
HAL Id: hal-03522732
https://uphf.hal.science/hal-03522732

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Empirical review of Java program repair tools: a
large-scale experiment on 2,141 bugs and 23,551 repair

attempts
Thomas Durieux, Fernanda Madeiral, Matias Martinez, Rui Abreu

To cite this version:
Thomas Durieux, Fernanda Madeiral, Matias Martinez, Rui Abreu. Empirical review of Java program
repair tools: a large-scale experiment on 2,141 bugs and 23,551 repair attempts. ESEC/FSE ’19:
27th ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Aug 2019, Tallinn, Estonia. pp.302-313, �10.1145/3338906.3338911�. �hal-
03522732�

https://uphf.hal.science/hal-03522732
https://hal.archives-ouvertes.fr

Empirical Review of Java Program Repair Tools
A Large-Scale Experiment on 2,141 Bugs and 23,551 Repair Attempts

Thomas Durieux
INESC-ID and IST, University of Lisbon, Portugal

thomas@durieux.me

Fernanda Madeiral
Federal University of Uberlândia, Brazil

fer.madeiral@gmail.com

Matias Martinez
University of Valenciennes, France

matomartinez@gmail.com

Rui Abreu
INESC-ID and IST, University of Lisbon, Portugal

rui@computer.org

ABSTRACT

In the past decade, research on test-suite-based automatic program
repair has grown significantly. Each year, new approaches and im-
plementations are featured in major software engineering venues.
However, most of those approaches are evaluated on a single bench-
mark of bugs, which are also rarely reproduced by other researchers.
In this paper, we present a large-scale experiment using 11 Java
test-suite-based repair tools and 5 benchmarks of bugs. Our goal
is to have a better understanding of the current state of automatic
program repair tools on a large diversity of benchmarks. Our inves-
tigation is guided by the hypothesis that the repairability of repair
tools might not be generalized across different benchmarks of bugs.
We found that the 11 tools 1) are able to generate patches for 21% of
the bugs from the 5 benchmarks, and 2) have better performance on
Defects4J compared to other benchmarks, by generating patches for
47% of the bugs from Defects4J compared to 10-30% of bugs from
the other benchmarks. Our experiment comprises 23,551 repair
attempts in total, which we used to find the causes of non-patch
generation. These causes are reported in this paper, which can help
repair tool designers to improve their techniques and tools.

ACM Reference Format:

Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.
Empirical Review of Java Program Repair Tools: A Large-Scale Experiment
on 2,141 Bugs and 23,551 Repair Attempts. In Proceedings of The 27th ACM
Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE 2019). ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Software bugs decrease the quality of software systems from the
point of view of the software system users. Manually repairing
bugs is well-known as being a difficult and time-consuming task.
To address this activity automatically, a new field of research has
emerged, named automatic program repair. Automatic program
repair consists of automatically finding solutions 100% executable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

to software bugs, without human intervention [30, 31]. The most
popular approach to automatically repair bugs is to create a patch
using the test suite of the program as the specification of its expected
behavior. This type of approach is known as test-suite-based program
repair [30], which has been applied in several repair tools in the last
decade [2, 6, 10, 13, 14, 17, 18, 23, 24, 27, 28, 37, 42, 43, 45–47, 50].

The repair tools are used in empirical evaluations so that the
repairability of the repair approaches they implement is measured.
These evaluations are reported in the literature in two ways: when
a new repair approach is proposed (e.g. [50]), or when a dedicated
full contribution on evaluating existing repair tools is reported (e.g.
[26, 33, 48]). The evaluations consist of four main aspects in general:
1) [benchmark] the selection of benchmarks of bugs; 2) [execution]
the collection of data by executing repair tools on the selected
bugs; 3) [observed aspect] an investigation on the effectiveness
of the repair approach regarding some criteria (e.g. repairability,
correctness, and repair time); and finally 4) [comparison/discussion]
the comparison of repair approaches and discussion.

A major problem with all previous evaluations, focusing on
repair for Java programs, is that they are widely performed on the
same benchmark of bugs: Defects4J [16]. In theory, this should not
be a problem if Defects4J is not biased; however, no benchmark
is perfect [21]. Benchmarks should reflect the representativeness
of the bugs and the projects they come from in the real world.
The extent of the representativeness of benchmarks for real-world
bugs is unknown, because even the distribution of the real world
bugs is unknown. Therefore, by using a single benchmark when
evaluating repair tools, a bias can be introduced, which makes hard
to generalize the performance of repair tools.

In this paper, we report on a large experiment conducted on
11 test-suite-based repair tools for Java using other benchmarks
of bugs than Defects4J. The primary goal of this experiment is
to investigate if the existing repair tools behave in a similar way
across different benchmarks. If a repair tool performs significantly
better on one benchmark than on others, we say that the repair
tool overfits the benchmark. The secondary goal is to understand
the causes of non-patch generation from a practical view, which,
to the best of our knowledge, has not been subject of investigation
by the repair community.

To achieve our goals, we designed our experiment considering
three out of the four main aspects usually used to evaluate repair
tools: a) on benchmark, we use 5 benchmarks (including Defects4J),
totaling 2,141 bugs; b) on execution, we run 11 repair tools on the
2,141 bugs, using a framework we developed to automatize and

ar
X

iv
:1

90
5.

11
97

3v
1

 [
cs

.S
E

]
 2

8
M

ay
 2

01
9

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Durieux, et al.

simplify the execution of repair tools on different benchmarks;
c) on observed aspect, we analyze the repairability of the tools,
focusing on their performance across the different benchmarks.
We do not target the fourth aspect of evaluations, which is about
comparing repair tools. Our goal is not to compare repair tools
among themselves, but to compare the behavior of each tool among
different benchmarks.

Through our experiment, we first observed that all 11 repair
tools are able to generate a test-suite adequate patch for bugs from
each of the 5 benchmarks. However, when analyzing the proportion
of bugs patched by the repair tools per benchmark, we found that
indeed the repair tools perform better onDefects4J than on the other
benchmarks. Finally, we found six main reasons why repair tools do
not succeed to generate patches for bugs. For instance, we observed
that incorrect fault localization and multiple fault locations have a
significant impact on patch generation. These reasons are valuable
for repair tool designers and researchers to improve their tools.

To sum up, our contributions are:
• A large-scale experiment of 11 repair tools on 2,141 bugs
from 5 benchmarks: this is the largest study on automatic
program repair ever (i.e. 11 x 2,141 = 23,551 repair attempts);

• A repair execution framework, named RepairThemAll, that
adds an abstraction around repair tools and benchmarks,
which can be further extended to support additional repair
tools and benchmarks;

• A novel study on the repairability of repair tools across
multiple benchmarks, where the goal is to investigate if
there exists the benchmark overfitting problem, i.e. that the
repair tools perform significantly better on the extensively
used benchmark Defects4J than on other benchmarks;

• A thorough study on the non-patch generation cases on the
23,551 repair attempts that did not result in patches.

The remainder of this paper is organized as follows. Section 2
presents the literature on the evaluation of test-suite-based repair
tools for Java, which grounds the motivation of our experiment.
Section 3 presents the design of our study, including the research
questions and the data collection and analysis. Section 4 presents
the results, followed by the discussion in Section 5. Finally, Section 6
presents the related works, and Section 7 presents the final remarks.

2 STATE OF AFFAIRS ON TEST-SUITE-BASED

AUTOMATIC REPAIR TOOLS FOR JAVA

Automatic repair tools meet benchmarks of bugs when they are
evaluated. In this section, we present a review of the literature on
the existing evaluations of repair tools, which is based on a two-step
protocol: 1) gathering repair tools, and 2) gathering information on
their evaluations, focusing on the used benchmarks and the number
of bugs given as input to the repair tools.

To gather repair tools, we searched the existing living review on
automatic program repair [32] for test-suite-based repair tools for
Java, which is the focus of this work: we found 24 repair tools that
meet this criterion. Then, we gathered scientific papers containing
evaluations of these tools. There are two types of papers that are
interesting for us: the first type consists of the presentation of a new
repair approach, which also includes an evaluation conducted using
a tool that implements the approach (e.g. [47]); and the second type

Table 1: Test-suite-based program repair tools for Java.

