
HAL Id: hal-03522634
https://uphf.hal.science/hal-03522634

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coming: A Tool for Mining Change Pattern Instances
from Git Commits

Matias Martinez, Martin Monperrus

To cite this version:
Matias Martinez, Martin Monperrus. Coming: A Tool for Mining Change Pattern Instances from
Git Commits. 2019 IEEE/ACM 41st International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), May 2019, Montreal, Canada. pp.79-82, �10.1109/ICSE-
Companion.2019.00043�. �hal-03522634�

https://uphf.hal.science/hal-03522634
https://hal.archives-ouvertes.fr


ar
X

iv
:1

81
0.

08
53

2v
1 

 [
cs

.S
E

] 
 1

9 
O

ct
 2

01
8

Coming: a Tool for Mining Change Pattern

Instances from Git Commits

Matias Martinez

University of Valenciennes, France

Martin Monperrus

KTH, Sweden

Abstract—Software repositories such as Git have become a
relevant source of information for software engineer researcher.
For instance, the detection of Commits that fulfill a given
criterion (e.g., bugfixing commits) is one of the most frequent
tasks done to understand the software evolution. However, to
our knowledge, there is not open-source tools that, given a Git
repository, returns all the instances of a given change pattern.

In this paper we present Coming, a tool that takes an input
a Git repository and mines instances of change patterns on
each commit. For that, Coming computes fine-grained changes
between two consecutive revisions, analyzes those changes to
detect if they correspond to an instance of a change pattern
(specified by the user using XML), and finally, after analyzing
all the commits, it presents a) the frequency of code changes and
b) the instances found on each commit.

We evaluate Coming on a set of 28 pairs of revisions from
Defects4J, finding instances of change patterns that involve If
conditions on 26 of them.

I. INTRODUCTION

During recent years software engineering researchers have

been inspecting software code repositories such as Git or SVN

to gain knowledge about the evolution of applications. For

example, there are a considerable number of studies ([3], [12],

[18]) that have focused on the bug fixing activity by studying

bug fix commits. Other researcher have also presented ap-

proaches that aim at repairing automatically buggy programs.

Some of those repair approaches [7], [6] consume information

extracted from software repositories such as the most frequent

bug fix patterns [5] or frequency of code changes [16].

To carry out such kind of analysis on repositories, a re-

searcher needs a tool that: a) visits a set of revisions (i.e.,

commits); b) filters those revisions that are interesting (e.g.,

bug fix commits) according to, for example, the commit

message; c) computes changes between a revision and its

precedent; d) summarizes the results (e.g., to compute the

probability of each change type); e) capture the commits that

introduces a set of particular changes; among other activities.

However, to our knowledge, there is not an open-source that

carries out all of these tasks.

In this paper we present Coming, a tool that inspects Git

repositories with two main goals: 1) to compute fine-grained

changes between revisions, and 2) to detect instances of

change patter.

In a nutshell, Coming takes as inputs a list of revisions (e.g.,

Commits from git). For each pair of consecutive revisions, i.e.,

r and r+1, Coming first computes the changes between them

at a fine-grained level using an AST-diff algorithm. Then, it

analyzes the changes to detect if they correspond to a change

pattern given as input. A change pattern specifies a set of

changes (e.g., insert, remove) done over code entities (e.g.,

invocations, assignments). A pair of revisions has an instance

of a pattern if: 1) all the changes that a pattern specifies exist

on the diff between those revisions; 2) the entities affected by

the changes from the diff match with those that the pattern

specifies. Finally, after analyzing all the commits, Coming

post-processes the results from each pair of revisions and

exports the final results (i.e., pattern instances found and

frequency of code changes) to a JSON format. Moreover,

Coming provides extension points for overriding the default

behaviour or to add new functionality.

Coming can be used by researchers that aim at filtering

commits to automatically create, for instance, datasets of bugs.

