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Abstract

This paper is concerned with the nonlinear tracking control design for robot manipulators. In spite of the rich literature in the
field, the problem has not yet been addressed adequately due to the lack of an effective control design. Using a descriptor fuzzy
model-based framework, we propose a new approach to design a feedback-feedforward control scheme for robot manipulators in
a general form. The goal is to guarantee a small level of an L∞−gain specification to improve the tracking performance while
significantly reducing the numerical complexity for real-time implementation. Based on Lyapunov stability arguments, the control
design is formulated as a convex optimization problem involving linear matrix inequalities. Numerical experiments performed with
a high-fidelity manipulator benchmark model, embedded in the Simscape MultibodyTM environment, demonstrate the effectiveness
of the proposed control solution over existing standard approaches.

Index Terms

Robot manipulators, fuzzy control, tracking control, Lyapunov stability, L∞ performance, linear matrix inequality.

I. INTRODUCTION

Nowadays, robot manipulators are widely used in all areas of industry for process automation such as material handling,
welding, painting, cutting, grinding, etc. These industrial robots have several advantages, including high speed, compactness,
accuracy and reliability. For applications such as arc welding, laser cutting or machining, one of the most important tasks
is to obtain a satisfactory tracking performance of predefined reference trajectories (Dawson et al. 2003). It is well-known
that tracking control is more challenging than stabilization or regulation problems. First, the tracking controller must drive
the system output toward a desired reference with specified closed-loop properties. Second, the stabilization/regulation issue
can be viewed as a special case of tracking control, for which the desired trajectory is constant in time. Moreover, tracking
control of robot manipulators is challenging due to complex nonlinearities, coupling dynamics effects, unknown disturbances,
and modeling uncertainties (Baek et al. 2016, Sun, Zhang, Li & Zhang 2019, Li & Huang 2020).

Up to now, numerous tracking control approaches have been proposed for robot manipulators, including proportional-
integral-derivative (PID) control (Jafarov et al. 2005, Arteaga-Pérez 2019, Pan et al. 2019), fuzzy logic control (Marwan et al.
2013, Gaidhane et al. 2019), observer-based backstepping control (Sahu et al. 2019), sliding mode control (Baek et al. 2016,
de Jesús Rubio 2017, Zhang, Liu, Wang & Xia 2018), H∞ control (Makarov et al. 2016), fault-tolerant tracking control (Van
et al. 2016, Meng et al. 2020), adaptive control (Nojavanzadeh & Badamchizadeh 2016, Yang et al. 2018, Zhang, Chen, Li &
Zhang 2017, Sun, Su, Xia & Nguyen 2019), neural networks control (Zhang et al. 2016, Zhang, Zheng, Yu, Li & Yu 2017,
Jin et al. 2018, Zhang, Dong, Ouyang, Yin & Peng 2018), boundary vibration control (He et al. 2018), reinforcement learning
control (Ouyang et al. 2017), Riccati equation-based approach (Nasiri et al. 2020), etc. Despite great theoretical advances in
robotics control, single-axis PID control still remains the predominant method for industrial robot manipulators due to its simple
structure, easy tuning and convenient implementation (Paccot et al. 2009). However, without taking into account the coupling
between different robot joints, linear PID control may lead to a significant loss of performance even closed-loop instability
under various practical configurations (Vermeiren et al. 2012). Computed torque control (CTC) technique has been widely
applied in robotics (Dawson et al. 2003, Song et al. 2005, Buondonno & De Luca 2016, Paccot et al. 2009). An alternative
solution to improve the tracking performance is to combine a feedforward action based on the manipulator dynamics together
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with a feedback control action. However, the resulting feedback-feedforward control structures suffer the robustness issue with
respect to the modeling uncertainty and the external disturbance forces. To overcome this major drawback, fuzzy control has
been proposed for the robot tracking problem (Tseng et al. 2001, Vermeiren et al. 2012, Nguyen, Taniguchi, Eciolaza, Campos,
Palhares & Sugeno 2019, Nguyen, Nguyen, Dequidt, Vermeiren & Dambrine 2019). However, the control design complexity
and the tracking precision may be further improved for generic robot manipulators.

Over the past decades, fuzzy tracking control has been actively investigated for nonlinear systems (Nguyen, Taniguchi,
Eciolaza, Campos, Palhares & Sugeno 2019). The fruitful results can be classified into two major categories: fuzzy adaptive
control scheme (Chen et al. 2007, Zhou et al. 2011, Wang et al. 2016, Li et al. 2017) and fuzzy model-based control scheme
(Tseng et al. 2001, Jia et al. 2009, Zhang et al. 2013, Pan et al. 2020, Nguyen, Rath, Guerra, Palhares & Zhang 2020). Despite
a great theoretical interest, fuzzy adaptive control usually requires online complex adaptation laws to deal with unknown
parameters and nonlinearities, which may induce real-time difficulties. Since robot modeling has been well-established (Dawson
et al. 2003), fuzzy model-based control approaches would be more appropriate for high-speed motion tracking of industrial
manipulators as recently shown in (Nguyen, Nguyen, Dequidt, Vermeiren & Dambrine 2019, Jonnalagadda et al. 2020). Note
that the existing fuzzy model-based approaches mostly rely on the well-known H∞ specification to guarantee the tracking
performance which can lead to the following drawbacks, especially for complex industrial manipulators. First, an explicit

requirement and consideration of a reference model for tracking control design may induce unnecessary numerical complexities.
Second, the effects of both known tracking reference and unknown external forces on the tracking error have been treated in the
same fashion, i.e., unknown disturbances. This may result in conservative control results. Third, the H∞ specification represents
the energy-to-energy gain of the close-loop system. However, in most of practical situations as robotics control, the disturbances,
e.g., friction torques, are rather amplitude-bounded than energy-bounded. Hence, within an H∞ control formulation, it is not
obvious to characterize the amplitude-bound of the tracking error, which is a crucial tracking performance index.