Repair tool Benchmark used # Bugs # Patcheda # Fixedbin evaluation

Generate-and-validate

ACS [46] Defects4J 224 23 17

ARJA [50] Defects4J 224 59 18
QuixBugs [48] 40 4 2
Defects4J 224 25 22CapGen [42] IntroClassJava 297 – 25

Cardumen [28] Defects4J 356 77 –
QuixBugs [48] 40 5 3

DeepRepair [43] Defects4J 374 51 –

Elixir [37] Defects4J 82 41 26
Bugs.jar 127 39 22

GenProg-A [50] Defects4J 224 36 –
HDRepair [18] Defects4J 90 – 23
Jaid [2] Defects4J 138 31 25

jGenProg [27]
Defects4J 224 29 –
Defects4J [26] 224 27 5
QuixBugs [48] 40 2 0
Defects4J 224 22 –
Defects4J [26] 224 22 1jKali [27]
QuixBugs [48] 40 2 1

jMutRepair [27] Defects4J 224 17 –
QuixBugs [48] 40 3 1

Kali-A [50] Defects4J 224 33 –
LSRepair [23] Defects4J 395 38 19
PAR [17] PARDataset 119 27 –

RSRepair-A [50] Defects4J 224 44 –
QuixBugs [48] 40 4 2

SimFix [14] Defects4J 357 56 34
SketchFix [13] Defects4J 357 26 19
SOFix [24] Defects4J 224 – 23
ssFix [45] Defects4J 357 60 20
xPAR [18] Defects4J 90 – 4

Semantics-driven

Defects4J 224 27 –DynaMoth [10] QuixBugs [48] 40 2 1

Nopol [47]
ConditionDataset 22 17 13
Defects4J [26] 224 35 5
QuixBugs [48] 40 3 1

Metaprogramming-based

NPEDataset 16 14 –NPEFix [6] QuixBugs [48] 40 2 1
a A patched bug means that a repair tool fixed it with a test-suite adequate patch.
b A fixed bug means that a repair tool fixed it with a test-suite adequate patch that
was confirmed to be correct.

consists of an empirical evaluation carried out on already created
tools, which is a specific work to evaluate repair tools by running
them on benchmarks of bugs (e.g. [26]). We gathered 18 papers
from the first type of papers (more than one tool can be presented
in the same paper) and two papers from the second type.

Table 1 summarizes our review on the existing evaluations of the
24 repair tools based on the 20 scientific papers. The first column
presents the repair tools, which are grouped by the well-known
categories generate-and-validate and semantics-based approaches,
plus metaprogramming-based. We named the latter category for
repair tools that first create a metaprogram of the program under
repair and then explore it at runtime, which in the end uses the
runtime information to generate patches.

Each repair tool is associated with one or more benchmarks
used in its evaluation in the table. When a repair tool has been
evaluated in more than one benchmark (or more than once in
the same benchmark), we place first the benchmark used in the
paper that presented the tool (i.e. first evaluation), followed by
the other benchmarks with the reference for the posterior studies.

Empirical Review of Java Program Repair Tools ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

For instance, in the paper that jGenProg [27] is presented, there is
an evaluation on Defects4J: this evaluation has no citation in the
second column of the table because the evaluation is in jGenProg’s
paper. Later, it was evaluated again on Defects4J [26] and also on
QuixBugs [48], which contain citations of the empirical evaluation
papers in the table. The table also presents additional information
on the evaluations, which are the number of bugs given as input
to the repair tools, and the number of bugs for which the tools
generated a test-suite adequate patch (i.e. patched bugs) and a
correct patch (i.e. fixed bugs), reported by the gathered papers.

In total, we found 38 evaluations of the 24 repair tools. Out of 24,
22 repair tools were evaluated on (a subset of) bugs from Defects4J,
and nine of them were recently evaluated on the QuixBugs bench-
mark [22]. In some exceptional cases, the benchmarks Bugs.jar [36]
and IntroClassJava [11] were also used. However, the number of ex-
isting evaluations in terms of number of repair tools versus number
of benchmarks is low compared to all possible combinations. There
are some benchmarks that were rarely used or never used so far:
this is partially explained by the fact that some benchmarks were
recently published (e.g. Bears [25]), thus they were not available
when some repair tools were published.

We also observe that three repair tools were originally evaluated
on datasets that were not presented in the literature in a research
paper dedicated for them (i.e. PARDataset [17], ConditionDataset
[47] and NPEDataset [6]). This is the case of the first evaluations
of PAR, Nopol, and NPEFix. However, these repair tools were later
evaluated on formally proposed benchmarks, except for PAR, which
is not publicly available. PAR was later reimplemented, resulting in
the tool xPAR [18], which was then evaluated on Defects4J.

3 STUDY DESIGN

The extensive usage of Defects4J at evaluating repair toolsmotivates
our study. Our goal is to investigate if the repair tools have a similar
performance on other benchmarks of bugs. In this section, we
present the design of our study, including the research questions,
the systematic selection of repair tools and benchmarks of bugs,
and the data collection and analysis.

3.1 Research Questions

RQ1. [Repairability] To what extent do test-suite-based repair
tools generate patches for bugs from a diversity of bench-
marks?
This research question guides us towards the investigation
on the ability of the existing repair tools to generate test-suite
adequate patches for bugs from the selected benchmarks.

RQ2. [Benchmark overfitting] Is the repair tools’ repairability sim-
ilar across benchmarks?
The repair tools have been extensively evaluated on De-
fects4J. Our goal in this research question is to investigate if
they repair bugs from other benchmarks to a similar extent
than they repair bugs from Defects4J.

RQ3. [Non-patch generation] What are the causes that lead repair
attempts to not generate patches?
Existing evaluations focus on the successful cases, i.e. the
bugs that a given repair tool generated patches for. However,
to the best of our knowledge, there is no study that investi-
gates the unsuccessful cases, i.e. a repair tool tried to repair

Table 2: Selected repair tools based on our inclusion criteria.

Non-fulfillment Criteria Repair Tools

Ex
cl
ud

ed
(1
3)

Not public (C1) Elixir, PAR, SOFix, xPAR
Not working (C2) ACS, CapGen, DeepRepair
Only compatible with Defects4J (C3) LSRepair, SimFix
Faulty class/method required (C4) HDRepair, Jaid, SketchFix
Others ssFix

In
cl
ud

ed
(1
1) ARJA, Cardumen, DynaMoth, jGenProg, GenProg-A, jKali,

Kali-A, jMutRepair, Nopol, NPEFix, RSRepair-A

a bug but no patch was generated. Our goal in this research
question is to find the causes of non-patch generation so
that the repair community can focus on practical limitations
and improve their repair tools.

3.2 Subject Repair Tools

To include a Java test-suite-based program repair tool in our study,
it must meet the following four inclusion criteria:

• Criterion #1. The repair tool ought to be publicly available: our
study involves the execution of repair tools, therefore tools that
are not publicly available are excluded. We exclude tools with
this criterion when 1) the paper where the tool was described
does not include a link for the tool, 2) we cannot find the tool
on the internet, and 3) we received an answer by email from the
authors of the tool explaining why the tool is not available (e.g.
Elixir has a confidentiality issue) or no answer at all.

• Criterion #2. The repair tool ought to be possible to run: some
tools are publicly available, but they are not possible to run for
diverse issues (e.g. ACS uses GitHub, which recently changed its
interface and does not allow programmed queries).

• Criterion #3. The repair tool ought to be possible to run on bugs
from different benchmarks beyond the one used in its original
evaluation: we cannot run tools in other benchmarks if they are
hardcoded to specific ones (e.g. SimFix is currently working only
for Defects4J).

• Criterion #4. The repair tool ought to require only the source
code of the program under repair and its test suite used as oracle.
These two elements are the two inputs specified in the problem
statement of test-suite-based automatic program repair [31].

After checking on all 24 repair tools presented in Table 1, we
found 12 tools that meet the inclusion criteria outlined. One of
them, ssFix, was further excluded because we had issues to run it,
so we ended up with 11 repair tools for our experiment. Table 2
presents the excluded and included tools, and for the excluded ones,
it also shows the criterion they did not meet. Note that, among
the included tools, we have eight generate-and-validate tools, the
two semantics-based tools, and the only metaprogramming-based
tool. Therefore, we cover the three approach categories. We briefly
describe each selected repair tool in the remainder of this section.

jGenProg [27] and GenProg-A [50] are Java implementations
of GenProg [41], which is for C programs. GenProg is a redundancy-
based repair approach [29] that generates patches using existing
code (aka the ingredient) from the system under repair, i.e., it does
not synthesize new code. GenProg works at the statement level,

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Durieux, et al.

and the repair operations are insertion, removal, and replacement
of statements.

jKali [27] and Kali-A [50] are Java implementations of Kali
[35]. Kali was conceived to show that most of the patches synthe-
sized by GenProg over the ManyBugs benchmark [20] consist of
avoiding the execution of code. The operators implemented in Kali
are removal of statements, modification of if conditions to true
and false, and insertion of return statements.

jMutRepair [27] is an implementation of the mutation-based
repair approach presented by Debroy and Wong [4] for Java. It
considers three kinds of mutation operators: relational (e.g. ==),
logical (e.g. &&) and unary (i.e. addition or removal of the negation
operator !). jMutRepair performs mutations on those operators in
suspicious if condition statements.