Moreover, it can be used by researchers that aim at post-

processing a distilled set of changes found by the tool, and

then apply, for instance, an algorithm of change clustering.

To evaluate Coming, we first collect 28 pairs of revisions

from Defects4J [4] which diffs affected to, at least, one if

condition. Then, we write change patterns that specify different

changes over if. Finally, we execute Coming to detect instances

of such patterns over the 28 pairs of revisions. Coming could

successfully find the correct instance of a change pattern on

26 pairs.

Coming is publicly available at

https://github.com/Spirals-Team/coming. The video

that shows a demonstration of Coming is available at

https://youtu.be/dR6B9qRpjic

II. APPROACH

A. Goals of Coming

The main goals of Coming are: a) to compute the fine-

grain changes between two revisions; b) to detect instances

of change pattern from those fine-grain changes; c) to count

the frequency of changes along all the revisions of a Git

repository; and d) to count the occurrence of change pattern

instances.

In the rest of this section, we present the series of steps that

Coming carries out to accomplish those goals.

http://arxiv.org/abs/1810.08532v1
https://github.com/Spirals-Team/coming
https://youtu.be/dR6B9qRpjic


B. Coming Inputs

Coming analyzes commits from a Git repository, whose

path is given as parameter. The implementation of Coming

navigates the Git history using the library Eclipse GIT.1

Coming navigates each commit starting from the oldest one.

For each commit c, Coming takes each file f that the commit c

modifies, and creates a revision pair with: a) a file f modified

by C, and b) the previous version of f , introduced or modified

by a commit older than C.

C. AST-based Analysis of Revisions

Coming carries out a fine-grained comparisons based on the

AST (Abstract Syntax Tree) of each revision pair. This step

has two main steps:

1) AST Representation of Files: Coming creates a AST

from the code of a revision. In a AST, tree node corresponds

to a code element (e.g., an invocation, a parameter). Previous

works have been working on different granularities of tree

nodes: from coarse-grained from ChangeDistiller [2], where

the finest-grained code element represented by a node is the

statement, to fine-grained such as Eclipse JDT [1].

In this paper, we present a new level of granularity of AST,

named GTSpoon, which is based on the Spoon meta-model.2

Spoon [13] is a library to analyze, transform, rewrite, transpile

Java source code.

The granularity-level of the Spoon meta-model is between

the previously two mentioned: a) Spoon nodes are finer

(e.g., parameter, field write and read) that ChangeDistiller

(statements); and b) those nodes contain more information than

the Eclipse JDT nodes, resulting more compact trees. 3

Coming uses, by default, the GTSpoon granularity, which

means that each node of the AST of a revision r is corresponds

to an element from the Spoon model of r. We have written

an open-source library named GTSpoon4 that returns a AST

with that granularity from a source code file.

2) Tree-Diff Comparison: To obtain the different between

two models ms and mt (by default GTSpoon’s ASTs) re-

trieved from two revisions rs and rs, resp., Coming applies a

tree-difference algorithm. By default, Coming uses GumTree

[1], a state-of-the-art AST diff algorithm. The output of the

diff between ms and mt is a list of Operations, where each

of them contains a) an action type (Insert, Remove, Update,

Move); b) a reference to a node from ms; and/or c) a reference

to a node from mt.

D. Analysis of Diffs: Finding Instances of Change Pattern

Coming executes a set of Analyzers which take as input the

results of previous diffs and carry out some task. In this paper

we present an analyzer that mines instances of change patterns.

The analyzer uses (and improves) the specification of change

1https://projects.eclipse.org/projects/technology.egit
2Spoon meta-model: http://spoon.gforge.inria.fr/code elements.html and

http://spoon.gforge.inria.fr/structural elements.html
3Discussion about the Spoon and JDT granularity:

https://github.com/INRIA/spoon/issues/1303
4https://github.com/SpoonLabs/gumtree-spoon-ast-diff

pattern that we have previously defined [9] and implements the

algorithm, also defined tehre, to match patterns and changes.

