL, 10 mM β-glycerophosphate, 50 µg/
mL ascorbic acid, 100 nM dexamethasone).

The U-CUP perfusion bioreactor system (Cellec Biotek
AG) was used for the osteogenic gene expression profiling
and for cell morphology at day 28. Briefly hADSCs were

Journal of Materials Science: Materials in Medicine (2021) 32:3 Page 3 of 12 3



seeded at 2.0 × 106 cells/scaffold with a bidirectional flow
rate of 3 ml/min for 18 h, then all the media were collected
and the seeding efficiency was evaluated by counting the
cells number left in the culture media after trypan-blue
staining.

The cell-seeded constructs were then cultured with a
bidirectional perfusion flow rate of 0.3 ml/min for additional
28 days [38]. The osteogenic medium was changed twice a
week. All the cell-handling procedures were performed in a
sterile laminar flow hood. All cell-culture incubation steps
were performed at 37 °C with 5% CO2.

2.7 Cell viability assay

Live/Dead assay kit (Invitrogen) was performed according
to manufacturer’s instructions. Briefly, the samples were
washed with PBS 1x for 5 min and incubated with Calcei-
nacetoxymethyl (Calcein AM) 2 µM plus Ethidium
homodimer-1 (EthD-1) 4 µM for 15 min at 37 °C in the
dark, the samples were rinsed in PBS 1x [39]. Images were
acquired by an inverted Nikon Ti-E fluorescence micro-
scope (Nikon). One sample per group was analysed
at day 7.

2.8 Cell morphology evaluation

One sample per group was used for fluorescence (day 7 and
28) and for SEM analysis (day 7 of cell culture). In order to
visualize actin filaments, samples were washed with PBS 1x
for 5 min, fixed with 4% (w/v) paraformaldehyde for 15 min
and washed with PBS 1x for 5 min. Permeabilization was
performed with PBS 1x with 0.1% (v/v) Triton X-100 for
5 min. FITC-conjugated Phalloidin (Invitrogen) 38 nM in
PBS 1x was added for 20 min at room temperature in the
dark [40]. Cells were washed with PBS 1x for 5 min and
incubated with nuclear stain DAPI (Invitrogen) 300 nM in
PBS 1x for 5 min. The nuclear morphological changes were
also evaluated. Images were acquired by an Inverted Ti-E
fluorescence microscope (Nikon).

For SEM analysis, after 7 day one sample per group was
washed with 0.1 M sodium cacodylate buffer pH 7.4 and
fixed in 2.5% glutaraldehyde in 0.1M sodium cacodylate
buffer pH 7.4 for 2 h at 4 °C, washed in 0.1 M sodium
cacodylate buffer pH 7.4 and dehydrated in a graded series
of ethanol for 10 min each. Dehydrated samples were
sputter-coated with gold and observed using Quanta Scan-
ning Electron Microscope (ESEM Quanta 200, FEI).

2.9 Quantitative real-time polymerase chain
reaction (q-PCR)

At day 28, cells grown on the β-TCP and HA samples, used
as calibrator, were homogenized and total RNA extraction

was performed by use of the Tri Reagent, followed by the
Direct-zol™ RNA MiniPrep kit (Euroclone) kit according
to manufacturer’s instructions. RNA integrity was analysed
by native agarose gel electrophoresis and quantification
performed by the Qubit® 2.0 Fluorometer together with the
Qubit® RNA BR assay kit, following manufacturer’s
instructions. Total RNA (500 ng) was reverse transcribed to
cDNA using the High-Capacity cDNA Reverse Transcrip-
tion Kit, according to manufacturer’s instructions. Quanti-
fication of gene expression, using Taqman assays (Applied
Biosystems), for Alkaline phosphatase (ALP,
HS01029144_m1), Osteonectin (SPARC, HS00234160_m1),
Osteocalcin (BGLAP, HS01587814_g1), Osteopontin (SPP1,
HS00959010_m1), Collagen 15 (COL15A1, HS00266332
m1) and glyceraldehyde 3-phosphate dehydrogenase, used as
housekeeping gene, (GAPDH, Hs99999905_m1) was per-
formed by use of the StepOne™ Real-Time PCR System
(Applied Biosystems). N. 2 scaffolds for each sample were
analysed, using three technical replicates for each experiment.
Data were collected using the OneStep Software (v.2.2.2) and
relative quantification was performed using the comparative
threshold (Ct) method (ΔΔCt), where relative gene expression
level equals 2−ΔΔCt [41]. Two scaffolds per group were
analyzed in three technical replicates; error bars reflect one
standard error of the mean of 3 technical replicates as
described elsewhere [42, 43].