Motivated by the above practical and theoretical issues in manipulator control, this paper proposes a fuzzy model-based control
approach for high-precision and high-speed motion tracking problem of generic robot manipulators. The main contributions of
the proposed fuzzy tracking control framework can be summarized as follows.

• We exploit the specific descriptor form of robot manipulators to derive a feedback-feedforward tracking control scheme. The
feedforward control action aims at accounting for the effects of known disturbances to improve the tracking performance.
Based on a fuzzy descriptor tracking error dynamics and Lyapunov arguments, the feedback control action is designed to
guarantee some predefined closed-loop properties. The feedback control design is recast as an optimization problem with
linear matrix inequality (LMI) constraints, effectively solved with available numerical solvers (Boyd et al. 1994).

• In contrast to the standard H∞ tracking performance, a new L∞−gain specification is taken into the control design
to guarantee a tracking error-bound as small as possible according to the solvability of the optimization-based control
problem. Moreover, the new framework offers a simple and systematic approach not only for the control design but also
for the real-time implementation. This feature is particularly interesting for industrial robot applications.

• The effectiveness of the proposed tracking control approach is clearly demonstrated with a high-fidelity manipulator
benchmark developed by ABB Robotics (Moberg et al. 2008). A comparative study between different notable tracking
control approaches is performed to emphasize the interests of the new control framework.

The paper is organized as follows. The tracking control problem is formulated in Section II. The fuzzy model-based feedback
control design is presented in Section III. Section IV provides numerical experiments obtained with a 2-DoF robot benchmark.
Concluding remarks are reported in Section V.

Notation. Ωr denotes the set of numbers {1, 2, ..., r}. For a matrix X , X> denotes its transpose, X � 0 means that X is
positive definite, HeX = X + X>, and λmin(X), λmax(X) denotes respectively the minimal and maximal eigenvalues of a
symmetric matrix X . For a vector v ∈ Rn, we denote its 2-norm as ‖v‖ =

√
v>v, and vi is its ith entry. For a function

f : R → Rn, its L∞−norm is defined as ‖f‖∞ = supt∈R ‖f(t)‖, and B∞ is the set of bounded functions f . diag(X1, X2)

denotes a block-diagonal matrix composed of X1, X2. I is the identity matrix of appropriate dimension. ? stands for the terms
deduced by symmetry. The argument of a function is omitted when its meaning is clear.
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II. TRACKING CONTROL FORMULATION

We first introduce the general model of robot manipulators. Then, the related tracking control problem is formulated.

A. Descriptor Representation of Robot Manipulators

The rigid-body dynamics of an n degrees of freedom (DoF) robot manipulator can be expressed in the joint space as

M(q)q̈(t) +N (q, q̇)q̇(t) + G(q) = Γ(t) + Γd(t), (1)

where q(t) ∈ Rn is the vector of generalized coordinates in joint space, Γ(t) ∈ Rn is the vector of generalized control
forces, Γd(t) ∈ Rn is the vector of external generalized forces applied to the joints, M(q) ∈ Rn×n is the inertia matrix,
N (q, q̇) ∈ Rn×n is the Coriolis/centripetal matrix plus the viscous friction coefficients of the joints, and G(q) ∈ Rn represents
the generalized gravity forces. Note that the dynamics (1) can account for many types of robot manipulators (Dawson et al.
2003). Since the vector field G(q) is smooth, we can then parameterize G(q) = P(q)q(t). The disturbance Γd(t) is amplitude-
bounded, i.e., Γd(t) ∈ B∞. Note that for the proposed fuzzy-model-based control approach, the matrices M(q), N (q, q̇) and
P(q)q(t) characterizing the robot dynamics are assumed to be known.

Let us denote x(t) =
[
q>(t) q̇>(t)

]>
, the manipulator dynamics (1) can be rewritten in the following descriptor form:

E(x)ẋ(t) = A(x)x(t) +B(Γ(t) + Γd(t)), (2)

where

E(x) =

[
I 0

0 M(q)

]
, A(x) =

[
0 I

−P(q) −N (q, q̇)

]
, B =

[
0

I

]
.

Note that due to the physical constraints, the state vector x(t) remains in a bounded set Dx, defined as

Dx =
{
x ∈ R2n : ximin ≤ xi(t) ≤ ximax

}
. (3)

The given bounds ximin and ximax, i ∈ Ω2n, characterize the workspace and the joint velocity limitations of the manipulator.

B. Feedback-Feedforward Structure for Tracking Control

The reference trajectory of robot manipulators can be completely defined by designers as

xr(t) =
[
q>r (t) q̇>r (t)

]>
,

where qr(t), q̇r(t) ∈ Rn are respectively the reference position and velocity to be followed. For tracking control, we assume
that xr is sufficiently smooth, i.e., qr(t) ∈ C2.

