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Abstract: In this work, the problem of reduction of energy consumption based on calculated
speed, called eco-driving trajectory for tramway system is investigated, where some constraints
on the states, control input and travel time are considered. Thanks to the operating speed
range of the tramway, the non-linear model of the system can be approximated by linear one
and is given in a state space distance based formulation. The problem studied in this work is to
determine the speed profile that minimizes the cost function defined as the energy consumption.
Firstly, the constrained optimization problem is formulated as Kuhn-Tucker conditions, which is
the general form of the Pontryagin maximum principle, that yield to a local minimum. Then, the
control strategy that ensure the efficient consumption for the tramway system is deduced based
on the optimal control approach. This leads to the well known driving trajectory for the railway
system, which is divided into four phases: acceleration, speed holding, coasting, and braking.
On the other hand, the energy consumption analysis allows us to write the cost function as a
sum of the kinetic energy to move the train and the resistance forces, by taking into account
the gradient and limitations. Based on this analysis,the necessary condition for a is obtained.
That ensure method is used to find energy-efficient driving trains. In this paper, we show how to
calculate the critical switching points for an optimal strategy non-linear programming algorithm
is used to solve the optimal control problem.

Keywords: Optimal control problem, Minimization of energy consumption, Non-linear
algorithm, Tramway system, Human Machine Systems.

1. INTRODUCTION

In the last years, the attention of many researchers has
been attracted by the significant increase of railway traffic
volumes and their emissions of the pollutant particles.
This is one of the reasons for what the issue of speed
profiling becomes a new problem with specific characte-
ristics, which must be resolved. Generally, the goal is to
optimize the energy consumption or/and running times
by involving one or several objectives. For this reason,
the question of speed profiling becomes a specific issue,
which must be handled in the development phase of eco-
aware transportation systems (see Howlett et al. (1993);
Coleman et al. (2009); Albrecht et al. (2011); Feng (2011);
Gupta et al. (2016) and the references therein). This paper
focuses on the continuity of study initiated by Cacciabue
et al. (2013); Enjalbert et al. (2013); La Delfa et al. (2016)
on the Eco-driving command for tram-driver system where
the authors objective was to define a trajectory profile to
reduce energy consumption and its impact on the driver
vigilance with compliance to the network procedures. This
work has led to patent driving assistance device for a
railway vehicle by Miglianico et al. (2017). Then it has
been complemented to avoid the impact of the driver bad
maneuver or behavior in following the tramway system
eco-driving reference which affect the system dynamic by

? This work has been funded by the Project: ELSAT 2020 by CISIT
/ GS2RI: Greener & Safer Rail Road Interaction.

Boukal and Enjalbert (2019). In this work, authors will
define switching points between the four driving phases:
acceleration, speed holding, coasting, and braking. A stra-
tegy based on a non-linear programming algorithm is used
to solve the optimal control problem. The obtained eco-
driving trajectory could be implemented in future human-
machine interfaces in tramway cabins.

2. MATHEMATICAL MODEL

a0, b0, c0 : coefficients of the mass, mechanical,
: air resistances

a1, b1 : linearised coefficients of the mass,
: mechanical & air resistances

m : train mass (Kg)
β : slope angle (◦)
rc : curvature radius (m)
g : gravitational constant (9.81m.s−2)

The dynamic of the tramway is modelled to control the
tramway position and velocity at any time during the
defined path between two stations. This modelling requires
the knowledge of some basic parameters like the traction
and brake intensities, adhesion coefficient, track profile, in
addition to the weather conditions such as wind speed if
available. Usually, the brake and traction curves are given
by the constructor. By applying the fundamental Newton’s
law on the tramway, we obtain its dynamic equation states



the relation between the exerted forces on the system, its
mass m and the acceleration v̇ = p̈

mv̇ = FT (v)− FR(v) (1)

where FT (v) is the traction effort that the tramway pro-
duces in the running phase, and FR(v) represents the
resistance which is the sum of the line FRl(v) , curve
FRc(v) and vehicle FRm(v) resistances. These later are
given as

FRl = mg sin(β) (2a)

FRc = mg
ke
rc

(2b)

FRm(v) = a0 + b0v + c0v
2 (2c)

FRm(v) = a1 + b1v (2d)

From the equations (2), we can see that the line resistance
FRl(v) depends on the train mass and the slope angle
β, and the gravity constant g. Furthermore, the curve
resistance FRc(v) concerns the passage of a tram in some
inclined portions of path, and depends on the track gauge
coefficient ke and the curvature radius rc. In addition, due
to the low value of c0 and the velocity range [vmin; vmax]
relatively low also, the vehicle resistance FRm(v) against
tram move can be approximated in the following by a1 +
b1v by using the least squares method.

