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Abstract

This paper examines the uncapacitated multiple allocation p-hub median problem (UMApHMP)
in a general setting where a given network may violate the triangle inequality, thus leading to flow
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Efficient Flow Models for the Uncapacitated Multiple Allocation p-Hub Median
Problem on Non-Triangular Networks

Abstract

This paper examines the uncapacitated multiple allocation p-hub median problem (UMApHMP) in a

general setting where a given network may violate the triangle inequality, thus leading to flow paths with

more than two hubs connecting origin-to-destination pairs. We present two improved flow formulations

using a new ”augmented graph” that allows a substantial reduction in the number of constraints, and signif-

icant improvement in performance of a standard off-the-shelf MILP solver compared to the recent 4-index

flow model proposed in Brimberg et al. (2019). Results presented even surpass the performance of special-

ized algorithms developed for solving the standard ”triangular” case. The linear programming relaxations

of the presented models are also investigated.

Keywords: p-hub; hub location; multiple allocation; triangle inequality; flow formulations

1. Introduction

Hub location models may be classified along several important features. These features include the type

of objective function such as median or center, for example, whether or not the hubs and/or edges have

capacity constraints, and the selected allocation scheme used for assigning non-hub nodes to hub nodes.

For more detailed classification, solution approaches and applications of hub location problems we refer the

reader to [1, 4, 5, 10, 13, 14, 17, 19, 21–29, 32, 35–37].

In this paper we examine a particular model known as the uncapacitated multiple allocation p-hub

median problem (UMApHMP). As implied in the problem name, the objective (median) aims to locate

p hubs in order to minimize the total cost (or equivalently the average cost) to send given demands of a

commodity between all pairs of source and destination nodes, when there are no capacity constraints on

hubs or edges (uncapacitated), and each node has access to all p hubs (multiple allocation).

The UMApHMP was first proposed by [7] who formulated the problem using variables with up to

4 indices (4-index formulation). This 4-index formulation quickly explodes in size for larger instances.

Hence in order to solve larger problem instances, researchers have resorted to reformulating the problem and
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proposing models where variables use fewer indices. For example, [3, 16, 20, 31] formulate tighter versions

of the problem. A 3-index formulation of UMApHMP is given in [16], where the authors succeeded to

solve instances with up to n = 50 nodes. More recently, Garcia et al. [18] proposed a formulation based on

a preprocessing step which reduces the size of the problem from O(n4) to O(n2) variables. Interestingly,

their branch-and-cut algorithm is successful only for large values of p, (e.g., n = 200 and p ≥ 145), since

the number of constraints for smaller p becomes unmanageable. For this reason, their formulation is not

included for comparison in this paper, since networks with such large values of p are not that realistic.

A related problem in the literature is provided by the uncapacitated multiple allocation hub location

problem (UMAHLP) where fixed costs are imposed at the nodes selected to become hubs and the number

of hubs to open (p) is not given. As noted in de Camargo et al. [11] the computational effort is very sensitive

to the coefficient of variation of the fixed costs. In this paper the authors apply a Benders decomposition to

tackle the problem. See also , Cánovas et al. [8] who construct a dual-ascent algorithm.

The ”standard” models above assume that the triangle inequality holds; that is, shortest paths in the net-

work are always used, including hub-to-hub connections. This in turn implies that all source-to-destination

paths will require at most two intermediate hubs. As pointed out recently in Brimberg et al. (2019) [6],

this restriction is unrealistic in many applications where the path between a source node and destination

node must use for various reasons three or more hubs, e.g., when direct connections between hubs are too

long, or when shortest paths may not be suitable for the type of transport used between nodes. For example,

depending on the types of aircraft available for use by an air-transport company, there may be limitations

on the distance that can be flown directly from one hub (airport) to another. This would make direct con-

nections between certain pairs of nodes impossible, which could be modelled by imposing a very large cost

(or distance) for transfer flows on the connecting arc or by setting transfer flows to zero on such arcs. In

this case, a transfer flow between two distant hub nodes would have to first go through one or more ”addi-

tional” intermediate hubs, resulting in some source and destination nodes requiring three or more hubs on

the path connecting them. Consider, as another example, relay towers in a communication network that can

communicate directly only if the Euclidian distance between them is within a certain range. (Otherwise, the

radio signal is too weak.) Again, certain paths connecting origins and destinations would require three or

more intermediate hubs (relay towers), which would likely result in a non-triangular network. Since we do

not know the hub locations beforehand, the shortest usable paths that apply to the hub sub-network are not

known. Recognizing this deficiency, [6] provides two new formulations, referred to as ”path” and ”flow”
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that generalize the UMApHMP model to the ”non-triangular” case.