We define the tracking error as e(t) = x(t)− xr(t). Then, the error dynamics can be derived from model (2) as

E(x)ė(t) = A(x)e(t) +B(Γ(t) + d(t)) +R(x,xr, ẋr) (4)

where R(x,xr, ẋr) = A(x)xr(t) − E(x)ẋr(t), and d(t) = Γd(t). To improve the tracking control performance, the control
input Γ(t) is decomposed into two parts as

Γ(t) = ufb(t) + uff(t). (5)

The feedback control ufb(t), specified in Section III, is used to ensure predefined properties of the tracking error dynamics
under disturbances and uncertainties. The feedforward control uff(t) accounts for the effects of xr(t) on the tracking error
e(t). From (4) and (5), the error dynamics is defined as

E(x)ė(t) = A(x)e(t) +B(ufb(t) + d(t)) +Q(uff,x,xr) (6)

where Q(uff,x,xr) = Buff(t) +R(x,xr, ẋr). Since xr(t) and ẋr(t) are known, uff(t) aims at mitigating the effects of these
exogenous signals on the tracking error dynamics, i.e.,

Q(uff,x,xr) = Buff(t)− E(x)ẋr(t) +A(x)xr(t) = 0. (7)
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Since matrix B is of full column rank, its pseudo-inverse B† exists and B†B = I . Premultiplying (7) with B†, the feedforward
control law is derived as follows:

uff(t) = B†(E(x)ẋr(t)−A(x)xr(t)). (8)

From (6) and (8), the tracking error dynamics is rewritten as

E(x)ė(t) = A(x)e(t) +B(ufb(t) + d(t)). (9)

We are now in the position to formulate the control problem related to the closed-loop tracking error system (9).

Problem 1. Determine a feedback control law ufb(t) such that the error dynamics (9) satisfies the following properties.

(P1) For zero-disturbance system, i.e., d(t) = 0, for ∀t ≥ 0, the zero solution of system (9) is exponentially stable with a
predefined decay rate α > 0.

(P2) The closed-loop system (9) is input-to-state stable with respect to the disturbance d(t).
(P3) For a zero initial tracking error, i.e., e(0) = 0, we have

‖e(t)‖ ≤ γ‖d(t)‖∞, t ≥ 0,

for some positive scalar γ.

The tracking error dynamics (9) verifying the properties (P1)–(P3) is said to be uniformly L∞−stable with a performance
level γ. A similar concept of L∞−stablity can be found in (Nguyen, Guerra, Sentouh & Zhang 2019, Nguyen et al. 2021).
Hereafter, we provide a numerically tractable solution for the above L∞−gain tracking control problem.

III. L∞ FUZZY DESCRIPTOR CONTROL DESIGN

This section first transforms the error tracking dynamics into an exact fuzzy descriptor form. Then, an LMI-based solution
is proposed for Problem 1. Finally, based on a robust control scheme, complexity-reduced feedback control law is proposed.

A. Fuzzy Descriptor Representation of the Error Dynamics

For control design, system (9) is transformed into its equivalent fuzzy representation using the sector nonlinearity approach
(Tanaka & Wang 2004, Chapter 2). To this end, we first determine the vector of premise variables z(t) =

[
z1(t) . . . zpe+p(t)

]
,

containing pe and p linearly independent nonlinearities in E(x) and A(x), respectively. Since x(t) ∈ Dx, it follows that
zi(t) ∈

[
zimin, zimax

]
, where zimin and zimax, for ∀i ∈ Ωpe+p, are easily computed from the bounds given in (3). Moreover,

each premise variable can be equivalently rewritten as zi(t) = ψi0(zi)zimin + ψi1(zi)zimax, where

ψi0(zi) =
zimax − zi(t)
zimax − zimin

, ψi1(zi) = 1− ψi0(zi), i ∈ Ωpe+p.

As a consequence, the error dynamics (9) can be represented in the following fuzzy descriptor form (Taniguchi et al. 2000):
re∑
k=1

vk(z)Ekė(t) =

r∑
i=1

hi(z)Aie(t) +B(ufb(t) + d(t)). (10)

The membership functions (MFs) are defined as follows (Tanaka & Wang 2004):

vk(z) =

pe∏
j=1

ψjkj (zj), hi(z) =

pe+p∏
j=pe+1

ψjij (zj),

where kj , ij ∈ {0, 1}, (k, i) ∈ Ωre ×Ωr, re = 2pe and r = 2p. Note that Ek = E(x)|vk(z)=1, Ai = A(x)|hi(z)=1 and the MFs
satisfy the following convex sum property:

re∑
k=1

vk(z) = 1, vk(z) ≥ 0, k ∈ Ωre ,

r∑
i=1

hi(z) = 1, hi(z) ≥ 0, i ∈ Ωr.

(11)
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Remark 1. Due to the nonsingularity of E(x), a standard state-space model can be directly recovered from the descriptor
form (9) as ė(t) = E(x)−1A(x)e(t) +E(x)−1B(ufb(t) +d(t)). However, such a representation significantly complexifies the
nonlinear control design since a large number of new premise variables is introduced, e.g., the input matrix E(x)−1B is not
anymore constant. Keeping the descriptor form (9) reduces the number of linear submodels of the fuzzy model (10), thus the
number of design conditions. This allows reducing the computational burden, the control structure complexity and also the
design conservatism (Taniguchi et al. 2000).

Let us define ē(t) =
[
e>(t) ė>(t)

]>
. Then, the fuzzy descriptor system (10) can be rewritten as

Ē ˙̄e(t) =

r∑
i=1

re∑
k=1

hi(z)vk(z)Āikē(t) + B̄(ufb(t) + d(t)), (12)

where

Ē =

[
I 0

0 0

]
, B̄ =

[
0

B

]
, Āik =

[
0 I

Ai −Ek

]
. (13)

For the control design of system (12), we consider the nonlinear feedback control law of the form

ufb(t) = −
r∑
i=1

re∑
k=1

hi(z)vk(z)Kike(t), (14)

where the feedback gains Kik ∈ Rn×2n are to be designed. From (10) and (14), the closed-loop error dynamics can be
expressed on the following descriptor fuzzy form:

Ē ˙̄e(t) =

r∑
i=1

re∑
k=1

hi(z)vk(z)(Āik − B̄K̄ik)ē(t) + B̄d(t), (15)

where K̄ik =
[
Kik 0

]
. This paper proposes two procedures to design the feedback control law (14) with different degrees

of numerical complexity such that the closed-loop specifications as defined in Problem 1 are satisfied for system (15).