2.1 Time domain

The equations of motion for a point mass train are
dx

dt
= v(t) (3a)

dv

dt
=

1

m
u(t)− b1

m
v(t)−

(
a1

m
+ g sin(β) + g

ke
rc

)
(3b)

Now, the tramway dynamics can be represented in a state
space model as

ẋr(t) = Axr(t) +Buur(t) + dr (4a)

yr(t) = Cyxr(t) (4b)

where

xr(t) =

[
p(t)
v(t)

]
, A =

[
0 1
0 − b1

m

]
, Bu =

[
0
1
m

]
Cy = [1 0] , dr =

[
0

−
(

a1

m + g sin(β) + g ke

rc

)]

2.2 Space domain

From the fact that the track gradient, speed limitations
depends on position, it is often convenient to rewrite the
equations of motion in the form

dt

dx
=

1

v(t)
(5a)

v(t)
dv

dx
=

1

m
u(t)− b1

m
v(t)−

(
a1

m
+ g sin(β) + g

ke
rc

)
(5b)

where the equations (5) are formulated with x as the
independent variable. The elapsed time t = t(x) ∈ [0, T ] is
the new state space model variable, where T is the total
time allowed to travel between two stations. Now the state
space variables, which are the speed time t and the speed
v, are derived with respect to x.

3. PROBLEM FORMULATION

The power generated by the train is obtained by multi-
plying the tramway speed by the force delivered by its
electric motor. Then, the consumed energy is deduced by
integrating the obtained power. We assume, in the energy
balance of the tramway, that the energy consumed is equal
to the energy delivered by the engine, i.e. the tramway does
not recover energy during the braking phase. Based on the
energy conservation law, the cost function is deduced from
the computation of the total energy consumption, i.e. the
energy consumption is considered as the objective function
of the considered non-linear programming problem. It will
be convenient to cast our optimization problem into the
following particular form. This is no a restriction since
any optimization problem can be cast into this form

minimize
u∈U

∫ T

0

(uv) dt (6a)

subject to v̇ =
1

m
u− 1

m
(a1 + b1v + g

ke
rc

+ g sin(β(x)))

(6b)

x(0) = 0 (6c)

x(T ) = L (6d)

v(0) = 0 (6e)

v(T ) = 0 (6f)

The control input u(t) is composed of two forces and is
given as

u(t) = uff(v)− ubb(v) (7)

where

� uf is the relative traction force, where uf ∈ [0, 1];
� f(v) is the specific maximum traction force;
� ub is the relative braking force, where ub ∈ [0, 1];
� b(v) is the specific maximum braking force.

Now, by applying the Pontryagin maximum principle to
solve the problem as specified in (6) with its constraints.
This leads to find an optimal strategy for optimal control
problem. Since the associated Hamiltonian to the problem
defined as in (6) is given by

H(x, v, λ1, λ2, u) = uv + λ1v + λ2[
1

m
u(t)− b1

m
v(t)

− (
a1

m
+ g sin(β) + g

ke
rc

)] (8)

the adjoin equations are defined as

dλ1

dt
= −∂H

∂x
= −λ2g

d sin(β)

dx
(9a)

dλ2

dt
= −∂H

∂v
= −u− λ1 − λ2

(
−b1
m

)
(9b)

Furthermore, we know that the Hamiltonian is constant
along the trajectory produced by the optimal control.
Despite the fact that the controller of the speed holding
is a singular one, it is still the key to the optimal control
strategy. From the Hamiltonian (8), it is easy to see that

∂H

∂u
= v + λ2

1

m
(10)



In fact, the optimal control strategy of the problem (6)
have one of the following five possible optimal driving
modes (Liu and Golovitcher (2003))

• Full power (FP). uf = 1, ub = 0, exists when
λ2 > mv.
• Partial power (PP). uf may vary, ub = 0, exists when
λ2 = mv > 0.
• Inertia motion or coasting (C). uf = 0, ub = 0, exists

when 0 < λ2 < mv.
• Partial braking (PB). uf = 0, ub may vary, exists

when λ2 = 0.
• Full braking (FB). uf = 0, ub = 1 , exists when
λ2 < 0.

Remark 1. The PB driving mode is used by the driver in
case of unpredictable noise models an unusual situation.
This case is not discussed in this work.

