Matias Martinez

Martin Monperrus

Coming: a Tool for Mining Change Pattern Instances from Git Commits

Software repositories such as Git have become a relevant source of information for software engineer researcher. For instance, the detection of Commits that fulfill a given criterion (e.g., bugfixing commits) is one of the most frequent tasks done to understand the software evolution. However, to our knowledge, there is not open-source tools that, given a Git repository, returns all the instances of a given change pattern.

In this paper we present Coming, a tool that takes an input a Git repository and mines instances of change patterns on each commit. For that, Coming computes fine-grained changes between two consecutive revisions, analyzes those changes to detect if they correspond to an instance of a change pattern (specified by the user using XML), and finally, after analyzing all the commits, it presents a) the frequency of code changes and b) the instances found on each commit.

We evaluate Coming on a set of 28 pairs of revisions from Defects4J, finding instances of change patterns that involve If conditions on 26 of them.

I. INTRODUCTION

During recent years software engineering researchers have been inspecting software code repositories such as Git or SVN to gain knowledge about the evolution of applications. For example, there are a considerable number of studies ([START_REF] Hanam | Discovering bug patterns in javascript[END_REF], [START_REF] Pan | Toward an understanding of bug fix patterns[END_REF], [START_REF] Zhong | An empirical study on real bug fixes[END_REF]) that have focused on the bug fixing activity by studying bug fix commits. Other researcher have also presented approaches that aim at repairing automatically buggy programs. Some of those repair approaches [START_REF] Long | Automatic patch generation by learning correct code[END_REF], [START_REF] Le | History driven program repair[END_REF] consume information extracted from software repositories such as the most frequent bug fix patterns [START_REF] Kim | Automatic patch generation learned from human-written patches[END_REF] or frequency of code changes [START_REF] Soto | Common statement kind changes to inform automatic program repair[END_REF].

To carry out such kind of analysis on repositories, a researcher needs a tool that: a) visits a set of revisions (i.e., commits); b) filters those revisions that are interesting (e.g., bug fix commits) according to, for example, the commit message; c) computes changes between a revision and its precedent; d) summarizes the results (e.g., to compute the probability of each change type); e) capture the commits that introduces a set of particular changes; among other activities. However, to our knowledge, there is not an open-source that carries out all of these tasks.

In this paper we present Coming, a tool that inspects Git repositories with two main goals: 1) to compute fine-grained changes between revisions, and 2) to detect instances of change patter.

In a nutshell, Coming takes as inputs a list of revisions (e.g., Commits from git). For each pair of consecutive revisions, i.e., r and r + 1, Coming first computes the changes between them at a fine-grained level using an AST-diff algorithm. Then, it analyzes the changes to detect if they correspond to a change pattern given as input. A change pattern specifies a set of changes (e.g., insert, remove) done over code entities (e.g., invocations, assignments). A pair of revisions has an instance of a pattern if: 1) all the changes that a pattern specifies exist on the diff between those revisions; 2) the entities affected by the changes from the diff match with those that the pattern specifies. Finally, after analyzing all the commits, Coming post-processes the results from each pair of revisions and exports the final results (i.e., pattern instances found and frequency of code changes) to a JSON format. Moreover, Coming provides extension points for overriding the default behaviour or to add new functionality.

Coming can be used by researchers that aim at filtering commits to automatically create, for instance, datasets of bugs. Moreover, it can be used by researchers that aim at postprocessing a distilled set of changes found by the tool, and then apply, for instance, an algorithm of change clustering.

To evaluate Coming, we first collect 28 pairs of revisions from Defects4J [START_REF] Just | Defects4j: A database of existing faults to enable controlled testing studies for java programs[END_REF] which diffs affected to, at least, one if condition. Then, we write change patterns that specify different changes over if. Finally, we execute Coming to detect instances of such patterns over the 28 pairs of revisions. Coming could successfully find the correct instance of a change pattern on 26 pairs. Coming is publicly available at https://github.com/Spirals-Team/coming. The video that shows a demonstration of Coming is available at https://youtu.be/dR6B9qRpjic II. APPROACH

A. Goals of Coming

The main goals of Coming are: a) to compute the finegrain changes between two revisions; b) to detect instances of change pattern from those fine-grain changes; c) to count the frequency of changes along all the revisions of a Git repository; and d) to count the occurrence of change pattern instances.

In the rest of this section, we present the series of steps that Coming carries out to accomplish those goals.