B. LMI-Based Feedback Control Design

The following result provides an LMI-based conditions to design a feedback control law (14) solving Problem 1.

Theorem 1. Consider the tracking error dynamics (9). Given a positive decay rate α, assume that there exist a positive definite
matrix P ∈ R2n×2n, matrices Qi ∈ R2n×2n, Ri ∈ R2n×2n, Mik ∈ Rn×2n, for ∀(i, k) ∈ Ωr × Ωre , and a positive scalar ν,
solutions of the following optimization problem:

minimize ν (16)

subject to[
P ?

P νI

]
� 0, (17)

Ξik ≺ 0, ∀(i, k) ∈ Ωr × Ωre , (18)

where

Ξik = He

 αP +Qi Ri 0

AiP −BMik − EkQi −EkRi B

0 0 −αI

 .
Then, the feedback law (14) with the gains Kik = MikP

−1, for (i, k) ∈ Ωr×Ωre , is such that the properties given in Problem
1 are satisfied with the guaranteed L∞−gain γ =

√
ν.

Proof. Multiplying inequality (18) by hi(z)vk(z) and summing up for i ∈ Ωr and k ∈ Ωre , it follows that
r∑
i=1

re∑
k=1

hi(z)vk(z)He(EkRi) � 0,
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which can be rewritten as

He

((
re∑
k=1

vk(z)Ek

)(
r∑
i=1

hi(z)Ri

))
� 0. (19)

Inequality (19) implies the regularity of
∑r
i=1 hi(z)Ri. This allows us to define a Lyapunov candidate function of the form

V(ē) = ē>Ē

(
r∑
i=1

hi(z)P̄i

)−1
ē, P̄i =

[
P 0

Qi Ri

]
. (20)

Remark that

Ē

(
r∑
i=1

hi(z)P̄i

)−1
=

(
r∑
i=1

hi(z)P̄i

)−1
Ē =

[
P−1 0

0 0

]
.

Then, V(ē(t)), defined in (20), can be rewritten as V(ē(t)) = V(e(t)) = e>(t)P−1e(t), which is a positive definite function

of e(t). We denote ê(t) =

(
r∑
i=1

hi(z)P̄i

)−1
ē(t). The time-derivative of V(ē(t)) along the trajectory of system (15) can be

expressed as

V̇(ē(t)) = He
([
Azē(t) + B̄d(t)

]>
P̄hē(t)

)
= He

{[
AzP̄hê(t) + B̄d(t)

]>
ê(t)

}
, (21)

where Az =
∑r
i=1

∑re
k=1 hi(z)vk(z)(Āik − B̄K̄ik) and P̄h =

∑r
i=1 hi(z)P̄i. From the matrix definition (13), the expressions

of V(ē(t)) in (20) and of V̇(ē(t)) in (21), the following relation can be obtained after simple matrix multiplications:

V̇(ē(t)) + 2α
(
V(ē(t))− d>(t)d(t)

)
= ξ>(t)Ξhvξ(t), (22)

with ξ =
[
ê> d>

]>
and Ξhv =

∑r
i=1

∑re
k=1 hi(z)vk(z)Ξik. Using the convexity property (11) of the membership functions,

it follows from (18) that Ξhv ≺ 0. Combining this with (22), it follows that

V̇(ē(τ)) ≤ −2α(V(ē(τ))− ‖d(τ)‖2)

≤ −2α(V(ē(τ))− ‖d(τ)‖2∞), ∀τ > 0. (23)

Multiplying both sides of inequality (23) by e2αt, then integrating the result over [t0, t], we get

e2αtV(ē(t)) ≤ e2αt0V(ē(t0)) + 2α‖d(t)‖2∞
∫ t

t0

e2ατdτ

= e2αt0V(ē(t0)) + ‖d(t)‖2∞(e2αt − e2αt0). (24)

It follows from (24) that

V(ē(t)) ≤ e−2α(t−t0)V(ē(t0)) + ‖d(t)‖2∞
(

1− e−2α(t−t0)
)

≤ e−2α(t−t0)V(ē(t0)) + ‖d(t)‖2∞. (25)

By Schur complement lemma (Boyd et al. 1994), inequality (17) is equivalent to P−1 � ν−1I . Then, denote σM = λmax(P−1),
the Lyapunov function V(ē) satisfies

ν−1‖e(t)‖2 ≤ V(ē(t)) ≤ σM‖e(t)‖2. (26)

It follows from (25) and (26) that

‖e(t)‖2 ≤ νσMe−2α(t−t0)‖e(t0)‖2 + ν‖d(t)‖2∞,

which, in turn, implies that

‖e(t)‖ ≤ √νσMe−α(t−t0)‖e(t0)‖+
√
ν‖d(t)‖∞. (27)

Inequality (27) guarantees the closed-loop properties (P1), (P2) and (P3) with γ =
√
ν, defined in Problem 1.
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Remark 2. For any initial condition e(t0) and for ∀d(t) ∈ B∞, it follows from (27) that

lim sup
t→∞

‖e(t)‖ ≤ γ‖d(t)‖∞. (28)

It is clear from (28) that minimizing γ leads to a minimized value of e(t), thus a better tracking performance. Moreover, if
the optimization problem (16) in Theorem 1 is feasible with an arbitrarily small γ, then the tracking error is arbitrarily small.