Nopol [47] is a semantics-based repair tool dedicated to repair
buggy if conditions and to add missing if preconditions. Nopol
uses the so-called angelic values to determine the expected behavior
of suspicious statements: an angelic value is an arbitrary value that
makes all failing test cases from the program under repair pass.
Nopol then collects those values at runtime and encodes them into
a Satisfiability Modulo Theory (SMT) formula to find an expression
that matches the behavior of the angelic value. When the SMT
formula is satisfiable, Nopol translates the SMT solution into a
source code patch.

DynaMoth [10] is a repair tool integrated into Nopol that also
targets buggy and missing if conditions. The difference between
DynaMoth and Nopol is that instead of using an SMT formula
to generate the patch, it uses the Java Debug Interface to access
the runtime context and collects variable and method calls. Then,
DynaMoth combines those variables and method calls to generate
more complex expressions until it finds one that has the expected
behavior. This allows the generation of patches containing method
calls with parameters, for instance.

NPEFix [6] is different from the generate-and-validate and
semantics-based tools, it is a metaprogramming-based tool. It means
that NPEFix modifies the program under repair to include several
repair strategies that can be activated during the runtime. NPEFix
repairs programs that crash due to a null pointer exception. NPEFix
runs the failing test-case several times and activates a different
repair strategy for each execution. In the end, knowing the repair
strategies that have worked, together with information of the con-
text that they worked, a patch is created. Note that NPEFix works
in a similar way than semantics-based tools in this last step: if a
patch is found, it means the patch is already satisfactory.

ARJA [50] is a genetic programming approach that optimizes
the exploration of the search space by combining three different
approaches: a patch representation for decoupling properly the
search subspaces of likely-buggy locations, operation types and
ingredient statements; a multi-objective search optimization for
minimizing the weighted failure rate and for searching simpler
patches; and a method/variable scope matching for filtering the
replacement/inserted code to improve compilation rate.

Cardumen [28] is a test-suite-based repair approach that works
at the level of expressions. It synthesizes new expressions (that are
used to replace suspicious expressions) as follows. First, it mines
templates (i.e., piece of code at the level of expression, where the
variables are replaced by placeholders) from the code under repair.

Table 3: Selected benchmarks of bugs and their sizes.

Benchmark # Projects # Bugs LOC (Java)

Bears [25] 72 251 62,597
Bugs.jar [36] 8 1158 212,889
Defects4J [16] 6 395 129,592
IntroClassJava [11] 6 297 230
QuixBugs [22] 40 40 190

Total 130 2,141 146,428

Then, for creating a candidate patch that replaces a suspicious
expression se , Cardumen selects a compatible template (i.e. the
evaluation of the template and the se return compatible types) and
creates a new expression from it by replacing all its placeholders
with variables frequently used in the context of se .

RSRepair-A [50] is a Java implementation of RSRepair [34].
RSRepair repairs is a test-suite-based repair approach for C that
has been created to compare the performance between genetic
programming (GenProg) and random search in the case of automatic
program repair. It showed that in 23/24 RSRepair finds patches faster
than GenProg.

3.3 Subject Benchmarks of Bugs

To select benchmarks of bugs for our study, we defined the following
three inclusion criteria:

• Criterion #1: The benchmark must contain bugs in the Java lan-
guage: this criterion excludes benchmarks such as ManyBugs
[21], IntroClass [21], Codeflaws [40] and BugsJS [12].

• Criterion #2: The benchmark must be peer-reviewed, presented
in the literature in a research paper dedicated for it: this criterion
excludes benchmarks such as PARDataset [17], ConditionDataset
[47], and NPEDataset [6].

• Criterion #3: The benchmark must include, for each bug, at least
one failing test case: this criterion excludes benchmarks such as
iBugs [3].

After searching the literature for benchmarks that meet our
criteria, we ended up with 5 benchmarks. Table 3 summarizes them
by presenting their sizes in number of projects, bugs and lines of
code. We present a brief description of them as follows.

Defects4J [16] contains 395 bugs from six widely used open
source Java projects with an average size of 129,592 lines of Java
code. The bugs were extracted by the identification of bug fixing
commits with the support of the bug tracking system and the exe-
cution of tests on the bug fixing program version and its reverse
patch (buggy version). Despite the fact this benchmark was first
proposed to the software testing community, it has been used for
several works on automatic program repair.

Bugs.jar [36] contains 1,158 bugs from eight Apache projects
with an average size of 212,889 lines of Java code. It was created
using the same strategy than Defects4J. Its main contribution is the
high number of bugs.

Bears [25] contains 251 bugs from 72 different GitHub projects
with an average size of 62,597 lines of Java code. It was created by
mining software repositories based on commit building state from
Travis Continuous Integration. Bears has the largest diversity of
project compared to previous bug benchmarks.

Empirical Review of Java Program Repair Tools ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

IntroClassJava [11] contains 297 bugs from six different student
projects. It is a transpiled version to Java of the bugs from the C
benchmark IntroClass [21]. In the transpiled version, the projects
have on average 230 lines of code.

QuixBugs [22] contains 40 single line bugs from 40 programs,
which are translated into both Java and Python languages. Each
program corresponds to the implementation of one algorithm such
as Quicksort and contains on average 190 lines of code. This is the
first multi-lingual program repair benchmark.

3.4 Building a Repair Execution Framework

To run the repair tools on different benchmarks of bugs, we created
an execution framework named RepairThemAll, which provides
an abstraction around repair tools and benchmarks. Figure 1 illus-
trates the overview of the framework. It is composed of three main
components: 1) repair tool plug-in, where there is the abstraction
around repair tools, allowing the addition and removal of tools, 2)
benchmark plug-in, where there is the abstraction around bench-
marks, also allowing the addition and removal of benchmarks, and
3) repair runner, which works as a façade for the execution of repair
tools on specific bugs.

For the creation of the framework, we performed three main
tasks, one for each component. First, for repair tool plug-in, we
identify the common parameters that are required by the repair
tools, which we refer to as abstract parameters. We then map these
abstract parameters to the actual parameters of each repair tool. This
is necessary because the repair tools use different parameter names
and input formats. For instance, an abstract parameter is the source
code folder path, and the actual parameter for source code folder
path in ARJA is DsrcJavaDir, but in jGenProg is srcjavafolder.
We identify eight common parameters for the repair tools: (1) source
code path, (2) test path, (3) binary path of the source code, (4) binary
path of the tests, (5) the classpath, (6) the java version (compliance
level), (7) the failing test class name, and (8) workspace directory.
RepairThemAll also supports the setting of actual parameters
existing in the repair tools to tune specific executions, i.e., actual
parameters that are not mapped to any abstract parameter.

Then, for benchmark plug-in, we identify the abstract operations
that should be performed to use the bugs from benchmarks (e.g.
check out a buggy program given a bug id). We map these abstract
operations to the actual operations of each benchmark when they
are available. We define three required bug usage operations to
be able to use the benchmark with repair tools: (1) to check out
a specific bug (buggy source code files) at a given location, (2) to
compile the buggy source code and the tests, and (3) to provide
information on the bug to be given as input to repair tools (i.e. the
eight parameters previously mentioned, except workspace direc-
tory). If the bug is from a multi-module project, the source code and
test paths should be related to the module that contains the bug.
Only Defects4J provides bug usage operations that fully covers the
required abstract operations. Consequently, we had to build above
the four other benchmarks the missing operations, e.g. to check
out a bug from the QuixBugs benchmark.

Finally, for the repair runner, we design the input and output in
a simple way so that one can easily interact with the RepairThe-
mAll framework as well as interpret the results. For the input,

The RepairThemAll Framework

Abstract operations

Benchmark Plugin

Abstract parameters

Concrete parameters

Concrete operations

Repair Runner

Tool Plugin

Checkout & Compile

A Benchmark

Operations: bug
info, checkout, compile Bugs

A bug

Repair attempts

Concrete tool output A repair tool

 Input
- Repair tool name
- Benchmark name
- Bug id

 Output
- Normalised output
- Repair attempt log

Figure 1: The RepairThemAll framework.

one can start an execution of repair tools on benchmarks as a
simple command line: for instance, the command ./repair.py
Nopol –benchmark Defects4J –id Chart-7 starts the execu-
tion of Nopol on the bug Chart 7 of Defects4J. At the end of this ex-
ecution, the repair runner generates a standardized output divided
into two files: the log of the repair attempt execution (repair.log),
and the normalized JSON file (results.json) containing the loca-
tion of the patches generated by the tools, if any, and the textual
difference between the patches and their buggy program versions.
This standardized output is due to the abstraction around the output
format (output normalization) we create to simplify the analysis
and the readability of the results from the different repair tools.