2.10 Statistical analysis

Results were expressed as Mean ± SEM plotted on graph.
Statistical analysis was made by two-way ANOVA analysis
of variance by the GraphPad Prism software (version 6.0),
with statistical significance set at p ≤ 0.05.

3 Results

3.1 Bioceramic scaffolds structure and
characteristics

In this study, three types of scaffold structure have been
developed from two materials (HA and β-TCP) as shown in
Fig. 1. Specimens processed as SS present spherical pore
morphology with an interconnection between the pores as
observed in Fig. 1A. The pore size of SS has been evaluated
by SEM micrograph analysis at a value of about 350 ±
50 µm with an interconnection of 105 ± 15 µm, for both HA
and β-TCP. The pore and interconnection size measurement
procedure is illustrated in Fig. 2.

The freeze casting technique was used for processing the
second type of scaffold (CS). This technique yields an
anisotropic and elongated pore structure parallel to the
freezing direction (lamellar structure) and elliptically
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shaped pores perpendicularly to the freezing direction, as
shown Fig. 1B. The pore size of CS has been evaluated of
~300 ± 150 µm and 45 ± 10 µm for the long and short axis
of the elliptical pore respectively. The pore size measure-
ment procedure is illustrated in Fig. 3.

The third type of scaffold is a hybrid of both previous
scaffold types resulting in the dual core shell structure (DC).
The macrostructure is characterised by a spherical pore
structure surrounded by the anisotropic lamellar structure.
The pore sizes are also of the same order as those of the
previous (SS and CS) scaffolds. As can be seen in Fig. 1C-
D, the lamellar structure from freeze casting is retained

without being disturbed by the presence of the pre-sintered
CS. However, at the boundary between the SS and CS
region, the CS structure is observed inside the SS part (Fig.
4). This phenomenon could be explained by slurry intrusion
during the freeze casting process.

Table 1 summarizes the results obtained for the porosity
measurements of all HA and β-TCP specimens. As pre-
viously highlighted, the ratio of SS and CS for processing
DC specimens has been selected at 1:1 in order to have the
same volume of each structure. However, as a significant
amount of slurry flows inside the SS structure during freeze
casting, the ratio change as it can be observed with the
porosity level values of DC specimen. Indeed, the porosity
level of DC should be around 50%, considering the 1:1

Fig. 2 Illustration of the pore and interconnection size measurement
procedure for SS samples. Black arrows correspond to pore diameter
and red ones to interconnection size

Fig. 3 Illustration of the pore size measurement procedure for CS
samples. Black and red arrows correspond to long and short axis of the
elliptical pore respectively

Fig. 1 SEM micrographs of
ceramic scaffolds: (A) HA SS,
(B) β-TCP CS, (C) HA DC shell
scaffold in the transversal
section and (D) cross section of
β-TCP DC shell scaffold
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ratio, however the value is lower of about 42%. By
assuming a similar shrinkage for both structures, volume of
CS is thus larger than SS volume. This phenomenon (slurry
inside spherical pores) was not observed in a previous study
[33], as only the boundary was slightly penetrated by the
slurry. This could be as a result of the reduction of the
sample size in the present work, the samples being smaller
in order to be suitable for the in vitro biological tests.
Indeed, if the ratio between SS and CS is kept constant and
with the decrease of size, the penetration is almost similar in
term of depth of penetration but not in respect to the overall
volume, a size is reduced.