C. Reduced-Complexity Fuzzy Tracking Control

Theoretically, the design conditions in Theorem 1 can be applied to any robot manipulators whose dynamics can be described
by (1). However, from a practical viewpoint, these conditions may lead to a major numerical limitation. Indeed, the complexity
of the fuzzy model (10) is represented by the integers r and re, which exponentially grow in function of the number of premise
variables in A(x) and E(x) of system (2). Hence, for complex manipulators with high degrees of freedom n, the nonlinear
feedback law (14) may be impractical due to the limited computational resources of embedded systems. In such situations,
an effective reduced-complexity control approach is required to design the nonlinear controller (14). In particular, reduced-
complexity feedback controller is still able to guarantee the closed-loop properties defined in Problem 1. For this purpose, we
rewrite some premise variables as follows (Nguyen, Coutinho, Guerra, Palhares & Pan 2020):

zj(t) = zjm + δj(t)zjr, δj(t) ∈ [−1, 1], (29)

with zjm = 1
2 (zjmax + zjmin), zjr = 1

2 (zjmax − zjmin), for some j ∈ Ωpe+p. Substituting (29) into (9), then applying the
sector nonlinearity approach described in Section III-A, we can obtain the following fuzzy system:

r∗e∑
k=1

vk(z)Êkė(t) =

r∗∑
i=1

hi(z)Âie(t) +B(ufb(t) + d(t)) (30)

where Êk = E∗k + ∆Ek(t), k ∈ Ωr∗e , with r∗e < re, and Âi = A∗i + ∆Ai(t), i ∈ Ωr∗ , with r∗ < r. Note that the time-varying
matrices ∆Ek(t) and ∆Ai(t) can be further parameterized as

∆Ek(t) = H>e ∆e(t)Wek, ∆Ai(t) = H>a ∆a(t)Wai,

for ∀(k, i) ∈ Ωr∗e × Ωr∗ . The constant matrices of adequate dimensions He, Ha, Wek, Wai are constructed from zjr in (29)
whereas matrices ∆`(t), ` ∈ {e, a}, are obtained from the uncertain terms δj(t). Note also that ∆>` (t)∆`(t) � I , for ` ∈ {e, a}.
The obtention of (30) from the nonlinear descriptor system (2) is further illustrated in Section IV-B.

Remark 3. The numerical complexity of system (30), represented by r∗e and r∗, exponentially decreases with respect to the
number of the premise variables considered as uncertain terms shown in (29). However, a large number of uncertain terms
may introduce more conservatism to the control design of system (30). Note that any time-varying premise variable zj(t), for
j ∈ Ωpe+p, can be represented in the form (29). However, in this paper we propose, as far as possible, to exploit the relation
(29) to deal with the premise variables depending on the angular velocities. Then, the membership functions of the descriptor
fuzzy systems can be constructed with premise variables only depending on the joint positions. These latter can be easily
measured with low-cow position sensors. This fact would be useful for the development of a robust fuzzy output tracking
control of robot manipulators without requiring velocity sensors.

The following theorem provides an LMI-based solution to design a reduced-complexity feedback control law

ufb(t) = −
r∗∑
i=1

r∗e∑
k=1

hi(z)vk(z)K∗ike(t), (31)

such that the uncertain fuzzy system (30) satisfies the closed-loop properties specified in Problem 1.



8

Theorem 2. Consider the tracking error dynamics (30). Given a positive decay rate α, assume that there exist a positive
definite matrix P ∈ R2n×2n, matrices Qi ∈ R2n×2n, Ri ∈ R2n×2n, Mik ∈ Rn×2n, and positive scalars ν, φaik, φeik, for
∀(i, k) ∈ Ωr∗ × Ωr∗e , solutions of the following optimization problem:

minimize ν (32)

subject to (17) and Ξ∗ik ? ?

SikH −Sik ?

Wik 0 −Sik

 ≺ 0, ∀(i, k) ∈ Ωr∗ × Ωr∗e , (33)

where Sik = diag(φaikI, φ
e
ikI) and

Ξ∗ik = He

 αP +Qi Ri 0

A∗iP −BMik − E∗kQi −E∗kRi B

0 0 −αI

 ,
Wik =

[
WaiP 0 0

−WekQi −WekRi 0

]
, H =

[
0 Ha 0

0 He 0

]
.

Then, the reduced-complexity controller (31) with the gains K∗ik = MikP
−1, for (i, k) ∈ Ωr∗×Ωr∗e , is such that the properties

defined in Problem 1 are satisfied with the guaranteed L∞−gain γ =
√
ν.

Proof. Multiplying (33) with hi(z)vk(z) ≥ 0 and summing up for all (i, k) ∈ Ωr∗ × Ωr∗e , it follows that Ξ∗hv ? ?

ShvH −Shv ?

Whv 0 −Shv

 ≺ 0, (34)

where Πhv =
∑r∗

i=1

∑r∗e
k=1 hi(z)vk(z)Πik, with Π ∈ {Ξ∗,S,W}. Applying the Schur complement lemma, we can prove that

(34) is equivalent to

Ξ∗hv +H>ShvH+W>hvS−1hvWhv ≺ 0. (35)

Denote ∆(t) = diag(∆a(t),∆e(t)). Since ∆>(t)∆(t) � I , using the following matrix fact:

He(X>Y) � X>SX + Y>S−1Y,

with S = Shv , X = H and Y = ∆(t)Whv , it follows from (35) that

Ξ∗hv + He(H>∆(t)Whv) ≺ 0. (36)

Consider a Lyapunov candidate function of the form (20) with r = r∗. Then, following similar arguments as in the proof of
Theorem 1 and from (36), it can be shown that

V̇(ē(t)) + 2αV(ē(t))− 2ανd>(t)d(t) = ξ>(t)Σhvξ(t) < 0,

with Σhv = Ξ∗hv + He(H>∆(t)Whv). The guarantee of properties (P1), (P2) and (P3) in Problem 1 with respect to system
(30) can be proved as in the proof of Theorem 1.