The RepairThemAll framework currently contains 11 repair
tools and 5 benchmarks of bugs, and it allows the plug-in of other
ones to help the repair community to compare different approaches.
Moreover, the framework allows users to set repair tool executions
such as the timeout and the limit of generated patches. It is publicly
available at [7], which includes a tutorial with all the steps to use it
and to integrate new repair tools and new benchmarks.
3.5 Data Collection and Analysis

To answer our research questions, we executed the 11 repair tools
on the 5 benchmarks using RepairThemAll, resulting in patches
that are further used for analysis. In this section, we describe the
repair tools’ setup (Section 3.5.1) and their execution (Section 3.5.2),
and the analysis we performed on the repair attempts to determine
the possible causes of non-patch generation (Section 3.5.3).

3.5.1 Repair tools’ setup. For this experiment, we set the time
budget to two hours per repair attempt: a repair attempt consists of
the execution of one repair tool over one bug. We also configured
the repair tools to stop the execution of repair attempts when they
already generated one patch. However, ARJA, GenProg-A, Kali-A,
RSRepair-A, and NPEFix do not have this option, they stop their
repair attempts when they consume their own tentative budget, or
by timeout. Moreover, we configured repair tools to run on one
predefined random seed: due to the huge computational power
required for this experiment, we were not able to run the repair
tools with additional seeds. Finally, Table 4 presents the version of
each repair tool that we used in this study. The logs of the repair
attempts are available at [8].

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Durieux, et al.

Table 4: The used version of each repair tool.

Repair tool Framework GitHub repository Commit id

ARJA, GenProg-A,
Kali-A, RSRepair-A Arja yyxhdy/arja e60b990f9

Cardumen, jGenProg,
jKali, jMutRepair Astor SpoonLabs/astor 26ee3dfc8

DynaMoth, Nopol Nopol SpoonLabs/nopol 7ba58a78d

NPEFix – Spirals-Team/npefix 403445b9a

3.5.2 Large scale execution. To our knowledge, our experimental
setup is the biggest one on patch generation studies, in terms of
number of repair tools and bugs, and also in execution time. In total,
we executed 11 repair tools on 2,141 bugs from 130 open-source
projects that the selected 5 benchmarks provide. This represents
23,551 repair attempts, which took 314 days and 12.5 hours of
combined execution, almost a year of continuous execution. This
experiment would not be possible without the support of the cluster
Grid’5000 [1] that provided us the required computing power to
conduct this work.

3.5.3 Finding causes of non-patch generation. Prior studies on patch
generation mainly focused on the ability of approaches to generate
patches, and do not investigate the reasons why non-patch genera-
tion happens. The study on non-patch generation is important to
make research progress so that authors of repair tools can improve
their tools. Since there is a lack of knowledge on that subject, we are
not able to automatically perform the detection of the reasons why
patches are not generated for bugs, and therefore manual analysis is
required. Due to the scale of our experiment setup including 23,551
different patch generation attempts, it is unrealistic to manually
analyze each attempt log to understand what happened. We identify
the major causes of non-patch generation by analyzing a sample of
the repair attempt logs. We do not predefine the sample because we
observe during preliminary investigation that identical behaviors
happen for groups of repair attempts. For instance, we found that
for all bugs from a specific project, all the repair tools have the
same issue in the fault localization. For that reason, predefining a
sample is not optimal, because we would analyze attempt logs that
we already know what is the cause of non-patch generation.

4 RESULTS

The results of our empirical study, as well as the answers to our
research questions, are presented in this section.

4.1 [RQ1] Repairability of the 11 Repair Tools

In this research question, we analyze the repairability of the 11
repair tools on the total of 2,141 bugs. For that, we calculated the
number of patched bugs and also the number of bugs that are
commonly patched by tool.

Figure 2 presents the repairability of the repair tools in descend-
ing order by the number of patched bugs. For each tool, it shows the
number of unique bugs patched by the tool (dark grey), the number
of patched bugs that other repair tools also patched (light grey), and
the total number of patched bugs with the proportion over all 2,141
included in this study. For instance, Nopol synthesizes patches for

0 50 100 150 200 250

Nopol
DynaMoth

Arja
Kali-A

RSRepair-A
GenProg-A
jGenProg

jMutRepair
jKali

Cardumen
NPEFix

156 213 (9.9%)
131 206 (9.6%)

125 146 (6.8%)
106 118 (5.5%)

90 95 (4.4%)
74 77 (3.6%)
59 65 (3%)
55 65 (3%)

52 52 (2.4%)
34 46 (2.1%)

7 15 (0.7%)

57
75

21
12
5
3
6
10

12
8

Patched bugs

Unique
Overlapped

Figure 2: Repairability of the 11 repair tools on 2,141 bugs.
1

213 bugs in total (9.9% of all bugs), where 57 are uniquely patched
by Nopol, and 156 are patched by Nopol and other tools.

We observe that Nopol, DynaMoth, and ARJA are the three tools
that generate test-suite adequate patches for the highest number
of bugs, with respectively 213, 206 and 146 patched bugs in total.
NPEFix, on the other hand, generates patches for the fewest number
of bugs (15). It can be explained by the narrow repair scope of this
tool, i.e. bugs exposed by null pointer exception.

On bugs uniquely patched by tools, we observe that only jKali
failed to generate patches for bugs that are not patched by other
tools, and that DynaMoth is the tool that patches the highest num-
ber of unique bugs. However, NPEFix is the tool that has the highest
proportion of unique patched bugs, i.e. 53% of the 15 bugs patched
by NPEFix are unique.

The overlapping between each pair of repair tools in number of
bugs is presented in Table 5. In the case where the column name
and the line name are the same (main diagonal), it presents the
number of uniquely bugs patched by the tool. For instance, 20 bugs
have been uniquely patched by ARJA, which repairs other 66 bugs
that are also patched by GenProg-A.

We observe a large overlap between repair tools that share the
same patch generation framework, i.e. the framework where the
repair tools are implemented (see Table 4). For instance, ARJA has
an overlap of 45% with GenProg-A, 56% with Kali-A, and 55% with
RSRepair-A, all implemented in the Arja framework. However,
ARJA has an overlap ranging from 2% to 36% with the other repair
tools. DynaMoth has an overlap of 55% with Nopol, but only 0%
to 26% with the other tools. Each tool implemented in the Astor
framework (e.g. jGenProg) has a big overlap with other tools in
Astor. Moreover, the tools in Astor also present high overlapping
with the tools in the Arja framework, which are tools sharing
similar repair approaches.

Answer to RQ1. To what extent do test-suite-based repair

tools generate patches for bugs from a diversity of bench-

marks? The 11 repair tools are able to generate patches for bugs
ranging from 15 to 213 bugs, from a total of 2,141 bugs. They
are complementary to each other, because 10/11 repair tools fix
unique bugs (all but jKali). We also observe that the overlapped
repairability of the tools is impacted by their similar implemented
repair approaches, and also by the patch generation framework
where they are implemented.

1The full list of the patched bugs and the textual patches are available in [9].

https://github.com/yyxhdy/arja
https://github.com/SpoonLabs/astor/
https://github.com/SpoonLabs/nopol
https://github.com/Spirals-Team/npefix

Empirical Review of Java Program Repair Tools ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

Table 5: The number of overlapped patched bugs per repair tool. Each row r presents the percentage of overlapped patched bugs
of one tool tr with the rest of the tools. For instance, 45% of the bugs patched by ARJA (row 2) are also patched by GenProg-A

(column 3). On the contrary, 85% of the bugs patched by GenProg-A (row 3) are also patched by ARJA (column 2).

ARJA GenProg-A Kali-A RSRepair-A Cardumen jGenProg jKali jMutRepair Nopol DynaMoth NPEFix

ARJA 13% (20) 45% (66) 56% (82) 55% (81) 15% (23) 30% (44) 27% (40) 19% (29) 36% (53) 32% (48) 2% (4)
GenProg-A 85% (66) 3% (3) 63% (49) 81% (63) 22% (17) 40% (31) 37% (29) 23% (18) 42% (33) 40% (31) 2% (2)
Kali-A 69% (82) 41% (49) 9% (11) 46% (55) 16% (20) 28% (34) 37% (44) 23% (28) 47% (56) 45% (54) 1% (2)
RSRepair-A 85% (81) 66% (63) 57% (55) 5% (5) 17% (17) 38% (37) 31% (30) 21% (20) 37% (36) 36% (35) 2% (2)
Cardumen 50% (23) 36% (17) 43% (20) 36% (17) 26% (12) 65% (30) 45% (21) 32% (15) 21% (10) 26% (12) 4% (2)
jGenProg 67% (44) 47% (31) 52% (34) 56% (37) 46% (30) 9% (6) 55% (36) 41% (27) 29% (19) 36% (24) 3% (2)
jKali 76% (40) 55% (29) 84% (44) 57% (30) 40% (21) 69% (36) 0% (0) 57% (30) 53% (28) 67% (35) 1% (1)
jMutRepair 44% (29) 27% (18) 43% (28) 30% (20) 23% (15) 41% (27) 46% (30) 15% (10) 58% (38) 30% (20) 1% (1)
Nopol 24% (53) 15% (33) 26% (56) 16% (36) 4% (10) 8% (19) 13% (28) 17% (38) 26% (57) 53% (114) <1% (2)
DynaMoth 23% (48) 15% (31) 26% (54) 16% (35) 5% (12) 11% (24) 16% (35) 9% (20) 55% (114) 36% (75) <1% (1)
NPEFix 26% (4) 13% (2) 13% (2) 13% (2) 13% (2) 13% (2) 6% (1) 6% (1) 13% (2) 6% (1) 53% (8)

4.2 [RQ2] Benchmark Overfitting

In this research question, we compare the repairability of the repair
tools on the bugs from the extensively used benchmark Defects4J
with their repairability on the other benchmarks included in this
study, which are Bears, Bugs.jar, IntroClassJava, and QuixBugs.