In addition to the morphological characterisation, com-
pressive strength of the HA scaffolds was determined as a
function of structure. Mechanical results have been plotted
in Fig. 5. No preferential rupture mode was observed
whatever the structure with all samples exhibiting classical
brittle failure.

3.2 3D Stem cell culture viability

For the in vitro assessment, human adipose tissue-derived
stem cells (hADSCs) were used. First, the hADSCs were
cultured directly in contact with the HA and β-TCP with
both macrostructural porosity types CS and SS. After 7 days
of culture, the qualitative Live/Dead assay showed a very
high ratio of viable cells without any differences among the
groups (Fig. 6). These data confirmed that bioceramics
represent a very biocompatible material [44, 45]. Even if the
samples have different porosities, hADSCs were able to

colonize the inner part of the scaffolds showing a very good
viability (Fig. 6B, F, D, H).

3.3 Stem cells morphology and scaffolds
colonization

The ability of cells to adhere to a biomaterial surface is an
early effect of the regeneration process [46, 47]. Cell sur-
face interaction and cell adhesion are complex processes
involving the reorganization of cytoskeleton proteins like
actin [48]. Phalloidin stains actin filaments and the image
Fig. 7 show attached cells exhibiting their characteristic
spindle shape, confirmed also by scanning electron micro-
scopy (Fig. 8).

In both HA SS and β-TCP SS samples, the random and
highly interconnected porosity obtained by the replica
technique, is suitable for a rapid cell migration inside the
scaffold (Figs. 7 and 8). hADSCs can easily bridge the
pores and have established steady cell-cell and cell-material
interactions. After 28 days of culture in bioreactor, the inner
part of random pore scaffolds (HA SS, β-TCP SS) is fully
covered by intricated cell-cell connections (Fig. 7E, F). In
the aligned porosity samples, obtained by freeze casting
technique (HA CS, β-TCP CS), cells were seen to adhere
preferably following the aligned structured. However, after
7 days the upper surface is completely covered by a cell
layer, and some cellular extensions stretched towards the
inner scaffold surface are visible (Fig. 8C, F).

3.4 Osteogenic response in long-term bioreactor
test

The U-Cup perfusion bioreactor was used to better con-
duct a 4-week experiment to investigate in vitro cell-
scaffold interactions in term of gene expression profiling.
In this study, two different data analysis have been per-
formed in order to demonstrate the specific effect of
chemical and morphological features of ceramic scaffolds,

Fig. 5 Compressive strength of ceramic scaffolds as a function of the
macrostructure (Tag values are the porosity level)

Fig. 4 Focus on the interface between the two structures showing the
slurry intrusion into SS scaffold during the freeze casting process

Table 1 Porosity level of HA and β-TCP scaffolds

Porosity (%)

Spongy scaffold Cortical scaffold Dual core shell

HA 63.1 ± 1.3 37.9 ± 2.1 41.7 ± 3.6

TCP 63.7 ± 1.0 37.4 ± 1.1 41.6 ± 1.8
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Fig. 6 Cell viability analysed by the Live/Dead assay at day 7. Calcein
stains live cells in green, Ethidium homodimer-1 stains dead cells in
red. A–D HA samples and (E–H) β-TCP samples. In detail: (A) HA
SS upper surface; (B) HA SS inner surface. C HA CS upper surface;

(D) HA CS inner surface. E β-TCP SS upper surface; (F) β-TCP SS
inner surface. G β-TCP CS upper surface; (H) β-TCP CS inner surface.
Scale bars 200 µm