Remark 4. A decay rate performance is incorporated in the Lyapunov stability conditions of Theorems 1 and 2 to improve the
tracking performance. A large value of the decay rate α leads to a quick error convergence (Tanaka & Wang 2004). However,
this may induce aggressive closed-loop behaviors. The tuning of the positive decay rate α can be easily performed using
error-and-trial method to obtain a satisfactory tracking control performance in practice.

Remark 5. The control design in Theorem 1 (respectively Theorem 2) is recast as an optimization problem (16) (respectively
(32)) under LMI constraints. Such convex optimization problems can be effectively solved with standard numerical solvers
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(Boyd et al. 1994). In this paper, the feedback gains of the tracking fuzzy controllers (14) and (31) are computed using YALMIP
toolbox and SDPT3 solver (Löfberg 2004).

Remark 6. Solving the optimization problems in Theorems 1 and 2 may yield excessively high feedback gains, which are
impractical for real-world applications. To prevent this practical issue, the following LMI constraints can be incorporated in
these convex optimization problems:

P � µI, τ ≤ εµ, (37)[
τI M>ik
Mik τI

]
� 0, ∀(i, k) ∈ Ωr × Ωre , (38)

where µ, τ are additional scalar decision variables, and ε is a given Euclidean norm-bound of the matrix gains Kik. Indeed,
by Schur complement, inequality (38) is equivalent to

M>ikMik � τ2I, ∀(i, k) ∈ Ωr × Ωre .

Then, it follows from (37) that

M>ikMik � ε2µ2I � ε2P 2. (39)

Pre- and postmultiplying (39) with P−1, it follows that

P−1M>ikMikP
−1 � ε2I,

which is equivalent to ‖Kik‖ ≤ ε.

Remark 7. An integral action can be easily introduced in the feedback control structure to improve the tracking performance.
To this end, it suffices to include the integral state xI(t), whose dynamics can be defined as

ẋI(t) = Ce(t),

with C =
[
I 0

]
∈ Rn×2n. This amounts substituting in the convex optimization problems Ai, B and Ek by the following

respective partitioned matrices: [
Ai 0

C 0

]
,

[
B

0

]
,

[
Ek 0

0 I

]
.

The following numerical experiments are obtained with the corresponding integral fuzzy feedback control scheme.

IV. ILLUSTRATIVE RESULTS AND DISCUSSIONS

To highlight the interests of the proposed approach, we provides illustrative results obtained with the 2-DoF manipulator
benchmark developed by ABB Robotics (Moberg et al. 2008). Then, objective comparisons with notable control approaches
are also given.

A. Two Degree-of-Freedom Robot Manipulator

The studied manipulator is depicted in Fig. 1. The first arm rotates about the z−axis. The second arm is attached to the first
arm by a revolute joint. The robot parameters are given in Table I. Let us denote q1(t) and q2(t) the relative joint coordinates
of the first and the second arms, respectively, and q0(t) = q1(t) + q2(t) the absolute joint coordinate of the second arm. The
torques at joints 1 and 2 are respectively denoted as Γ1(t) and Γ2(t). The manipulator dynamics can be expressed in the form
(1) with G(q) = P(q)q(t) and

M(q) =

[
c1 + 2c2 cos q2 + Ia1 c3 + c2 cos q2

c3 + c2 cos q2 c3 + Ia2

]
,

N (q, q̇) =

[
−2c2q̇2 sin q2 + fv1 −c2q̇2 sin q2

c2q̇1 sin q2 fv2

]
,

P(q) =

[
c4

sin q1
q1

+ c5
sin q0
q0

c5
sin q0
q0

c5
sin q0
q0

c5
sin q0
q0

]
,
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TABLE I
MANIPULATOR NOMENCLATURE.

Symbol Description Value
L1/L2 Length of robot arms (m) 1/1.5
m1/m2 Mass of robot arms (kg) 50/150
I1/I2 Inertia of robot arms (kgm2) 5/50
Ia1/Ia2 Inertia of actuator rotors (kgm2) 160/40
r1/r2 Distance joints-mass centers (m) 0.5/ 0.8
fv1/fv2 Viscous friction coefficient (Nms/rd) 240/120
g Gravitational acceleration (m/s2) 9.81

where c1 = m1r
2
1 + I1 + m2L

2
1 + m2r

2
2 + I2, c2 = m2L1r2, c3 = m2r

2
2 + I2, c4 = m1gr1 + m2gL1, c5 = m2gr2. Let

us define the state x(t) =
[
q1(t) q2(t) q̇1(t) q̇2(t)

]>
, the control input Γ(t) =

[
Γ1(t) Γ2(t)

]>
. The disturbance input

Γd(t) =
[
Γd1(t) Γd2(t)

]>
is composed of the dry friction torques and the external forces as indicated in Appendix. The

manipulator dynamics can be represented in the form (2) with

E(x) =


1 0 0 0

0 1 0 0

0 0 c1 + 2c2z1 c3 + c2z1

0 0 c3 + c2z1 c3

 , B =


0 0

0 0

1 0

0 1

 ,

A(x) =


0 0 1 0

0 0 0 1

z2 z3 2z4 − fv1 z4

z3 z3 z5 −fv2

 ,
where the premise variables are defined as follows:

z1 = cos q2, z4 = c2q̇2 sin q2, z5 = −c2q̇1 sin q2,

z2 = −c4
sin q1
q1
− c5

sin q0
q0

, z3 = −c5
sin q0
q0

.
(40)

B. Fuzzy Descriptor Modeling for Robot Tracking Control

The set Dx in (3) of the benchmark robot is defined with

|q1(t)| ≤ π rad, |q2(t)| ≤ π rad,

|q̇1(t)| ≤ π/2 rad/s, |q̇2(t)| ≤ π/2 rad/s.