A Change Pattern defines a set of changes between two

revisions and the elements affected by those changes.

A pattern has a list called Pattern actions pa where each

of them specifies a particular change between two revisions.

A Pattern action has two fields. First, the type of action,

with four predefined values: insert, mode, remove, and up-

date. Secondly, it contains a reference to a PatternEntity

which has also three fields: 1) type, which indicates the type

of code element of the entity (e.g., if, invocation, return);

2) value, which indicates the value of the element (e.g,

callMethod1(), return null); 3) parent, a recursive relation

to a PatternEntity which indicates the parent of an entity.

This relation has an argument, distance, which indicates the

max distance between e and ep in the AST. For example, a

value of 1 indicates that the ep is the immediate parent of e,

whereas 2 means a grand-parent relation. The use of wildcard

character “*” in any of those mentioned fields produces a

matching with any kind of type or value.

Coming accepts Change Patterns specified in a XML files.

Listing 1 shows as example a pattern in XML that specifies:

a) two entities (id 1 and 2), one representing a Return, the

second one an If ; b) a parent relation between the if and

the Return entities (with a max distance of 2 nodes); and

c) two actions of type INS (insert), one affecting the entity id

1 (Return), the other one the entity id 2 (the if ).

Listing 1. Change Pattern Add If-Return
<pattern>

<entity id=‘‘1” type=‘‘Return”>

<parent parentId=‘‘2” distance=‘‘2” />

</entity>

<entity id=‘‘2” type=‘‘If” />

<action entityId=‘‘1” type=‘‘INS” />

<action entityId=‘‘2” type=‘‘INS” />

</pattern>
E. Summarization of Results

Finally, Coming processes all results obtained from the

analyzers over all the commits and then it exports the results

to a JSON file.

F. Extending Coming

Beyond the functionality that Coming already includes, such

as AST differencing and mining of change pattern instances,

it provides extension points to override the default behaviour

and to define new tools for evolution analysis. The main

extension points that Coming provides are the following, with,

in parentheses the implementation already provided. a) Input

(Git, Files System); b) Revision filter (presence of keywords

in revisions messages, size of the revisions in terms of # of

hunks and in terms of # files); c) Analyzers (Computation of

syntactical (line-based) diff, AST-based diff, pattern instance

detection); d) Output processor (Standard output, JSON con-

taining the instances found and change frequency).

In the documentation hosted in the Coming Github site,5

we explain how to create an new implementation for each

extension point.

5https://github.com/Spirals-Team/coming/blob/master/docs/extension points.md

https://projects.eclipse.org/projects/technology.egit
http://spoon.gforge.inria.fr/code_elements.html
http://spoon.gforge.inria.fr/structural_elements.html
https://github.com/INRIA/spoon/issues/1303
https://github.com/SpoonLabs/gumtree-spoon-ast-diff
https://github.com/Spirals-Team/coming/blob/master/docs/extension_points.md


TABLE I
MINING CHANGE PATTERN INSTANCES OVER BUGGY AND PATCHED

VERSION OF DEFECTS4J DEFECTS. THE COLUMNS TP, FN AND TN
SHOWS THE TRUE POSITIVES, FALSE NEGATIVES AND TRUE NEGATIVES. A

DEFECTS4J’S REVISION COULD HAVE +1 PATTERN INSTANCES.

Change Pattern TP (instances found) FN TN

Add If-return M3, M38, M53,M55, M60 -
M84, M92, M93

Add If-return null M4 - -

Add If-assig M29, M51, M54, M102 - -

Add If-throw M19, M25, M45, M48, M73, M99 - M86

Upd If-cond M21, M37 - -

Add 2 nested Ifs M39, M68, M78 M64 -

Mov If-return M64 - -

Add If-break M1 - -

Del If-return - - M64

Add If Mov assig M95 - -

III. EVALUATION

This experiment aims at measuring the ability of Coming to

detect change pattern instances. For this propose, we create a

set of 10 patterns from the related work. Then we run Coming

over 28 pairs of revisions to mine instances of those patterns.