According to the obtained solution of the optimization pro-
blem, the driving strategy is energy-efficient if it respects
the five possible optimal driving modes given previously.
Instead of solving the optimization problem given below
to ensure the minimal energy consumption, the problem
can be reformulated as find the switching points that
guarantee the same result, i.e. to be energy-efficient. In
this new formulation, the objective function is evaluated
and minimized with respect to the new decision variables
and constraints, where the considered decision variables
are the switching speeds and the duration of each phase.
In fact, solving the the optimization problem given as
a non-linear programming model leads to obtaining a
speed trajectory with less energy consumption. Due to
a small number of decision variables in comparison with
other approaches, this new formulation of the optimization
problem is easy to solve. As a result, the speed reference
trajectory is obtained from the decision variables, within
a few seconds, making the method fairly suitable for real-
time implementation, as detailed in what follows.

Assumption 1. We assume that the mass m is constant
during the trip between two stations.

4. MAIN RESULTS

The main idea is to develop and solve an optimal cont-
rol strategy to minimize the energy consumption of the
tramway by focusing on the optimization of profile of the
tramway speed referred as “Eco-Driving”, where the diffe-
rent road conditions, including the effects of road gradients
and their variations, is also taken into consideration in the
optimization problem.

4.1 One phase optimal control model

The proposed optimal problem is obtained by considering
the tramway kinetic energy on different speed profile
section, i.e. the work needed to accelerate the tramway
from rest to its stated velocity, and to maintain certain
desired speeds.

Now, we consider the possible driving modes from the
optimal speed trajectory in figure 1 where each point Pi is
characterized by a spatial localization xi, a speed vi, and
the passage time ti. In addition, for each mode i or section,
the transit time ∆T is given as ∆Ti = ti+1 − ti, and the
travelled distance ∆X is obtain also as ∆Xi = xi+1 − xi .
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Fig. 1. The four phases of tramway driving: acceleration,
speed holding, coasting, and braking

• Full power (FP) P1 → P2:

EFPi =
1

2
v2

1 = 0 (11a)

EFPf
=

1

2
v2

2 + g∆hFP (11b)

EFP = (EFPf
− EFPi

) + ERFP
(11c)

v1 = 0 (11d)

∆TFP =

∫ v2

v1

dx
1
mu−

1
m (a1 + b1v + g ke

rc
+ g sin(β(x)))

(11e)

∆XFP =

∫ v2

v1

v.dx
v
mu−

1
m (a1 + b1v + g ke

rc
+ g sin(β(x)))

(11f)

• Partial power (PP)P2 → P3:

EPPi
=

1

2
v2

2 (12a)

EPPf
=

1

2
v2

3 + g∆hPP (12b)

EPP = (EPPf
− EPPi

) + ERPP
(12c)

∆XPP = ∆TPP .v2 (12d)

v2 = v3 (12e)

• Inertia motion or coasting (C) P3 → P4:

ECi
=

1

2
v2

3 (13a)

ECf
=

1

2
v2

4 + g∆hC (13b)

EC = (ECf
− ECi) + ERC

(13c)

∆TC =

∫ v4

v3

1

− 1
m (a0 + b0v + g ke

rc
+ g sin(β(x)))

dv

(13d)

∆XC =

∫ v4

v3

v

− 1
m (a0 + b0v + g ke

rc
+ g sin(β(x)))

dv

(13e)

• Full braking (FB) P4 → P5:



EFBi =
1

2
v2

4 (14a)

EFBf
=

1

2
v2

5 + g∆hC (14b)

EFB = (EFBf
− EFBi

) + ERFB
(14c)

∆TFB =
v4

b
(14d)

∆XFB =
v2

4

b
(14e)

The following parameters v2, v4 and ∆TPP are considered
as the decision variables in the optimization problem to be
solved, where the cost function is equal the total energy
consumption defined by adding the energy consummated
during the first (Full power) and second (Partial power)
modes:

E = EFP + EPP (15)

Assumption 2. We assume that no energy is consumed nor
recovered during braking, i.e EFB = 0.

Notice that, the total travelled distance is equal to the
distance between two stations, and is equal also the sum
of the distances of the phases. Similarly, the total running
time is linked to the travel time of each phase, and is equal
to the required one.

4∑
i=1

∆Ti = T (16a)

4∑
i=1

∆Xi = L (16b)

In the following theorem, we provide new formulation for
the tramway speed profile optimization as a non-linear
programming problem ensuring the minimization of the
energy consumption, i.e. the energy-efficiency.