B. Coming Inputs

Coming analyzes commits from a Git repository, whose path is given as parameter. The implementation of Coming navigates the Git history using the library Eclipse GIT. 1 Coming navigates each commit starting from the oldest one. For each commit c, Coming takes each file f that the commit c modifies, and creates a revision pair with: a) a file f modified by C, and b) the previous version of f , introduced or modified by a commit older than C.

C. AST-based Analysis of Revisions

Coming carries out a fine-grained comparisons based on the AST (Abstract Syntax Tree) of each revision pair. This step has two main steps:

1) AST Representation of Files: Coming creates a AST from the code of a revision. In a AST, tree node corresponds to a code element (e.g., an invocation, a parameter). Previous works have been working on different granularities of tree nodes: from coarse-grained from ChangeDistiller [START_REF] Gall | Change analysis with evolizer and changedistiller[END_REF], where the finest-grained code element represented by a node is the statement, to fine-grained such as Eclipse JDT [START_REF] Falleri | Fine-grained and accurate source code differencing[END_REF].

In this paper, we present a new level of granularity of AST, named GTSpoon, which is based on the Spoon meta-model. 2 Spoon [START_REF] Pawlak | Spoon: A library for implementing analyses and transformations of java source code[END_REF] is a library to analyze, transform, rewrite, transpile Java source code.

The granularity-level of the Spoon meta-model is between the previously two mentioned: a) Spoon nodes are finer (e.g., parameter, field write and read) that ChangeDistiller (statements); and b) those nodes contain more information than the Eclipse JDT nodes, resulting more compact trees. 3 Coming uses, by default, the GTSpoon granularity, which means that each node of the AST of a revision r is corresponds to an element from the Spoon model of r. We have written an open-source library named GTSpoon 4 that returns a AST with that granularity from a source code file.

2) Tree-Diff Comparison: To obtain the different between two models m s and m t (by default GTSpoon's ASTs) retrieved from two revisions r s and r s , resp., Coming applies a tree-difference algorithm. By default, Coming uses GumTree [START_REF] Falleri | Fine-grained and accurate source code differencing[END_REF], a state-of-the-art AST diff algorithm. The output of the diff between m s and m t is a list of Operations, where each of them contains a) an action type (Insert, Remove, Update, Move); b) a reference to a node from m s ; and/or c) a reference to a node from m t .

D. Analysis of Diffs: Finding Instances of Change Pattern

Coming executes a set of Analyzers which take as input the results of previous diffs and carry out some task. In this paper we present an analyzer that mines instances of change patterns. The analyzer uses (and improves) the specification of change pattern that we have previously defined [START_REF] Martinez | Automatically extracting instances of code change patterns with ast analysis[END_REF] and implements the algorithm, also defined tehre, to match patterns and changes.

A Change Pattern defines a set of changes between two revisions and the elements affected by those changes.

A pattern has a list called Pattern actions pa where each of them specifies a particular change between two revisions. A Pattern action has two fields. First, the type of action, with four predefined values: insert, mode, remove, and update. Secondly, it contains a reference to a P atternEntity which has also three fields: 1) type, which indicates the type of code element of the entity (e.g., if, invocation, return); 2) value, which indicates the value of the element (e.g, callM ethod1(), return null); 3) parent, a recursive relation to a P atternEntity which indicates the parent of an entity. This relation has an argument, distance, which indicates the max distance between e and ep in the AST. For example, a value of 1 indicates that the ep is the immediate parent of e, whereas 2 means a grand-parent relation. The use of wildcard character "*" in any of those mentioned fields produces a matching with any kind of type or value.

Coming accepts Change Patterns specified in a XML files. Listing 1 shows as example a pattern in XML that specifies: a) two entities (id 1 and 2), one representing a Return, the second one an If ; b) a parent relation between the if and the Return entities (with a max distance of 2 nodes); and c) two actions of type INS (insert), one affecting the entity id 1 (Return), the other one the entity id 2 (the if).

E. Summarization of Results

Finally, Coming processes all results obtained from the analyzers over all the commits and then it exports the results to a JSON file.

F. Extending Coming

Beyond the functionality that Coming already includes, such as AST differencing and mining of change pattern instances, it provides extension points to override the default behaviour and to define new tools for evolution analysis. The main extension points that Coming provides are the following, with, in parentheses the implementation already provided. a) Input (Git, Files System); b) Revision filter (presence of keywords in revisions messages, size of the revisions in terms of # of hunks and in terms of # files); c) Analyzers (Computation of syntactical (line-based) diff, AST-based diff, pattern instance detection); d) Output processor (Standard output, JSON containing the instances found and change frequency).