A. Experiment setup

In this experiment, we aim at mining instances of change

pattern detecting bug fixing. We consider Defects4J [4], a

dataset of buggy programs from 6 Java open-source projects.

It contains, for each buggy program, a patch that repairs the

bug. Due to the scope of this paper, we focus on buggy

programs: 1) from the Apache Commons Math project; and

2) whose patches affect if conditions. In total, with the

help of the Defects4J dissection [15], the number of buggy

programs satisfying those criteria is 28. For each of those

bugs, we prepare the buggy and the patched version according

to Coming’s input format.

Then, we create a set of 10 change patterns to detect the

changes that affect the if conditions. For instance, the first

pattern Add If-return corresponds to that one presented in

Listing 1. It is able to detect, for instance, the changes between

the buggy and patched version of bug M3 from Defects4J,

which patch is shown in Listing 2.

Listing 2. Bug fix changes corresponding to bug Math-3. It is an instance of
Change Pattern Add If-Return presented in Listing 1.

@@ −818,10 +818,7 @@ public class MathArrays {
+ if (len == 1) {
+ return a[0] ∗ b[0];

+ }

Finally, we execute Coming over the 28 pairs of buggy

and patched revisions from Commons Math projects. We then

manually inspect the results i.e., the mined instances from the

revisions, to assert whether they are: a) true positive i.e., the

pattern instance exists between the revisions, b) false negatives

i.e., Coming could not detect an instance of the pattern.

B. Experimental Results

Table I shows the results of our experiment. The first column

shows the change pattern name.

The second column (TP) shows, for each pattern p, the

Defects4J identifier for which Coming can successfully find

a pattern instance of p between the buggy and the patched

version. For example, Coming correctly identifies an instance

of pattern “Add-If-Return” in revision Math-3. In total, Com-

ing can find correctly instances for 26 out of 28 patches

(93%), those are true positives. Moreover, Coming is capable

of finding more than 1 instances of the same pattern inside

a revision pair. For instance, the revisions Math-93 has two

instances of pattern “If-Return”.

Then, the column FN shows the false negatives, i.e., the

revisions that actually have an pattern instance but Coming

fails to detect it. We observe that the two false negatives

are due the AST diff algorithm (Gumtree in vanilla mode)

which did not create a correct minimal diff, i.e., it produces

unnecessary INS and DELETE operations.

Finally, the column TN shows the cases considered as true

negative, i.e., Coming does not return any instance (correctly).

The line line-based diff shows that if conditions are added and

removed, but Coming does not detect any instance of patterns

Add If-* or Del if-* A true negative occurs in Math-64, which

patch is partially presented in Listing 3.

Listing 3. Two hunks from the patch Math-64. The Tree diff algorithm detects
that the if condition is moved

+ if (checker.converged(getIterations(), previous, current)) {
+ return current;

+ }
+ }
− } else {
− if (checker.converged(getIterations(), previous, current)) {
− return current;

− }

The listing shows two hunks, one that adds an if, another

that removes the same if code. From that revision pair, the

AST-diff algorithm Gumtree detects move operations (both the

If and return elements are moved to another location). Thus,

Coming is not able to find an instance of the pattern Del If-

return giving those two AST changes (Moves). Consistently,

when Coming mines instances of the pattern Mov If-return, it

successfully finds one between the buggy and patched version

of Math-64.

Lastly, Table I shows a pattern “Add If-return null” that

specify the value of the entity, in addition to the entity type.

Using this feature, Coming can identify, for instance in Math-

4, an instance of an if that returns a null value.