Theorem 1. The higher energy efficiency of a tramway is
ensured if the optimization problem given below

minimize
u∈U

E = EFP + EPP (17a)

E =
1

2
v2

2+ g∆hFP + g∆hPP︸ ︷︷ ︸
g∆h

+ERFP
+ ERPP︸ ︷︷ ︸
ER

(17b)

subject to

4∑
i=1

∆Ti = T (17c)

4∑
i=1

∆Xi = L (17d)

∆Xi > 0, i = 1, . . . , 4. (17e)

∆Ti > 0, i = 1, . . . , 4. (17f)

vi > 0, i = 2, 4. (17g)

has a solution, where the decision variables of this non-
linear programming model are v2, v4 and ∆T2. Then, the
total energy consumption per mass unit is minimized by
following the speed trajectory defined by v2, v4 and ∆T2.

The presented optimal control problem is less complex,
this comes form the fact no partial differential equations
are involved to solve it. The switching points, indicating
that a train must reach the position Pi at the specified
time t and speed v, can be deduced from the solution of
the optimal control problem. Consequently, which allow us

to identify the complete optimal control sequence. These
switching points and the optimal controls represent the
complete solution for the optimal control problem.

4.2 Multiple-phase optimal control model

It is not possible to solve the optimal control problem to
achieve energy efficiency from the cost function, dynamic
constraints, path constraints and boundary constraints
form the optimal control problem given by (18) in sub-
section 4.1, since the path constraints (the speed limits)
and the dynamic constraints (gradients) change along the
tramway trajectory. So, the considered optimal control
problem can be represented as multiple-section optimal
control problems. To achieve that, the trajectory is divided
into sections, where any section has its own cost function,
dynamic model, path constraints, and boundary conditi-
ons. Firstly, let Ti =

∑4
j=1 ∆Tij denotes the travel time

of each section k. In fact, the total run time between a
station i and the next one i + 1 is denoted by T , where
T is equal the sum of the travel time Ti of all sections,
i.e. T =

∑n
i=1

∑4
j=1 ∆Tij . In addition, the total run time

is equal to the sum of a fixed value Tif and a value Tiv
that must be minimized, i.e. Ti = Tif + Tiv . The variable
Tiv will be used to relax the optimization problem. On

the other hand, the terms Si =
∑4

j=1 ∆Sij denotes the
travel distance of each section k. In fact, the total distance
between a station i and the next one i + 1 is denoted by
S, where S is equal the sum of the travel distances Si of
all sections, i.e. S =

∑n
i=1

∑4
j=1 ∆Sij . In this case, the

optimal solution is obtained by assembling the all phases
of trajectory sections. The advantages presented by this
approach are the speed limits and gradient are constant in
each section. In addition, the speed v5 of a section i is equal
to v1 of the section i+1, this boundary conditions link the
sections together. The total energy consumption is given
by summing the cost functions of all phases. Finally, the
optimal trajectory is obtained by solving the minimization
problem defined by new total cost function subject to
new constraints depending on limits and gradients of each
section.

Theorem 2. The higher energy efficiency of a tramway is
ensured if the optimization problem given below

minimize
u∈U

E =

n∑
i=1

Ei (18a)

Ei =
1

2
v2
i2+ g∆hiFP + g∆hiPP︸ ︷︷ ︸

g∆hi

+ERiFP
+ ERiPP︸ ︷︷ ︸
EiR

(18b)

subject to

n∑
i=1

4∑
j=1

∆Tij = T (18c)

n∑
i=1

4∑
j=1

∆Xij = L (18d)

∆Xij > 0, i = 1, . . . , n; j = 1, . . . , 4 (18e)

∆Tij > 0, i = 1, . . . , n; j = 1, . . . , 4 (18f)

vij > 0, i = 1, . . . , n; j = 2, 4 (18g)

has a solution, where the decision variables of this non-
linear programming model are vi2, vi4 and ∆Ti2. Then,



the total energy consumption per mass unit is minimized
by following the speed trajectory defined by vi2, vi4 and
∆Ti2.

5. CASE STUDY

In this part, numerical simulations are presented to illus-
trate the effectiveness of the proposed methodology. Fir-
stly, different study cases are considered, where the speed
limitations are arranged in different order, sometimes in-
creasing, decreasing, or a varied order between increasing
and decreasing. The traffic on these lines is provided by
Alstom Citadis type 302 trams. The mechanical charac-
teristics of the considered model and line geometry have
been parametrized and introduced in the simulated model.
A comparison between energy consumption of fast, average
and slow times is made. In fact, the fast travel time is
obtained by rounding the 105% of the minimal time in
multiples of 5s. Also, by rounding the fast time by 110%
in multiples of 5s, we get average travel time. Finally,
the slow travel time is obtained by adding the difference
between the average and the fast time to the average time,
i.e. Tf − Ts = 2× (Ta − Tf ) where Tf is the fast time, Ta
is the average time and Ts is the slow time.