In this paper, we further examine the flow model in [6], which is more amenable to exact solution

than the path formulation. Two new formulations for the flow model are presented here. Both use a new

concept we refer to as an augmented graph. Candidate nodes for hub location are duplicated on the network,

so that, for example node i and its duplicate, node −i, act respectively as a non-hub node and candidate

hub node. Thus, the original node i can act either as a non-hub node alone, or both a non-hub node and

hub node (which becomes node −i). Although this increases the size of the network, the flow pattern

on the network is simplified by separating hub-to-hub flows from the other types of flows (source-to-hub

and hub-to-destination). For example, our first formulation uses 4-index variables as in the flow model

in [6], but the augmented graph allows a substantial reduction in the number of constraints. The second

formulation uses flow variables aggregated by source node for the hub-to-hub flows, which further simplifies

the model formulation. In addition, we propose an extension of the 3-index formulation in [16] which

allows this model to also solve the non-triangular case. Computational results demonstrate that the models

presented here are more amenable to exact solution by off-the shelf software such as CPLEX than the

standard (triangular) models in the literature, and the flow model of [6]. Problem instances with up to

100 nodes are solved exactly in less than one hour with CPLEX over a wide range of values for p. Since

practitioners most often rely on commercially available software such as CPLEX we believe this is an

important improvement over previous results. Moreover, the paper does not only provide empirical analysis

of different models, but also provides theoretical insights on the strength of the bounds obtained solving

linear programming relaxations of the various formulations.

The rest of the paper is organized as follows. The next section provides a detailed description of the

UMApHMP. Sections 3 and 4 present mathematical models used to formulate UMApHMP with triangle

inequality imposed and UMApHMP without triangle inequality imposed. Section 5 presents a theoretical

study of the linear programming relaxations of various models presented, showing that some formulations

provide stronger lower bounds than others. Section 6 provides an extensive computational study on the

performance of all models using CPLEX. The last section summarizes our conclusions and final recom-

mendations.
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2. Problem description

The uncapacitated multiple allocation p-hub median problem (UMApHMP) is defined on a complete

symmetric graph G = (N,E), where N = {1, 2, ..., n} represents the set of nodes, and E = {(i, j) : i, j ∈

N} the set of arcs. The graph G should not be confused with the underlying network, which is assumed

to be connected, but will not normally have direct links between each pair of nodes. Arcs (i, j) are added

to G, generally, to represent the shortest ”useable” path from i to j on the network where physical arcs are

missing. For each O–D (origin-destination) pair i − j, i, j ∈ N , the demand tij that has to be transferred

from node i to node j is given. The direct transfer between nodes is not allowed but must be accomplished

via hub nodes. So, the UMApHMP consists in choosing exactly p nodes from the set N to be hubs, where p

is given in advance, so that the total transportation cost is minimized assuming that any non-hub node may

use any hub node to communicate with other nodes and the flows to or from a non-hub node can be received

or sent through more than one hub (multiple allocation scheme). If we assume that the transfer from node

i to node j is accomplished via the path i − hij1 − h
ij
2 − · · · − h

ij
k − j where each hijl , l ∈ {1, 2, . . . , k}

stands for a selected hub, then the transportation cost per unit flow along such a path is calculated as:

dij = γc
ihij

1
+ α

k−1∑
l=1

c
hij
l hij

l+1
+ δc

hij
k j
,

where clm denotes the length of each arc (l,m) ∈ E, and parameters γ, α and δ are unit rates for collection

(origin-hub), transfer (hub-hub) and distribution (hub-destination), respectively. In general, parameter α is

used as a discount factor to provide reduced unit costs on arcs between hubs, so α < γ and α < δ. Note

that in the UMApHMP there are no imposed capacity restrictions on nodes i ∈ N or arcs (i, j) ∈ E. In

addition, we assume that cij = cji , but not necessarily tij = tji, for each (i, j) ∈ E. The total flow

originating at node i is denoted as Oi =
∑

j∈N tij , while the total flow to be received by node j is denoted

as Dj =
∑

i∈N tij .