Fig. 1. Two degree-of-freedom benchmark manipulator.
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These state limitations are determined to guarantee a large workspace together with the related physical robot constraints.
1) Exact Fuzzy Descriptor Model: From the physical parameters in Table I and the above workspace data, the bounds of

the premise variables in (40) can be easily computed

z1max = −z1min = 1, z2max = z3max = 255.7,

z2min = −3384.5, z3min = −1177,

z4max = −z4min = 188.5, z5max = −z5min = 188.5.

Using the sector nonlinearity method shown in Section III-A, an equivalent fuzzy descriptor representation (10) with 25 = 32

linear submodels (re = 2 and r = 16) of the studied manipulator, called E−Model, can be derived. The details of these 32

submodels and the corresponding MFs are standard and omitted here for brevity.
2) Reduced-Complexity Fuzzy Descriptor Model: For illustration, the premise variables zi, i ∈ {2, 4, 5}, can be rewritten

in the form (29). This leads to a fuzzy model (30) with 22 = 4 linear submodels (r∗ = 2 and r∗e = 2), called R−Model. The
state-space matrices of this fuzzy model are given by

E∗1 = E(z1min), E∗2 = E(z1max), ∆E1(t) = ∆E2(t) = 0,

A∗1 =


0 0 1 0

0 0 0 1

z2m z3min 2z4m − fv1 z4m

z3min z3min z5m −fv2

 ,

A∗2 =


0 0 1 0

0 0 0 1

z2m z3min 2z4m − fv1 z4m

z3max z3min z5m −fv2

 ,
∆a(t) = diag(δ2(t), δ4(t), δ5(t)),

Ha =

0 0 1 0

0 0 1 0

0 0 0 1


>

, Wa =

z2r 0 0 0

0 0 2z4r z4r

0 0 z5r 0

 .
The corresponding MFs of R−Model are given by

v1(z) =
z1 − z1min

z1max − z1min
, v2(z) = 1− v1(z),

h1(z) =
z3 − z3min

z3max − z3min
, h2(z) = 1− h1(z).

The control results obtained with the two above manipulator fuzzy models are discussed below.

C. Numerical Results and Discussions

Solving directly the optimization problems in Theorems 1 and 2 with a decay rate α = 15 yields impractical control laws
(14) or (31) with a gain-amplitude order of 109. We thus redesign the control gains by including additional LMI constraints
as explained in Remark 6 to guarantee that ‖Kik‖ ≤ 106, for ∀(i, k) ∈ Ωr×Ωre . Details on the obtained control solutions are
not given here for brevity. A summary on the control design of both manipulator fuzzy models is depicted in Table II. Remark
that using relation (29), the number of linear subsystems of the fuzzy descriptor representation is significantly reduced from 32

to 4. This leads to a major advantage for real-time control implementation without fear of causing closed-loop instability since
Theorem 2 allows designing a robust controller (31) with respect to uncertainties ∆a(t) and ∆e(t), induced by the complexity
reduction. Moreover, the number of scalar decision variables Nvar involved in LMI-based optimizations, representing their
numerical complexity, is also drastically reduced for the control of R−Model. The L∞−gain γ obtained for both fuzzy models
are very small, thus, a good level of tracking performance is expected for both control solutions. Note that no feasible solution
can be found for any manipulator fuzzy representation with less than four linear submodels since the uncertainties caused by
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(29) become too large. Hence, in practice there is a tradeoff between numerical complexity reduction and modeling uncertainty
as mentioned in Remark 3.

TABLE II
CONTROL DESIGN OF TWO FUZZY DESCRIPTOR MODELS.

Fuzzy model Nb. submodels Design Nvar γ

E−Model 32 Theorem 1 1562 8.06× 10−5

R−Model 4 Theorem 2 222 7.75× 10−6

The numerical experiments are performed with a refined robot model that takes into account the joint elasticity and dry
friction effect, see Appendix. This high-fidelity simulation model is embedded in Simscape MultibodyTM environment. The
trajectory reference in the Cartesian space is a circle with radius Rtraj = 0.4 (m) and center coordinates O(0, 1.8) (m),
which has to be performed in 3.2 (s) with a quintic polynomial of time. The joint trajectory is computed using manipulator
inverse kinematics from the Cartesian trajectory. We now compare the tracking performance obtained with the following four
controllers:

• LI32 controller is derived from Theorem 1 and E-Model,
• LI4 controller is derived from Theorem 2 and R-Model,
• PID controller and CTC controller, whose structures and design tunings have been chosen according to (Paccot et al.

2009).

The relative circularity errors εc =
‖OPe(t)‖−Rtraj

Rtraj
, where Pe(t) is the tool center point (TCP), obtained with the four controllers

are depicted in Fig. 2. Observe that both proposed LI32 and LI4 controllers provide a high-precision tracking performance
with respect to the considered trajectory reference. In particular, despite its reduced-complexity feature, controller LI4 offers
similar, or even better, control performance compared to the other ones. These facts are also confirmed by the small tracking
errors obtained with both proposed controllers as indicated in Fig. 3.
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Fig. 2. Time history of the relative circularity errors εc for the four compared controllers PID, CTC, LI32 and LI4.