Table 6 shows the number of bugs that have been patched by
each repair tool per benchmark. We first observe that Defects4J is
the benchmark with the highest number of unique patched bugs
(187), which represents 47.34% of all Defects4J bugs. The next most
patched benchmarks are QuixBugs with 30% and IntroClassJava
with 20.87% of their bugs. This difference can also be observed in
the total number of generated patches per benchmark: Defects4J is
still dominating the ranking with 550 generated patches, even that
it contains fewer bugs than Bugs.jar (395 versus 1,158 bugs).

To test if the repairability of the repair tools is independent of
Defects4J, we applied the Chi-square test on the number of patched
bugs for Defects4J compared to the other benchmarks. The null
hypothesis of our test is that the number of patched bugs by a given
tool is independent of Defects4J. We observed in Table 6 that the
p-value is smaller than the significance level α < .05 for all repair
tools. Hence, we reject the null hypothesis for those 11 tools, and
we conclude that the number of patched bugs by them is dependent
of Defects4J. Therefore, repair tools overfit Defects4J.

The repairability of the repair tools on Defects4J cannot be only
explained by the repair approaches. We raised three hypotheses
that can potentially explain the repairability difference between
Defects4J and the other benchmarks: 1) there is a technical problem
in the repair tools, 2) the bug fix isolation performed on Defects4J
has an impact on repairing Defects4J bugs, and 3) the distribution of
the bug types in Defects4J is different from the other benchmarks.

1. [Technical problems in the repair tools] In RQ1, we ob-
served the importance of the implementation of the tools for the
repairability. One hypothesis that can explain the fact that repair
tools overfit Defects4J is that the authors of the repair tools have
debugged and tuned their frameworks for Defects4J and, conse-
quently, improved significantly the repairability of their tools for
this specific benchmark. For instance, they may have paid attention
to not let the dependencies of the repair tools to interfere with the
classpath of the Defects4J bugs, in order to preserve the behavior

of test executions on the Defects4J bugs. However, this issue can
affect the bugs of other benchmarks.

2. [Bug fix isolation performed on Defects4J] The second
hypothesis is related to the way that Defects4J has been created. A
bug fixing commit might include other changes that are not related
to the actual bug fix. Then given a bug fixing commit, the authors
of Defects4J recreated the buggy and patched program versions
so that the diff between the two versions contains only changes
related to the bug fix: this is called bug fix isolation. The resulted
isolated bug fixes facilitate studies on patches [39]. However, such a
procedure can potentially have an impact on the repairability of the
repair tools. For instance, by comparing the developer patch [15]
with the Defects4J patch [5] for the bug Closure-51, we observe that
the method isNegativeZero has been introduced in the buggy
program version, which contains part of the logic for fixing the
bug. The presence of this method in the buggy program version can
simplify the generation of patches by the repair tools or introduce
an ingredient for genetic programming repair approaches.

3. [Bug type distribution in the benchmarks] Our final hy-
pothesis is related to the distribution of the bugs in the different
benchmarks. Defects4J might containmore bugs that can be patched
by the repair tools compared to the other benchmarks. For that
reason, the bug type distribution of each benchmark should be
further analyzed and correlated with the repairability of the tools.

To our understanding, the first hypothesis is more plausible
since we observe in RQ1 that the implementation of the repair tools
has an impact on their repairability. However, additional studies
should be designed to identify which hypothesis, or a combination
of hypotheses, has an impact on the repairability of the repair tools
on Defects4J compared to other benchmarks.

Answer to RQ2. Is the repair tools’ repairability similar

across benchmarks? There is a difference in the repairability of
the 11 repair tools across benchmarks. Indeed, the repairability of
all tools is significantly higher for bugs from Defects4J compared
to the other four benchmarks, therefore we conclude that they
overfit Defects4J. In addition, we raised three hypotheses that
might explain this difference. The confirmation of those hypothe-
ses are full contributions themselves, therefore our study opens
the opportunity for several future investigations.

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Durieux, et al.

Table 6: Number of bugs patched by at least one test-adequate patch and the p-value of the Chi-square test of independence

between the number of patched bugs from Defects4J compared to the other benchmarks.

Repair tool

Benchmark

Bears (251) Bugs.jar (1,158) Defects4J (395) IntroClassJava (297) QuixBugs (40) Total (2,141) p-value

ARJA 12 (4%) 21 (1%) 86 (21%) 23 (7%) 4 (10%) 146 (7%) < 0.00001
GenProg-A 1 (<1%) 9 (<1%) 45 (11%) 18 (6%) 4 (10%) 77 (3%) < 0.00001
Kali-A 15 (5%) 24 (2%) 72 (18%) 5 (1%) 2 (5%) 118 (5%) < 0.00001
RSRepair-A 1 (<1%) 6 (<1%) 62 (15%) 22 (7%) 4 (10%) 95 (4%) < 0.00001
Cardumen 13 (5%) 12 (1%) 17 (4%) 0 (0%) 4 (10%) 46 (2%) 0.00107
jGenProg 13 (5%) 14 (1%) 31 (7%) 4 (1%) 3 (7%) 65 (3%) < 0.00001
jKali 10 (3%) 8 (<1%) 27 (6%) 5 (1%) 2 (5%) 52 (2%) < 0.00001
jMutRepair 7 (2%) 11 (<1%) 20 (5%) 24 (8%) 3 (7%) 65 (3%) 0.009309
Nopol 1 (<1%) 72 (6%) 107 (27%) 32 (10%) 1 (2%) 213 (10%) < 0.00001
DynaMoth 0 (0%) 124 (10%) 74 (18%) 6 (2%) 2 (5%) 206 (10%) < 0.00001
NPEFix 1 (<1%) 3 (<1%) 9 (2%) 0 (0%) 2 (5%) 15 (<1%) < 0.00001

Total 74 304 550 139 31 1,098
Total unique 25 (9.96%) 173 (14.93%) 187 (47.34%) 62 (20.87%) 12 (30%) 459 (21.44%)

Table 7: Percentage of repair attempts that failed by error.

Repair tool

Benchmark

Be
ar
s

Bu
gs
.ja
r

D
ef
ec
ts
4J

In
tr
oC

la
ss
Ja
va

Q
ui
xB

ug
s

Av
er
ag
e

ARJA 24.70 49.56 1.26 0 0 29.93
GenProg-A 88.04 78.06 7.08 0 2.5 53.90
Kali-A 24.70 50.08 4.81 0 0 30.87
RSRepair-A 87.25 79.27 6.83 0 2.5 54.41
Cardumen 47.41 70.46 48.60 0 5.0 52.73
jGenProg 45.01 63.29 12.65 0 5.0 41.94
jKali 44.62 64.42 12.40 0 5.0 42.45
jMutRepair 72.11 66.66 15.44 13.46 22.5 49.64
Nopol 28.68 60.27 45.31 0 2.5 44.37
DynaMoth 27.09 46.97 4.30 0 0 29.37
NPEFix 89.24 86.18 73.16 0 2.5 70.62

Average 52.62 65.02 21.08 1.22 4.31 45.48

4.3 [RQ3] Causes of Non-patch Generation

In this final research question, we analyze the repair attempts that
did not result in patches, and we identify the causes of non-patch
generation. The goal of this research question is to provide high-
lights to the automatic repair community on the causes of non-patch
generation so that authors of repair tools can improve their tools.

Table 7 and Table 8 present the percentage of repair attempts
that finished due to an error and by timeout, respectively. They
show that the repair attempts in error or timeout represent the
majority of all repair attempts (56.49%). The Bugs.jar benchmark is
the main contributor to this percentage. The size and complexity of
the Bugs.jar projects show the limitation of the current automatic
patch generation tools. Moreover, Table 7 shows that NPEFix is the
tool with the highest error rate, but this tool crashes when no null
pointer exception is found in the execution of the failing test case
that exposes a bug. Regarding the timeout in Table 8, jGenProg and
Cardumen are more subject to reach timeout.