In the case where the lengths (or distances) cij satisfy the triangle inequality, each path from an origin

to a destination will contain at most two hub nodes (see [7]). On the other hand, if the triangle inequality

is violated, a hub path hi − hj − hk may be shorter than the direct path hi − hk. Therefore, it may be

beneficial to allow the path between an O–D pair to contain more than two hubs (see [6]). In order to

differentiate these two cases, the UMApHMP where distances satisfy the triangle inequality will be referred

as (Standard) UMApHMP, while the UMApHMP where distances do not satisfy the triangle inequality will

be referred as the Generalized UMApHMP (G-UMApHMP).
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In the next section we present the mathematical formulations of Standard and Generalized UMApHMP.

Some formulations are presented for the first time. Complete details of existing formulations are also given

to facilitate comparison of the various models.

3. Mathematical formulations of Standard UMApHMP

In this section we review the so called 4-index and 3-index formulations of Standard UMApHMP, that

are widely used in the literature.

3.1. 4-index formulation

The four index formulation [7] uses two sets of variables: binary variables zk, k ∈ N that take the value

1, if and only if, a node k is used as a hub (i.e., a hub is opened at node k), and 0 otherwise; and continuous

variables yijkl which determine the portion of flow from i to j that is transferred via hubs k and l. Recall

that when the triangle inequality applies throughout the network, each O-D path will traverse at most two

hub nodes. The complete 4-index formulation, which is based on this insight, is provided in the Appendix.

This formulation will be referred to as 4-index UMApHMP.

3.2. 3-index formulation

The three index formulation [16] employs the following sets of variables in addition to the set of zk

variables previously used in the 4-index formulation :

• uik := direct flow from node i to hub node k,

• yikl := flow from node i that is transferred via the arc connecting hub nodes k and l,

• vilj := flow from origin i which is delivered to destination j via arc (l, j).

Using these variables we have the following formulation denoted as 3-index UMApHMP:

min
∑
i,k∈N

γcikuik +
∑

i,m,l∈N
αcmlyiml +

∑
i,m,j∈N

δcmjvimj (1)

subject to:

∑
k∈N

zk = p, (2)
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∑
k∈N

uik = Oi, ∀i ∈ N, (3)

∑
l∈N

vilj = tij , ∀i, j ∈ N, (4)

uik +
∑
m∈N

yimk =
∑
j∈N

vikj +
∑
m∈N

yikm, ∀i, k ∈ N, (5)

uik ≤ Oizk, ∀i, k ∈ N, (6)

∑
i∈N

vilj ≤ Djzl, ∀j, l ∈ N, (7)

uik, yikl, vilj ≥ 0, ∀i, j, k, l ∈ N, (8)

zk ∈ {0, 1} ∀k ∈ N. (9)

The objective function (1) minimizes the total transportation cost, while the constraint (2) ensures that

exactly p hubs are opened. Constraints (3)-(5) are flow conservation constraints that guarantee the flow

between each O-D pair is routed. Constraints (6) do not allow flow on the arc i − k if node k is not a hub.

Similarly, constraints (7) forbid that the flow going from i to j is transferred along an arc l − j if node l is

not a hub. Finally, the type and range of variables are provided in the two last sets of constraints.

This model has n+ n2 + 2n3 variables and 1 + n+ 4n2 constraints (without variable-type constraints

(8) and (9)). By pre-setting the variables yikk = 0, the number of variables may be reduced by n2.

Property 1. The 3-index UMApHMP is not valid for use when the triangle inequality is violated.

Proof. In order to prove this statement, we consider the following counterexample (Figure 1). This example

is a modification of the one given in Brimberg et al. (2019) [6]. In this example the number of sought hubs

is 3, the distances cij are provided next to the arcs, and cost parameters are set as follows γ = δ = 1 and

α = 0.5 The flow from a node to itself is set to 0, as well as flow between nodes 1 and 3, while for all other

pairs, flow equals 1. The optimal hub locations are denoted by a red color at nodes 1,2, and 3. The objective

function value of this solution is 27. On the other hand, the above 3-index formulation provides nodes
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1, 4, and 5 as optimal hubs with the objective function value of 26 (Figure 2). However, such a solution

obviously yields a much greater objective function value. Namely, the cheapest cost to transfer flow from

node 1 to node 4 is c14 =200. On the other hand, if we take a look at the values of the variables in the