To further illustrate the tracking performance of different controllers, let us consider the following performance indices:

• ∆RM = max
t∈[0,T ]

‖OPe(t)‖ −Rtraj (mm): maximal circular error, where T = 4 (s) is the simulation duration,

• ∆ex,M and ∆ey,M (mm): tracking errors with respect to the tool center point Pe(t) in x and y directions,
• EiMaAV (mrad): maximum absolute value (MaAV) of the ith joint position tracking error, defined by

EiMaAV = max
t∈[0,T ]

|qi(t)− qir(t)|, i = 1, 2.
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Fig. 4 represents the values of these performance indices obtained with the considered controllers. This chart corroborates the
good performance obtained by the proposed control laws compared with existing controllers. Especially, the tradeoff between
the controller complexity and the related performance is also clarified. The simplest PID controller provides the worst values
for all considered performance indices whereas more complex control schemes such as CTC or LI32 yield better tracking
performance. The proposed controller LI4 appears as a good compromise leading to a simple enough control structure for
real-time validation without any significant degradation of tracking performance.
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Fig. 3. Time history of the joint position errors.
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Fig. 4. Comparison of tracking control performance indices.

Concerning the actuator solicitations, Fig. 5 depicts the corresponding response of both control torques. Moreover, Table III
shows the maximal and the root-mean-square (RMS) values of the two actuator torques of the benchmark manipulator. We
can observe that all the torque values are of similar magnitudes for the four considered controllers.

TABLE III
MAXIMAL AND RMS ACTUATOR TORQUES AFTER GEARBOX (IN NM) FOR DIFFERENT CONTROLLERS.

Controller Γ1max Γ1RMS Γ2max Γ2RMS

PID 4804 1282 2165 476.3
CTC 4484 1273 2103 463.2
LI32 4478 1275 2131 471.1
LI4 4709 1279 2138 473.6
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Fig. 5. Time history of the control torques.

V. CONCLUDING REMARKS

A systematic approach for tracking control design of robot manipulators has been proposed. Based on a fuzzy descriptor
representation of generic manipulator systems, this approach makes use of Lyapunov stability arguments to guarantee an
L∞−gain performance of the closed-loop tracking error dynamics. Exploiting a robust control scheme, we propose an effective
way to significantly reduce the numerical complexity of the control structure, leading to a major advantage for real-time control
implementation. The control design is recast as convex optimization problems, which can be easily solved with standard solvers.
The practical tracking performance of the proposed approach is clearly demonstrated with a high-fidelity 2-DoF benchmark
manipulator. A comparative study with several prominent tracking control schemes is also performed to show the interests of
the new approach. In particular, it has been shown that despite a significant complexity reduction, the robust fuzzy controller
provides a similar tracking performance compared to the exact fuzzy controller. Hence, the proposed robust fuzzy-model-based
control method offers a more effective solution for the tracking control problem of robot manipulators, especially within
industrial context. Future works focus on the extension of the proposed approach to the design of a robust fuzzy output
tracking control for robot manipulators and real-time validations. Moreover, fuzzy robot tracking control in interaction with
human operators is also a promising research topic.

APPENDIX. MANIPULATOR BENCHMARK MODEL

The dynamics of the rigid-link flexible-joint manipulator model used for validation purposes is composed of actuator dynamics
(subscript a) and linkage dynamics (subscript b) as

Maq̈a +Naq̇a + Qt = Γ + Γf

Mb(qb)q̈b +Nb(qb, q̇b)q̇b + G(qb)−Qt = J>(qb)Fe,
(41)

where Qt = Bt(q̇a − q̇b) +Kt(qa − qb), qa =
[
qa1 qa2

]>
is the vector of actuator angular positions, Ma = diag(Ia1, Ia2)

is the matrix of motor inertia, Na = diag(fv1, fv2) is the matrix of viscous friction, Mb(qb) and Nb(qb, q̇b) are respectively
the linkage inertia and Coriolis/centripetal matrices, Kt = diag(kt1, kt2) is the matrix of joint stiffness, Bt = diag(bt1, bt2) is
the joint damping matrix, and J (qb) is the robot Jacobian such that the TCP velocity is expressed as ẊPe(t) = J (qb)q̇b(t).
The disturbances are composed of the dry friction torque Γf (t) acting on the actuators and the external force Fe(t) acting on

the TCP. The dry friction torque Γf (t) =
[
Γf1(t) Γf2(t)

]>
is modeled as follows (Moberg et al. 2008):

Γfi(t) = Γci(µi + (1− µi)cosh−1(βiq̇ai(t)))tanh(αiq̇ai(t)),

where Γci is the Coulomb friction, µi is the Stribeck friction constant, and αi, βi are the constants of the smooth friction
model for the ith joint. The external force used for validation is assumed to be tangential to the TCP trajectory as

Fe(t) = fe(t)ẊPe
(t)‖ẊPe

(t)‖−1,
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where fe(t) ∈
[
310, 490

]
(N) is the force magnitude. All the robot parameters are taken from the experimental benchmark

(Moberg et al. 2008) of an industrial manipulator developed by ABB Robotics.
Note that the manipulator model (41) has four degrees-of-freedom, including the joint deformation between each actuator

and its corresponding arm (Makarov et al. 2016). This additional and weakly damped dynamics introduces vibrations due to
the excitation of the mechanical resonances. For control design, the joints are assumed to be rigid, i.e., qa = qb = q. This
leads to the control-based manipulator model with matrices M(q) =Ma +Mb(q), N (q, q̇) = Na +Nb(q, q̇), G(q) given
in Section IV-A. Moreover, the disturbance input is defined as Γd(t) = J>(q)Fe(t) + Γf (t).
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