In the documentation hosted in the Coming Github site,5 we explain how to create an new implementation for each extension point.

III. EVALUATION

This experiment aims at measuring the ability of Coming to detect change pattern instances. For this propose, we create a set of 10 patterns from the related work. Then we run Coming over 28 pairs of revisions to mine instances of those patterns.

A. Experiment setup

In this experiment, we aim at mining instances of change pattern detecting bug fixing. We consider Defects4J [START_REF] Just | Defects4j: A database of existing faults to enable controlled testing studies for java programs[END_REF], a dataset of buggy programs from 6 Java open-source projects. It contains, for each buggy program, a patch that repairs the bug. Due to the scope of this paper, we focus on buggy programs: 1) from the Apache Commons Math project; and 2) whose patches affect if conditions. In total, with the help of the Defects4J dissection [START_REF] Sobreira | Dissection of a bug dataset: Anatomy of 395 patches from defects4j[END_REF], the number of buggy programs satisfying those criteria is 28. For each of those bugs, we prepare the buggy and the patched version according to Coming's input format.

Then, we create a set of 10 change patterns to detect the changes that affect the if conditions. For instance, the first pattern Add If-return corresponds to that one presented in Listing 1. It is able to detect, for instance, the changes between the buggy and patched version of bug M3 from Defects4J, which patch is shown in Listing 2. @@ -818,10 +818,7 @@ public class MathArrays {

+ if (len == 1) { + return a[0] * b[0]; + }
Finally, we execute Coming over the 28 pairs of buggy and patched revisions from Commons Math projects. We then manually inspect the results i.e., the mined instances from the revisions, to assert whether they are: a) true positive i.e., the pattern instance exists between the revisions, b) false negatives i.e., Coming could not detect an instance of the pattern.

B. Experimental Results

Table I shows the results of our experiment. The first column shows the change pattern name.

The second column (TP) shows, for each pattern p, the Defects4J identifier for which Coming can successfully find a pattern instance of p between the buggy and the patched version. For example, Coming correctly identifies an instance of pattern "Add-If-Return" in revision Math-3. In total, Coming can find correctly instances for 26 out of 28 patches (93%), those are true positives. Moreover, Coming is capable of finding more than 1 instances of the same pattern inside a revision pair. For instance, the revisions Math-93 has two instances of pattern "If-Return".

Then, the column FN shows the false negatives, i.e., the revisions that actually have an pattern instance but Coming fails to detect it. We observe that the two false negatives are due the AST diff algorithm (Gumtree in vanilla mode) which did not create a correct minimal diff, i.e., it produces unnecessary INS and DELETE operations.

Finally, the column TN shows the cases considered as true negative, i.e., Coming does not return any instance (correctly). The listing shows two hunks, one that adds an if, another that removes the same if code. From that revision pair, the AST-diff algorithm Gumtree detects move operations (both the If and return elements are moved to another location). Thus, Coming is not able to find an instance of the pattern Del Ifreturn giving those two AST changes (Moves). Consistently, when Coming mines instances of the pattern Mov If-return, it successfully finds one between the buggy and patched version of Math-64.

Lastly, Table I shows a pattern "Add If-return null" that specify the value of the entity, in addition to the entity type. Using this feature, Coming can identify, for instance in Math-4, an instance of an if that returns a null value.

The code base of Coming includes the specifications of all the patterns presented in this experiment. 6IV. RELATED WORK Coming uses the method to specify a change pattern that we presented in [START_REF] Martinez | Automatically extracting instances of code change patterns with ast analysis[END_REF] and implements the instance mining algorithm presented in that work. Moreover, Coming provides several improvements including: 1) a finer-grained level of ASTs, which allows to create more precise change pattern; 2) matching of entity values; 3) more descriptive parent relation (allowing a chain of parents); 4) the use of a more reliable tree-diff algorithm [START_REF] Falleri | Fine-grained and accurate source code differencing[END_REF].

There are other open-source tools that focus on the analysis of software repositories such as Gits. Some of them are: PyDriller7 [START_REF] Spadini | PyDriller: Python Framework for Mining Software Repositories[END_REF], Git-of-theseus8 , CVSAnalY9 and Hercules10 . However, to our knowledge, these tools do neither provide a fine-grained analysis of changes between revisions, nor the detection of change instances.