The code base of Coming includes the specifications of all

the patterns presented in this experiment.6

IV. RELATED WORK

Coming uses the method to specify a change pattern that

we presented in [9] and implements the instance mining

algorithm presented in that work. Moreover, Coming provides

several improvements including: 1) a finer-grained level of

ASTs, which allows to create more precise change pattern;

2) matching of entity values; 3) more descriptive parent

6https://github.com/Spirals-Team/coming/blob/master/docs/experiment mining instances d4j.md

https://github.com/Spirals-Team/coming/blob/master/docs/experiment_mining_instances_d4j.md


relation (allowing a chain of parents); 4) the use of a more

reliable tree-diff algorithm [1].

There are other open-source tools that focus on the analysis

of software repositories such as Gits. Some of them are:

PyDriller7 [17], Git-of-theseus8, CVSAnalY9 and Hercules10.

However, to our knowledge, these tools do neither provide

a fine-grained analysis of changes between revisions, nor the

detection of change instances.

Different approaches have focused on the mining of bug

fix pattern. For instance, Madeiral et al. [8] have presented

an approach that detects repair patterns in patches, which

performs source code change analysis at abstract-syntax tree

level. Their approach, as it is also built over our technology

stack (GTSpoon, Spoon and GumTree), could be easily in-

cluded in Coming using the extension point output processor.

Osman et al. [11] analyze code hunks from line-based diff to

detect bug-fix patterns, Rolim et al. [14] propose a method for

discovering quick fixes based on the identification of code edits

(at the level of AST) from revisions, and then to cluster those

edits. A similar work has been done by Molderez et al. [10]

which use closed frequent itemset mining algorithm on sets

of distilled code changes. Hanam et al. [3] present a tool for

discovering the most prevalent and detectable bug patterns on

JavaScript code, based on unsupervised machine learning. As

difference of those works, Coming focuses on the detection of

instances of existing change pattern, including bug fix pattern.

Moreover, as Coming computes the fine-grained diffs and also

provides extension points to analyze that information, any of

those works can be implemented in our tool.

V. FUTURE WORK

The current version of Coming includes all features pre-

sented in this paper. Nevertheless, we continue working on

new features and improving the tool usability. Some of the

planned features are: a) Enrichment of the pattern specification

to include cardinality of elements (numbers of children, sib-

lings, etc), assert the absence of elements, different matching

strategies of entity types and values, and accept changes that

affect different files; b) parallelisation; c) post-processors to

mine, for instance, change patterns; d) tuning arguments of

tree-diff algorithm to avoid true negatives.

VI. CONCLUSION

In this paper we present the tool named Coming which

given a Git repository, navigates every commit, calculates

fine-grained changes between a revising of a commit and

its precedent, detects change pattern instances from those

changes, computes the frequency of code changes along

the repository and finally exports the results in JSON for-

mat. Coming presents extension points allowing researchers

to plug-in their own approaches that, for example, focus

on the discovering of bug-fix patterns from the changes

7https://github.com/ishepard/pydriller
8https://github.com/erikbern/git-of-theseus/
9https://github.com/MetricsGrimoire/CVSAnalY
10https://github.com/src-d/hercules

computed by Coming. Coming is publicly available at

https://github.com/Spirals-Team/coming/. New features and

extensions are welcome via Pull Request.

REFERENCES

[1] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,
and Martin Monperrus. Fine-grained and accurate source code differenc-
ing. In Proceedings of the 29th ACM/IEEE International Conference on

Automated Software Engineering, ASE ’14, pages 313–324, New York,
NY, USA, 2014. ACM.

[2] Harald C. Gall, Beat Fluri, and Martin Pinzger. Change analysis with
evolizer and changedistiller. IEEE Softw., 26(1):26–33, January 2009.

[3] Quinn Hanam, Fernando S. de M. Brito, and Ali Mesbah. Discov-
ering bug patterns in javascript. In Proceedings of the 2016 24th

ACM SIGSOFT International Symposium on Foundations of Software

Engineering, FSE 2016, pages 144–156, New York, NY, USA, 2016.
ACM.