Table 8: Percentage of repair attempts that failed by timeout.

Repair tool

Benchmark

Be
ar
s

Bu
gs
.ja
r

D
ef
ec
ts
4J

In
tr
oC

la
ss
Ja
va

Q
ui
xB

ug
s

Av
er
ag
e

ARJA 19.52 18.56 6.07 0 0 13.45
GenProg-A 6.37 7.08 9.62 0 5.0 6.44
Kali-A 1.19 2.76 0 0 0 1.63
RSRepair-A 7.17 6.99 8.86 0 5.0 6.35
Cardumen 4.38 61.57 19.74 0 2.5 37.50
jGenProg 48.20 28.23 71.39 83.83 85.0 47.31
jKali 0.79 4.05 1.77 0 0 2.61
jMutRepair 0.39 3.45 1.01 0 0 2.10
Nopol 0.39 0.51 0 0 0 0.32
DynaMoth 0 0.69 2.27 0 0 0.79
NPEFix 0 4.49 0.75 0 0 2.56

Average 8.04 12.58 11.04 7.62 8.86 11.01

We then manually analyzed the execution trace of the repair
attempts [8] to identify the causes of non-patch generation. The
methodology for this analysis is described in Section 3.5.3, and by
following it we identified six causes of non-patch generation.
1. [The repair tool cannot repair the bug] A logical problem is
that the repair tools do not have a patch that fixes the bug in their
search space. For instance, NPEFix is not able to generate patches
for bugs that are not related to null pointer exception. jGenProg is
not able to generate a patch when the repair ingredient is not in
the source code of the application, which happens frequently for
small programs like the ones in QuixBugs. New repair approaches
should be created to handle this cause of non-patch generation.
2. [Incorrect fault localization]When the fault localization does
not succeed to identify the location of the bug, the repair tools do
not succeed to generate a patch for it. This can be due to a limitation
of the fault localization approach or to the suspiciousness threshold
that the repair tools use. Moreover, we identified that test cases
that should pass are failing, and consequently there is a misleading

Empirical Review of Java Program Repair Tools ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

fault localization. For instance, the fault localization fails on all bugs
from the INRIA/spoon project (from the Bears benchmark) because
the fault localization does not succeed to load a test resource, and
consequently the passing test cases fail.
3. [Multiple fault locations] Developers frequently fix a bug at
more than one location in the source code: we refer to this type
of bug as multi-location bug. However, most current repair tools
and fault localization tools do not support multi-location bugs. For
instance, the bug Math-1 from Defects4J has to be fixed in the exact
same way at two different locations, and the two locations are
specified by two failing test cases. The current tools consider that
the two failing test cases specify the same bug at the same location,
and consequently do not succeed to generate a multi-location patch.
4. [Too small time budget] We observe that some of the repair
attempts finish the execution by consuming all the time budget.
Considering the size of this experiment, it is not realistic to increase
drastically the time budget. However, new approaches and opti-
mizations can minimize this problem. In this study, we detected
2,593 repair attempts that failed by timeout. It is not possible to
predict the outcome of those attempts, but a previous study [28]
showed that additional time budget might result in a higher number
of generated patches by genetic programming approaches. How-
ever, in our experiment, the repair tools require 13.5 minutes on
average to generate a patch, which is significantly lower than the
allocated time budget (two hours).
5. [Incorrect configuration]We also observe that the RepairThe-
mAll framework does not succeed to correctly compute parameters
from some bugs to give as input to the repair tools, such as com-
pliance level, source folders, and failing test cases. This results in
failing repair attempts, which can be due to a bug in RepairThe-
mAll or an impossibility to compile the bug. For instance, NPEFix
fails 215 times because of issues related to classpath.2
6. [Other technical issues] The final cause of non-patch gener-
ation is related to other technical limitations that cause the non-
execution of the repair tools. One of them is about too long com-
mand lines. The repair tools are executed from the command line,
which means that all parameters must be provided in the command
line. However, the size of the command line is limited, and in the
case of projects that have a long classpath, the operating system
denies the execution of the command line, which results in failing re-
pair attempts. On Bugs.jar, for instance, 200 repair attempts finished
with the error [Errno 7] Argument list too long.3 Finally,
there are also other diverse issues that cause the repair tools to
crash. For instance, jGenProg finished its repair attempt on the bug
Flink-6bc6dbec from Bugs.jar with a NullPointerException.4

Answer to RQ3. What are the causes that lead repair at-

tempts to not generate patches? Through an analysis on logs
of repair attempts, we identified six causes of non-patch gener-
ation, such as incorrect fault localization. Each cause should be
investigated in detail in new studies. Moreover, repair tools’ de-
signers are also stakeholders on those causes, which inform them
what are the weakness of their tools and help them to understand
their previous evaluations’ results.

2All the occurrences of InvalidClassPathException in our execution: https://git.io/fjRax
3Repair attempts that end with Argument list too long: https://git.io/fjRap
4Log file of the repair attempt: https://git.io/fjRab

5 DISCUSSION

Diversity of program repair benchmarks. In RQ2, we found
that all 11 Java repair tools included in this study perform signif-
icantly better on the bugs from Defects4J than on the bugs from
other benchmarks. Indeed, repair tool evaluations that only use De-
fects4J have a threat to the external validity since the repairability
results cannot be generalize for other benchmarks. We then con-
clude that future tools should be evaluated on diverse benchmarks
to mitigate that threat.
Impact of the repair tools’ engineering on the repairability.

During the conduction of this study, we observed that the imple-
mentations of the repair approaches play an important role in their
ability to repair bugs. For instance, jKali and Kali-A share the same
approach, but they neither have the same implementation nor the
same results (see Table 6). Kali-A fixes 118 bugs while jKali fixes 52
with the same input. Note that this observation has also been corre-
lated with the analysis of non-patch generation, where a significant
number of causes is not related to the repair approaches them-
selves, but to their implementations. This observation highlights
a potential bias in empirical studies on automatic program repair
that compare the repairability of different repair approaches. Based
on this observation, those studies only compare the effectiveness
of repair tools, not the approaches themselves.
Challenges of creating RepairThemAll. The main challenges
we faced to run repair tools are related to the creation of the Re-
pairThemAll framework. First, we checked all test-suite-based
repair tools for Java based on our criteria (e.g. availability) so that
we could find the suitable tools for our study (see Table 2). Then,
we had to understand the repair tools we finally gathered, where
manual source code analysis was required so that we could com-
pile them and find their inputs and requirements: the tools are
diverse, sometimes not documented, and implemented by differ-
ent researchers. Once we understood the repair tools, we could
plug them in the RepairThemAll framework, which contains the
abstraction around the tools. Those challenges are mainly due to
lack of well-organized open-science repositories for all the repair
tools. Good documentation, examples, and instructions on how to
compile the tools can speed up the process of learning on how to
execute repair tools.
The observed repairability compared to the previous evalu-

ations. Table 1 shows the test-suite-based repair tools for Java and
the repairability results from their previous evaluations. Those re-
sults are difficult to compare with the results of our study, because
the previous evaluations on Defects4J did not consider all bugs
from the benchmark. On Defects4J, only Cardumen fixes fewer
bugs in this study compared to the previous evaluation. This can be
explained by the difference of the setup (such as the number of ran-
dom seed considered in the study), and potential bugs in the version
of Cardumen we use. According to those results, RepairThemAll
configures correctly the repair tools to generate patches since no
major drawbacks have been observed.
Threats to validity. As with any implementation, the RepairThe-
mAll framework is not free of bugs. A bug in the framework might
impact the results we reported in Section 4. However, the frame-
work and the raw data are publicly available for other researchers
and potential users to check the validity of the results.

http://program-repair.org/defects4j-dissection/#!/bug/Math/1
https://git.io/fjRax
https://git.io/fjRap
https://git.io/fjRab

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Durieux, et al.

This study focuses on test-suite adequate patches, which means
that the generated patches make the test suite pass; yet, there is
no guarantee that they fix the bugs. Studying patch correctness
[19, 44, 49] is out of the scope of this work. Our goal is to analyze
the current state of the automatic program repair tools and identify
potential flaws and improvements. The conclusions of our study
do not require the knowledge on the correctness of the patches.

Our goal is to have a full picture of test-suite-based repair tools
for Java. In our literature review, presented in Section 2, we found 24
repair tools that compose the full picture. Our study was conducted
considering only 11 of them: note that this is the largest experiment
in terms of number of repair tools (and benchmarks). However,
we do not have the full picture we wanted to, which is a threat to
the external validity of our results. Most of the repair tools that
we did not include in our study are just not possible to be ran: for
instance, PAR [17] is not even available. Open-source tools allow
the community to generate knowledge in several directions. In our
work, open-source tools allowed us to perform a novel evaluation
on the state of the repair tools. Another direction is to help the
development of new tools: for instance, DeepRepair [43] is built
over Astor [27], which is a library for repairing.