Fig. 7 Analysis of cell
morphology and scaffold
colonization by phalloidin
staining at day 7 (A–D) and at
day 28 in bioreactor (E, F).
Phalloidin in green stains for
actin filaments and DAPI in blue
stains for cell nuclei. A HA SS;
(B) HA CS. C β-TCP SS; (D)
β-TCP CS. E, F β-TCP SS.
Scale bars 200 μm
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designed for bone regeneration, on cell behaviour. The
results showed that the CS porosity is extremely inductive
of the expression on the late stage genes involved in the
machinery of osteogenic differentiation (Fig. 9). Parti-
cular relevance assumes the gene expression profile
observed in HA CS compared to HA SS, used in this
analysis as control (Fig. 9A). The significant over-
expression of BGLAP, SPP1, COL-15 (p value ≤0.0001)
and SPARC (p value ≤0.05), indicated the not only the
AdMSCs have started the ostegenic differentiation

process, but also, after 28 days of dynamic culture, these
cells upregulated the genes typically expressed in the
active mature osteoblasts [49–52].

Although less marked, the same trend has been showed
in the cells cultured on β-TCP CS when compared to the
biological effect of β-TCP SS (Fig. 9B). β-TCP CS sig-
nificantly upregulated the expression of SPP1 (p value
≤0.001), encoding osteopontin, a fundamental protein
involved in the cell interaction and in the anchoring to the
extracellular matrix [53].

Fig. 9 Relative quantification (2-ΔΔCt) of ALP, SPARC, BGLAP,
SPP1 and COL15A1 expression as markers of osteogenesis differ-
entiation for hADSCs, after 28 days of culture in bioreactor. The

graphs report the mean and standard error of the samples with respect
to the expression of control (A, HA SS; B β-TCP SS) (*p ≤ 0.05;
***p ≤ 0.001; ****p ≤ 0.0001)

Fig. 8 SEM analysis of cells grown on ceramic scaffolds after 7 days. Yellow asterisks indicate some cells. A, B HA SS; (C) HA CS; (D, E) β-TCP
SS; (F) β-TCP CS. Scale bars: (A, D) 100 µm; (B, C, E, F) 50 µm
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Moreover, in order to assess the biological effect of the
chemical composition, a comparison between the two different
materials with the same porosity has been performed (Fig. 10).
The results showed a significant upregulation of the osteogenic
related genes (SPARC, BGLAP, SPP1 and COL-15 p value ≤
0.0001) exerted by HA CS compared to β-TCP CS (Fig. 10A).
On the contrary HA SS did not induce any kind of bioactivity
on hADMSCs if compared with β-TCP SS (Fig. 10B).

3.5 Dual core shell structure ceramic scaffolds:
preliminary data

The dual core shell scaffolds include in one-bone scaffold
solution the different porosity of the cortical and cancellous
bone. After the deep analysis performed in static and
dynamic condition in bioreactors up to 28 days, a preliminary
study was performed on the dual core shell structure scaf-
folds. hADSCs were cultured directly in contact with the
samples and we analysed the cell morphology and distribu-
tion after 7 days. The results showed a uniform distribution
of the cells, without any differences among the groups, that
follow the behaviour already seen in the previous analysis
where the HA and β-TCP scaffold structured were analysed
separately (Fig. 11). The dual core shell scaffolds represent a

very promising design for bone regeneration resembling the
two different bone architectures.

4 Discussion

Biomaterial science increasingly seeks biomimetic scaffolds
that truly reproduce multiple structural characteristics of bone
tissue with the final aim to regenerate critical bone defects. Of
all the biomaterials, bioceramics still represent the best biomi-
metic materials reproducing the chemistry of the organic bone
phase and able to communicate to the cells accurate signals
promoting bone regeneration [41–43]. Moreover a highly
interconnected porous structure (typically a pore content above
50 vol.%) is essential to enable full integration of the scaffold
once it is implanted. In this study HA and β-TCP bioceramic
scaffolds with different bioinspired porosity, mimicking the
spongy and cortical bone tissue, were studied. The scaffold
macroscopic organisation has previously been shown to have
an important impact on cell proliferation [54]. The scaffold
porosity analysis showed that powder characteristics have a
slight impact on the porosity of the sintered structures, and for
both processing routes, the overall porosity is controlled by the
PMMA bead structure and the water content, for SS and CS