[4] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A database
of existing faults to enable controlled testing studies for java programs.
In Proceedings of the 2014 International Symposium on Software Testing

and Analysis, ISSTA 2014, pages 437–440, New York, NY, USA, 2014.
ACM.

[5] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Au-
tomatic patch generation learned from human-written patches. In Pro-

ceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, pages 802–811, Piscataway, NJ, USA, 2013. IEEE Press.

[6] X. B. D. Le, D. Lo, and C. L. Goues. History driven program repair.
In 2016 IEEE 23rd International Conference on Software Analysis,

Evolution, and Reengineering (SANER), volume 1, pages 213–224,
March 2016.

[7] Fan Long and Martin Rinard. Automatic patch generation by learning
correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL
’16, pages 298–312, New York, NY, USA, 2016. ACM.

[8] Fernanda Madeiral, Thomas Durieux, Victor Sobreira, and Marcelo
Maia. Towards an automated approach for bug fix pattern detection. In
VEM ’18 - Proceedings of the VI Workshop on Software Visualization,

Evolution and Maintenance, So Carlos, Brazil, September 2018.
[9] Matias Martinez, Laurence Duchien, and Martin Monperrus. Automat-

ically extracting instances of code change patterns with ast analysis. In
Proceedings of the 2013 IEEE International Conference on Software

Maintenance, ICSM ’13, pages 388–391, Washington, DC, USA, 2013.
IEEE Computer Society.

[10] T. Molderez, R. Stevens, and C. De Roover. Mining change histories
for unknown systematic edits. In 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories (MSR), pages 248–256,
May 2017.

[11] H. Osman, M. Lungu, and O. Nierstrasz. Mining frequent bug-fix
code changes. In 2014 Software Evolution Week - IEEE Conference

on Software Maintenance, Reengineering, and Reverse Engineering

(CSMR-WCRE), pages 343–347, Feb 2014.
[12] Kai Pan, Sunghun Kim, and E. James Whitehead, Jr. Toward an

understanding of bug fix patterns. Empirical Softw. Engg., 14(3):286–
315, June 2009.

[13] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera,
and Lionel Seinturier. Spoon: A library for implementing analyses and
transformations of java source code. Softw. Pract. Exper., 46(9):1155–
1179, September 2016.

[14] Reudismam Rolim, Gustavo Soares, Rohit Gheyi, and Loris D’Antoni.
Learning quick fixes from code repositories, 2018.

[15] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monper-
rus, and Marcelo A. Maia. Dissection of a bug dataset: Anatomy of 395
patches from defects4j.

[16] Mauricio Soto and Claire Le Goues. Common statement kind changes
to inform automatic program repair. In Proceedings of the 15th

International Conference on Mining Software Repositories, MSR ’18,
pages 102–105, New York, NY, USA, 2018. ACM.

[17] Davide Spadini, Maurcio Aniche, and Alberto Bacchelli. PyDriller:

Python Framework for Mining Software Repositories. 2018.
[18] Hao Zhong and Zhendong Su. An empirical study on real bug

fixes. In Proceedings of the 37th International Conference on Software

Engineering - Volume 1, ICSE ’15, pages 913–923, Piscataway, NJ,
USA, 2015. IEEE Press.

https://github.com/Spirals-Team/coming/

	I Introduction
	II Approach
	II-A Goals of Coming
	II-B Coming Inputs
	II-C AST-based Analysis of Revisions
	II-C1 AST Representation of Files
	II-C2 Tree-Diff Comparison

	II-D Analysis of Diffs: Finding Instances of Change Pattern
	II-E Summarization of Results
	II-F Extending Coming

	III Evaluation
	III-A Experiment setup
	III-B Experimental Results

	IV Related work
	V Future Work
	VI Conclusion
	References