6 RELATEDWORKS

The works related to ours are empirical studies on the repairabil-
ity of multiple automatic program repair tools. Repair tools for C
programs were the subject of investigation in the first empirical
studies on automatic program repair. Qi et al. [35] introduced the
idea of plausible (i.e. test-suite adequate) versus correct patch. They
studied the patch plausibility and correctness of four generate-and-
validation repair tools on the bugs from the GenProg benchmark
[20] (which later became a part of the ManyBugs benchmark [21]).
They found that a small number of bugs are fixed by correct patches.

An incorrect, test-suite adequate patch is known as an overfitting
patch, because it overfits the test suite. Such problem was named
as the overfitting problem by Smith et al. [38], who studied it in the
context of two generate-and-validate C repair tools on the bugs from
the IntroClass benchmark [21]. They found that even using high-
quality, high-coverage test suites results in overfitting patches. Later,
Le et al. [19] analyzed the overfitting problem for semantics-based
repair techniques for the C language. The study also investigates
how test suite size and provenance, number of failing tests, and
semantics-specific tool settings can affect overfitting.

For Java, Martinez et al. [26] reported on a remarkable large
experiment, where three repair tools were executed on the bugs
from Defects4J. The focus of their study was to measure the re-
pairability of the repair tools and to find correct patches by manual
analysis. They also found that a small number of bugs (9/47) could
be repaired with a test-suite adequate patch that is also correct. Ye
et al. [48] presented a study where nine repair tools were executed
on the bugs from QuixBugs. They used automatically generated
test cases based on the human-written patches to identify incorrect
patches generated by the repair tools.

Motwani et al. [33] reported on an empirical study that included
seven repair tools for both Java and C languages, where the De-
fects4J and ManyBugs benchmarks were used. They had a different
focus: they investigated if the bugs repaired by repair tools are
hard and important. To do so, they used the repairability data from

Table 9: Empirical studies on repair tools.

Work Language # Tools # Bench Main focus

[35] C 4 1 plausible vs. correct patch
[38] C 2 1 patch overfitting
[19] C 4 2 patch overfitting
[26] Java 3 1 patch overfitting
[48] Java 9 1 patch overfitting
[33] Java + C 7 2 repairability vs. bug-related measures
Ours Java 11 5 benchmark overfitting+non-patch generation

previous works, and they performed a correlation analysis between
the repaired bugs and measures of defect importance, the human
patch complexity, and the quality of the test suite.

Table 9 summarizes the mentioned studies. The main differ-
ence between our study and all the previous ones is the goal.
Previous works focused on the patch overfitting problem and ad-
vanced/correlation analysis between the repairability of tools and
bug-related characteristics. We introduce the benchmark overfitting
problem, which is investigated in this paper as well as the causes
of non-patch generation. Moreover, the scale of our study is much
larger than previous studies, on repair tools and benchmarks.

7 CONCLUSIONS

In this paper, we presented an empirical study including 11 repair
tools and 2,141 bugs from 5 benchmarks. In total, 23,551 repair
attempts were performed: this is the largest experiment to our
knowledge. The goal of our experiment is to obtain an overview
of the current state of the repair tools for Java in practice. For
that, we scaled up the previous experiments by considering more
benchmarks of bugs, which combined have bugs from 130 projects,
collected with different strategies.

We found that the repair tools are able to repair bugs from bench-
marks that were not initially used for their evaluations. However,
our results suggest that all repair tools overfit Defects4J. Finally, we
analyzed why the repair tools do not succeed to generate patches:
this study resulted in six different causes that can help future de-
velopment of repair tools.

Our study opens several opportunities for future investigations.
First, our hypotheses on why the repair tools perform better on
Defects4J can be further confirmed. For instance, one of the hy-
potheses is the fact that the buggy program versions were changed
in Defects4J due to the bug fix isolation. A study to confirm this
hypothesis is a full contribution itself. Second, other repair tools
can also be executed to aggregate and scale up our study. ssFix, for
instance, is possible to run, despite the fact we had issues for it,
which lead to its exclusion in this work. Moreover, the tools that
are hardcoded to be ran on Defects4J could also be adapted to work
for other benchmarks of bugs. Finally, an investigation on the bug
type distribution in the benchmarks should also be conducted. This
would provide the information on how many bugs a repair tool
is actually able to fix, i.e. by finding the bugs that meet the repair
tools’ bug class target.

ACKNOWLEDGMENTS

We acknowledge CAPES for partially funding this research, and
Marcelo Maia for discussions. This material is based upon work
supported by Fundação para a Ciência e a Tecnologia (FCT), with the
reference PTDC/CCI-COM/29300/2017 and UID/CEC/50021/2019.

Empirical Review of Java Program Repair Tools ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

REFERENCES

[1] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez,
Emmanuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre, David Margery, Nicolas
Niclausse, Lucas Nussbaum, Olivier Richard, Christian Pérez, Flavien Quesnel,
Cyril Rohr, and Luc Sarzyniec. 2013. Adding Virtualization Capabilities to the
Grid’5000 Testbed. In Cloud Computing and Services Science, Ivan I. Ivanov,
Marten van Sinderen, Frank Leymann, and Tony Shan (Eds.). Communications in
Computer and Information Science, Vol. 367. Springer International Publishing,
Cham, 3–20.

[2] Liushan Chen, Yu Pei, and Carlo A. Furia. 2017. Contract-Based Program Repair
without the Contracts. In Proceedings of the 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE ’17). IEEE Press, Piscataway, NJ,
USA, 637–647.

[3] Valentin Dallmeier and Thomas Zimmermann. 2007. Extraction of Bug Localiza-
tion Benchmarks from History. In Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE ’07). ACM, New York, NY,
USA, 433–436.

[4] Vidroha Debroy and W. Eric Wong. 2010. Using Mutation to Automatically
Suggest Fixes for Faulty Programs. In Proceedings of the 2010 Third International
Conference on Software Testing, Verification and Validation (ICST ’10). IEEE Com-
puter Society, Washington, DC, USA, 65–74.

[5] Defects4J. 2011. Defects4J patch for Closure-51 bug. http://program-repair.org/
defects4j-dissection/#!/bug/Closure/51.

[6] Thomas Durieux, Benoit Cornu, Lionel Seinturier, and Martin Monperrus. 2017.
Dynamic Patch Generation for Null Pointer Exceptions Using Metaprogramming.
In Proceedings of the 24th IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER ’17). IEEE, Klagenfurt, Austria, 349–358.

[7] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.
The RepairThemAll framework repository. https://github.com/program-repair/
RepairThemAll.

[8] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019. The
repair attempts’ results. https://github.com/program-repair/RepairThemAll_
experiment.

[9] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.
Website for browsing the generated patches. http://program-repair.org/
RepairThemAll_experiment.

[10] Thomas Durieux and Martin Monperrus. 2016. DynaMoth: Dynamic Code Syn-
thesis for Automatic Program Repair. In Proceedings of the 11th International
Workshop on Automation of Software Test (AST ’16). ACM, New York, NY, USA,
85–91.

[11] Thomas Durieux and Martin Monperrus. 2016. IntroClassJava: A Benchmark of
297 Small and Buggy Java Programs. Technical Report #hal-01272126. University
of Lille, University of Lille.

[12] Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Árpád
Beszédes, Rudolf Ferenc, and Ali Mesbah. 2019. BugsJS: A Benchmark of
JavaScript Bugs. In Proceedings of the 12th International Conference on Software
Testing, Verification, and Validation (ICST ’19). IEEE Computer Society, Washing-
ton, DC, USA, 1–12.

[13] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018. Towards
Practical Program Repair with On-Demand Candidate Generation. In Proceedings
of the 40th International Conference on Software Engineering (ICSE ’18). ACM, New
York, NY, USA, 12–23.

[14] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping Program Repair Space with Existing Patches and Similar Code.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’18). ACM, New York, NY, USA, 298–309.

[15] johnlenz. 2011. Human patch for Defects4J Closure-51 bug. https://github.com/
google/closure-compiler/commit/a02241e5df48e44e23dc0e66dbef3fdc3c91eb3e.

[16] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 23rd International Symposium on Software Testing and Analysis
(ISSTA ’14). ACM, New York, NY, USA, 437–440.

[17] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-Written Patches. In Proceedings of the
35th International Conference on Software Engineering (ICSE ’13). IEEE Press,
Piscataway, NJ, USA, 802–811.

[18] Xuan Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Pro-
gram Repair. In Proceedings of the 23rd IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER ’16). IEEE, Suita, Japan, 213–224.