Fig. 10 Relative quantification (2-ΔΔCt) of ALP, SPARC, BGLAP,
SPP1 and COL15A1 expression as markers of osteogenesis differ-
entiation for hADSCs, after 28 days of culture in bioreactor. The

graphs report the mean and standard error of the samples with respect
to the expression of control (A, β-TCP CS; B, β-TCP SS) (****p ≤
0.0001)

Fig. 11 Cell distribution analysis
performed by Actin staining
(phalloidin in green stains for
actin filaments and DAPI in blue
stains for cell nuclei), (A) and
SEM analysis, (B) on β-TCP
dual core shell structure scaffold
at day 7. Dashed lines show
pores of the internal part of the
dual scaffold. Scale bars: (A)
200 µm; (B) 500 µm
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respectively. As it could be expected, the impact of porosity
level is important in mechanical performance: the higher the
porosity is, the lower the compressive strength will be. How-
ever, the macrostructure should be taken into account because
the anisotropic part of DC is oriented thus improving the
compressive strength along this direction [55]. The chemical
composition almost identical to that of the mineral phase of
bone and the bioinspired porosity confer to these scaffolds an
excellent biomimetic property that was analysed in vitro look-
ing at hADSCs behaviour once seeded in direct contact with the
specimens. hADSCs were used since they are a very promising
source of autologous stem cells that could certainly be
employed in tissue engineering to boost the bone regeneration
[56]. Moreover hADSCs could be easily obtained and expan-
ded in vitro from adipose tissue by minimal invasive surgery
(i.e., liposuction) [57]. The excellent cells viability and cell
adhesion to the biomaterials highlighted the biomimicry of the
scaffolds. In fact the attachment phase of cell adhesion occurs
rapidly and involves physicochemical linkages between cells
and material. Cell spreading is an essential function of a cell,
which has adhered to a surface and precedes the function of cell
proliferation, to provide a cell-covered surface, and cell differ-
entiation [46, 47]. In addition the interconnected pore network
is essential to obtain an homogenous scaffold cell colonization
and enhance the tissue regeneration process [58]. To deeply
investigate the bioactivity of the proposed scaffolds, an addi-
tional long term in vitro study was carried out in bioreactor in
presence of hADSCs. The direct perfusion permits a uniform
hADSCs seeding, and mimics the physiological conditions in
term of interstitial fluid flow and associated induced shears [59–
62]. The osteogenic response was analysed in order to evaluate
specific effect of both chemical and morphological features of
ceramic scaffolds. The results support the evidence that bio-
material chemistry and architecture deeply influences the cell
fate especially at prolonged time culture. It is possible to assert
that the HA composition and the presence of organized and
hierarchical architecture of the CS scaffold acts in synergy as a
potent activator of the molecular pathway involved in the
osteogenic differentiation. A preliminary test was done on dual
core shell ceramic scaffolds that summarized in one-bone
scaffold solution the diverse porosities, and the results con-
firmed the data obtained on the single scaffold structure. The
multi-scale structure of these DS scaffolds confers unique fea-
tures fundamental for long bone tissue regeneration.

5 Conclusion

The specific chemical-physical features of these multi mor-
phology scaffolds may guide cellular behaviour, with specific
effect on the expression on late stage osteogenic genes. The
similarity of the HA and β-TCP, in term of chemical

composition, to the native bone has been confirmed as a key
factor in biomaterials for bone tissue regeneration. Moreover,
the cortical bone bioinspired porosity strongly enhanced
osteogenic differentiation of mesenchymal stem cells compared
to the spongy bone porosity. Considering the results, the dual
core shell design of bioceramic materials represent a promising
one-scaffold solution for critical bone defect where physiolo-
gical multi-scale structures are required. The cortical structure
boosting the osteogenic process could give, upon implantation,
an initial functional biomechanical support in a quite short time
due to a rapid new bone regeneration, that will be followed by
subsequent bone maturation in the inner spongy structure.
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