5.1 Increasing limits
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Fig. 2. The speed trajectory of the minimal trip time and
his characteristics Ti = 64.4, E = 1.0257e7

In this scenario, the consumption energy used during a
trip with an increasing speed limits is studied. From the
solution of the optimization problem, the switching points
and the duration of partial power phase are deduced
for different trip time constraints. In fact, the speed
trajectories can be drawn by using these informations. As
a result, the speed trajectory of the minimal trip time is
plotted in the figure 2 for a travel distance Si = 550m. In
addition, the speed trajectories of the fast and slow trip
times are plotted also in figures 3, and 4 respectively.

From figures 3-4, we can remark that, by lengthening the
trip time, the reached maximum speed is less than the
imposed speed limitation. In addition, the coasting phase
becomes more solicited. This leads to minimize the energy
used to make the make the trip.

5.2 Decreasing limits

In this scenario, the consumption energy used during a trip
with a decreasing speed limits is studied. From the solution
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Fig. 3. The speed trajectory of the fast trip time and his
characteristics Ti = 70, E = 4.7801e6
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Fig. 4. The speed trajectory of the slow trip time and his
characteristics Ti = 90, E = 2.2577e6

of the optimization problem, the switching points and the
duration of partial power phase are deduced for different
trip time constraints. In fact, the speed trajectories can be
drawn by using these informations. As a result, the speed
trajectory of the minimal trip time is plotted in the figure
5 for a travel distance Si = 550m.
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Fig. 5. The speed trajectory of the minimal trip time and
his characteristics Ti = 55.2, E = 1.0348e7

5.3 Varied order

In this scenario, the consumption energy used during a
trip with a varied order of speed limits is studied. From
the solution of the optimization problem, the switching
points and the duration of partial power phase are deduced
for different trip time constraints. In fact, the speed



Type Fast Average Slow

Increasing Ef = 4.78e6 Ea = 3.15e6 Es = 2.26e6

-34.05% -52.77%

Decreasing Ef = 4.80e6 Ea = 3.15e6 Es = 2.43e6

-34.3% -49.29%

Varied Ef = 4.07e6 Ea = 3.16e6 Es = 2.74e6

-22.35% -32.69%

Table 1. The energy consumption for fast,
average and slow times

trajectories can be drawn by using these informations. As
a result, the speed trajectory of the minimal trip time is
plotted in the figure 6 for a travel distance Si = 550m.

0 100 200 300 400 500 600

-2

0

2

4

6

8

10

12

14

16

18

S
p
ee
d
(m

/
s)

Distance (m)

Fig. 6. The speed trajectory of the minimal trip time and
his characteristics Ti = 57.74, E = 1.0024e7

From Table 1 where energy results and associated savings
for all cases studied are merged, it is clear that lengthening
the trip time saves up to 50 percent of the energy consumed
during the fast time. Consequently, this fact confirms that
lengthening the imposed trip time saves the consumed
energy.

6. CONCLUSION

In this paper, the control strategy to reduce energy con-
sumption for the Tramway system is deduced based on the
optimal control approach. The calculation of the critical
switching points between acceleration, speed holding, co-
asting, and braking phases is realized thanks to the presen-
ted non-linear programming algorithm. The perspective
of this work is to simulate the proposed methodology on
The PSCHITT platform (Hybrid and Inter-modal Col-
laborative Simulation Platform in Land Transport). The
PSCHITT platform is a versatile simulator that can be fit-
ted with different cabins (Reduced Mobility Person, Rail,
...) according to the scientific objectives and experimental
needs, for example PSCHITT-Rail 1 . Cases based on the
commercial tramway of Valenciennes city in France which
is composed of two lines, with about 33.8km of tracks and
48 stations will be studied. The evaluation of the impact
on traffic for several tramways operating on the same time
in a city network and the concept of mobility resilience
based on previous work on the domain of transportation
(see Enjalbert et al. (2011); Enjalbert and Vanderhaegen
(2017)) should be enhanced.

1 https://www.uphf.fr/LAMIH/en/PSCHITT-Rail
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