Different approaches have focused on the mining of bug fix pattern. For instance, Madeiral et al. [START_REF] Madeiral | Towards an automated approach for bug fix pattern detection[END_REF] have presented an approach that detects repair patterns in patches, which performs source code change analysis at abstract-syntax tree level. Their approach, as it is also built over our technology stack (GTSpoon, Spoon and GumTree), could be easily included in Coming using the extension point output processor. Osman et al. [START_REF] Osman | Mining frequent bug-fix code changes[END_REF] analyze code hunks from line-based diff to detect bug-fix patterns, Rolim et al. [START_REF] Rolim | Learning quick fixes from code repositories[END_REF] propose a method for discovering quick fixes based on the identification of code edits (at the level of AST) from revisions, and then to cluster those edits. A similar work has been done by Molderez et al. [START_REF] Molderez | Mining change histories for unknown systematic edits[END_REF] which use closed frequent itemset mining algorithm on sets of distilled code changes. Hanam et al. [START_REF] Hanam | Discovering bug patterns in javascript[END_REF] present a tool for discovering the most prevalent and detectable bug patterns on JavaScript code, based on unsupervised machine learning. As difference of those works, Coming focuses on the detection of instances of existing change pattern, including bug fix pattern. Moreover, as Coming computes the fine-grained diffs and also provides extension points to analyze that information, any of those works can be implemented in our tool.

V. FUTURE WORK

The current version of Coming includes all features presented in this paper. Nevertheless, we continue working on new features and improving the tool usability. Some of the planned features are: a) Enrichment of the pattern specification to include cardinality of elements (numbers of children, siblings, etc), assert the absence of elements, different matching strategies of entity types and values, and accept changes that affect different files; b) parallelisation; c) post-processors to mine, for instance, change patterns; d) tuning arguments of tree-diff algorithm to avoid true negatives.

VI. CONCLUSION

In this paper we present the tool named Coming which given a Git repository, navigates every commit, calculates fine-grained changes between a revising of a commit and its precedent, detects change pattern instances from those changes, computes the frequency of code changes along the repository and finally exports the results in JSON format. Coming presents extension points allowing researchers to plug-in their own approaches that, for example, focus on the discovering of bug-fix patterns from the changes

Listing 1 .

 1 Change Pattern Add If-Return<pattern> <entity id=''1" type=''Return"> <parent parentId=''2" distance=''2" /> </entity> <entity id=''2" type=''If" /> <action entityId=''1" type=''INS" /> <action entityId=''2" type=''INS" /> </pattern>

Listing 2 .

 2 Bug fix changes corresponding to bug Math-3. It is an instance of Change Pattern Add If-Return presented in Listing 1.

TABLE I MINING

 I CHANGE PATTERN INSTANCES OVER BUGGY AND PATCHED VERSION OF DEFECTS4J DEFECTS. THE COLUMNS TP, FN AND TN SHOWS THE TRUE POSITIVES, FALSE NEGATIVES AND TRUE NEGATIVES. A DEFECTS4J'S REVISION COULD HAVE +1 PATTERN INSTANCES.

	Change Pattern	TP (instances found)	FN	TN
	Add If-return	M3, M38, M53,M55,	M60	-
		M84, M92, M93		
	Add If-return null	M4	-	-
	Add If-assig	M29, M51, M54, M102	-	-
	Add If-throw	M19, M25, M45, M48, M73, M99	-	M86
	Upd If-cond	M21, M37	-	-
	Add 2 nested Ifs	M39, M68, M78	M64	-
	Mov If-return	M64	-	-
	Add If-break	M1	-	-
	Del If-return	-	-	M64
	Add If Mov assig	M95	-	-

 The line line-based diff shows that if conditions are added and removed, but Coming does not detect any instance of patterns Add If-* or Del if-* A true negative occurs in Math-64, which patch is partially presented in Listing 3.

	Listing 3. Two hunks from the patch Math-64. The Tree diff algorithm detects
	that the if condition is moved
	+ if (checker.converged(getIterations(), previous, current)) {
	+ return current;
	+ }
	+ }
	-} else {
	-if (checker.converged(getIterations(), previous, current)) {
	-return current;
	-}

https://github.com/Spirals-Team/coming/blob/master/docs/extension points.md

https://github.com/Spirals-Team/coming/blob/master/docs/experiment mining instances d

https://github.com/ishepard/pydriller

https://github.com/erikbern/git-of-theseus/

https://github.com/MetricsGrimoire/CVSAnalY

https://github.com/src-d/hercules computed by Coming. Coming is publicly available at https://github.com/Spirals-Team/coming/. New features and extensions are welcome via Pull Request.