[19] Xuan-Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Over-
fitting in semantics-based automated program repair. In Proceedings of the 40th
International Conference on Software Engineering (ICSE ’18). ACM, New York, NY,
USA, 163–163.

[20] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A Systematic Study of Automated Program Repair: Fixing 55 out of 105
Bugs for $8 Each. In Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 3–13.

[21] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass Benchmarks for Automated Repair of C Programs. IEEE Transactions
on Software Engineering 41, 12 (Dec. 2015), 1236–1256.

[22] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A Multi-Lingual Program Repair Benchmark Set Based on the Quixey
Challenge. In Proceedings of the 2017 ACM SIGPLAN International Conference
on Systems, Programming, Languages, and Applications: Software for Humanity
(SPLASH Companion 2017). ACM, New York, NY, USA, 55–56.

[23] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawendé F. Bissyandé.
2018. LSRepair: Live Search of Fix Ingredients for Automated Program Repair. In
Proceedings of the 25th Asia-Pacific Software Engineering Conference (APSEC ’18).
IEEE Computer Society, Washington, DC, USA, 1–5.

[24] Xuliang Liu and Hao Zhong. 2018. Mining StackOverflow for Program Repair.
In Proceedings of the 25th IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER ’18). IEEE, Campobasso, Italy, 118–129.

[25] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019.
Bears: An Extensible Java Bug Benchmark for Automatic Program Repair Studies.
In Proceedings of the 26th IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER ’19). IEEE, Hangzhou, China, 468–478.

[26] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic Repair of Real Bugs in Java: A Large-scale Experi-
ment on the Defects4J Dataset. Empirical Software Engineering 22, 4 (Aug. 2017),
1936–1964.

[27] Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program Repair Library
for Java. In Proceedings of the 25th International Symposium on Software Testing
and Analysis (ISSTA ’16), Demonstration Track. ACM, New York, NY, USA, 441–
444.

[28] Matias Martinez and Martin Monperrus. 2018. Ultra-Large Repair Search Space
with Automatically Mined Templates: the Cardumen Mode of Astor. In Proceed-
ings of the 10th International Symposium on Search-Based Software Engineering
(SSBSE ’18). Lecture Notes in Computer Science, vol 11036, Thelma Elita Colanzi
and Phil McMinn (Eds.). Springer International Publishing, Cham, 65–86.

[29] Matias Martinez, Westley Weimer, and Martin Monperrus. 2014. Do the Fix Ingre-
dients Already Exist? An Empirical Inquiry into the Redundancy Assumptions of
Program Repair Approaches. In Proceedings of the 36th International Conference on
Software Engineering (ICSE Companion 2014). ACM, New York, NY, USA, 492–495.

[30] Martin Monperrus. 2014. A Critical Review of “Automatic Patch Generation
Learned from Human-Written Patches”: Essay on the Problem Statement and the
Evaluation of Automatic Software Repair. In Proceedings of the 36th International
Conference on Software Engineering (ICSE ’14). ACM, New York, NY, USA, 234–242.

[31] Martin Monperrus. 2018. Automatic Software Repair: a Bibliography. Comput.
Surveys 51, 1, Article 17 (Jan. 2018), 24 pages.

[32] Martin Monperrus. 2018. The Living Review on Automated Program Repair. Tech-
nical Report hal-01956501. HAL/archives-ouvertes.fr, HAL/archives-ouvertes.fr.

[33] Manish Motwani, Sandhya Sankaranarayanan, René Just, and Yuriy Brun. 2018.
Do automated program repair techniques repair hard and important bugs? Em-
pirical Software Engineering 23, 5 (Oct. 2018), 2901–2947.

[34] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
Strength of Random Search on Automated Program Repair. In Proceedings of the
36th International Conference on Software Engineering (ICSE ’14). ACM, New York,
NY, USA, 254–265.

[35] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of
Patch Plausibility and Correctness for Generate-and-Validate Patch Generation
Systems. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis (ISSTA ’15). ACM, New York, NY, USA, 24–36.

[36] Ripon K. Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R. Prasad.
2018. Bugs.jar: A Large-scale, Diverse Dataset of Real-world Java Bugs. In Pro-
ceedings of the 15th International Conference on Mining Software Repositories (MSR
’18). ACM, New York, NY, USA, 10–13.

[37] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. ELIXIR:
Effective Object-Oriented Program Repair. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE ’17). IEEE Press,
Piscataway, NJ, USA, 648–659.

[38] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the
Cure Worse Than the Disease? Overfitting in Automated Program Repair. In
Proceedings of the 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE ’15). ACM, New York, NY, USA, 532–543.

[39] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and
Marcelo A. Maia. 2018. Dissection of a Bug Dataset: Anatomy of 395 Patches from
Defects4J. In Proceedings of the 25th IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER ’18). IEEE, Campobasso, Italy,
130–140.

[40] Shin Hwei Tan, Jooyong Yi, Yulis, Sergey Mechtaev, and Abhik Roychoudhury.
2017. Codeflaws: A Programming Competition Benchmark for Evaluating Auto-
mated Program Repair Tools. In Proceedings of the 39th International Conference
on Software Engineering Companion (ICSE-C ’17). IEEE Press, Piscataway, NJ, USA,
180–182.

http://program-repair.org/defects4j-dissection/#!/bug/Closure/51
http://program-repair.org/defects4j-dissection/#!/bug/Closure/51
https://github.com/program-repair/RepairThemAll
https://github.com/program-repair/RepairThemAll
https://github.com/program-repair/RepairThemAll_experiment
https://github.com/program-repair/RepairThemAll_experiment
http://program-repair.org/RepairThemAll_experiment
http://program-repair.org/RepairThemAll_experiment
https://github.com/google/closure-compiler/commit/a02241e5df48e44e23dc0e66dbef3fdc3c91eb3e
https://github.com/google/closure-compiler/commit/a02241e5df48e44e23dc0e66dbef3fdc3c91eb3e

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia Durieux, et al.

[41] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically Finding Patches Using Genetic Programming. In Proceedings of the
31st International Conference on Software Engineering (ICSE ’09). IEEE Computer
Society, Washington, DC, USA, 364–374.

[42] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. In Pro-
ceedings of the 40th International Conference on Software Engineering (ICSE ’18).
ACM, New York, NY, USA, 1–11.

[43] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys
Poshyvanyk. 2019. Sorting and Transforming Program Repair Ingredients via
Deep Learning Code Similarities. In Proceedings of the 26th IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER ’19). IEEE,
Hangzhou, China, 479–490.

[44] Qi Xin and Steven P. Reiss. 2017. Identifying Test-Suite-Overfitted Patches
throughTest Case Generation. In Proceedings of the 26th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA ’17). ACM, New York,
NY, USA, 226–236.

[45] Qi Xin and Steven P. Reiss. 2017. Leveraging Syntax-Related Code for Automated
Program Repair. In Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE ’17). IEEE Press, Piscataway, NJ, USA,

660–670.
[46] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and

Lu Zhang. 2017. Precise Condition Synthesis for Program Repair. In Proceedings
of the 39th International Conference on Software Engineering (ICSE ’17). IEEE Press,
Piscataway, NJ, USA, 416–426.

[47] Jifeng Xuan, Matias Martinez, Favio DeMarco, Maxime Clément, Sebastian Lame-
las, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2016. Nopol:
Automatic Repair of Conditional Statement Bugs in Java Programs. IEEE Trans-
actions on Software Engineering 43, 1 (April 2016), 34–55.

[48] He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2019. A
Comprehensive Study of Automatic Program Repair on the QuixBugs Benchmark.
In InternationalWorkshop on Intelligent Bug Fixing (IBF ’19, co-located with SANER).
IEEE, Hangzhou, China, 1–10.

[49] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin
Monperrus. 2019. Alleviating Patch Overfitting with Automatic Test Generation:
A Study of Feasibility and Effectiveness for the Nopol Repair System. Empirical
Software Engineering 24, 1 (Feb. 2019), 33–67.

[50] Yuan Yuan and Wolfgang Banzhaf. 2018. ARJA: Automated Repair of Java Pro-
grams via Multi-Objective Genetic Programming. IEEE Transactions on Software
Engineering PP (2018).

	Abstract
	1 Introduction
	2 State of affairs on test-suite-based automatic repair tools for Java
	3 Study Design
	3.1 Research Questions
	3.2 Subject Repair Tools
	3.3 Subject Benchmarks of Bugs
	3.4 Building a Repair Execution Framework
	3.5 Data Collection and Analysis

	4 Results
	4.1 [RQ1] Repairability of the 11 Repair Tools
	4.2 [RQ2] Benchmark Overfitting
	4.3 [RQ3] Causes of Non-patch Generation

	5 Discussion
	6 Related Works
	7 Conclusions
	Acknowledgments
	References