”optimal” solution (see Figure 3) found by 3-index UMApHMP, we see that this ”optimal” solution uses all

five nodes as intermediate nodes, although there are just three hub nodes. For example, the unit flow from

node 1 to node 4, traverses non-hub node 2 (y112 = y124 = 1), which contradicts the use of hub nodes only

as intermediate nodes. �

Figure 1: Small network with 5 nodes and 3 hubs

optimally located at nodes 1,2 and 3

Figure 2: ”Optimal” solution of the 3-index

UMApHMP (hubs at 1, 4, and 5)

Figure 3: Non zero values of variables in optimal solution provided by 3-index UMApHMP
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4. Mathematical formulations for Generalized UMApHMP

In this section we present five mathematical formulations for the Generalized UMApHMP. All models

are new except for the flow model recently appearing in [6], and presented here for completeness. Brimberg

et al. [6] also proposed a path formulation, but since that model exhibited poor performance, we decided

not to include it here.

4.1. Modifications to 3-index UMApHMP

The 3-index UMApHMP formulation becomes valid for non-triangular networks if the following con-

straints are added: ∑
l∈N,l 6=k

yilk ≤ Oizk, ∀i, k ∈ N. (10)

The above constraint set forbids an intermediate node to be a non-hub node. Note that when the triangle

inequality holds, these constraints are redundant. Constraints (6) ensure that each flow is first transferred to

a hub, and similarly constraints (7) impose that each flow is delivered to a node directly from a hub. Since

each flow path requires at most two hubs when the triangle inequality holds, the constraints (6) and (7) are

enough to ensure that intermediate nodes on each path are hubs only. We will refer to 3-index UMApHMP

+ (10) as 3-index G-UMApHMP1 or G-UMApHMP1 for short.

We may also combine constraints (6) and (10) into:

uik +
∑

l∈N,l 6=k

yilk ≤ Oizk, ∀i, k ∈ N. (11)

This tightening of constraints is not restrictive since multiple paths from a source node to an intermediate

node can be reduced to a single path without affecting optimality. Note that 3-index UMApHMP and

3-index UMApHMP -(6) + (11) have the same number of constraints. This second modification will be

referred to as G-UMApHMP2 for short.

4.2. Flow formulation of Brimberg et al. 2019 [6]

The flow formulation (FF) of [6] uses the following variables. Binary variables zk, k ∈ N , as before,

are used to indicate if node k is chosen as a hub or not. Flow variables wijlm, i, j, l,m ∈ N , which are

binary, are used to determine if the flow from node i to node j is transferred along the arc (l,m), or not. The

remaining two sets of variables are also binary, and used to identify hubs to which origin and destination

nodes are allocated. So, we have variables uijm, i, j,m ∈ N , such that variable uijm receives value 1, if
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and only if, origin node i is directly allocated to hub node m in order to transfer flow to destination node

j. Similarly, variables vijm i, j,m ∈ N receive value 1, if and only if, node j is directly allocated to hub

node m in order to receive flow from node i. The complete formulation referred to as FF is provided in the

Appendix.

4.3. Formulations on an augmented graph

4.3.1. Improved flow formulation

In this section we propose a new flow formulation, which simplifies the preceding model ([6]) by re-

ducing the number of constraints significantly and relaxing some integrality requirements.

We first construct a ”representative graph”G′ = (N ′, E′),N ′ = N∪H , whereH ⊆ {−1,−2, . . . ,−n}

is used to double those nodes in N which are candidate hub locations; and E′ = EA ∪ EH , where

EA = {(i, j)|i ∈ N, j ∈ H ∨ i ∈ H, j ∈ N} denotes the set of arcs used for collection (origin-hub)

and distribution (hub-destination); and EH = {(i, j)|i, j ∈ H, i 6= j} denotes the set of arcs used for

transfer (hub-hub).

Note that the new graph effectively doubles the number of nodes and the number of edges. We assume

here for simplicity cij = cij′ = cj′i = cji and cij = ci′j′ = cj′i′ = cji, where j′ = −j and i′ = −i.

In addition, cii′ = ci′i = 0. However, in general, the arc costs (or distances) cij′ and cj′i for collection

and distribution may be set to different values than those used for transfer (ci′j′ and cj′i′) to enable the

augmented graph to be more versatile to decision-makers. For example, hub-to-hub arcs with distances

below a specified threshold can be penalized by increasing the associated costs ci′j′ . This could induce

in a beneficial way economies of scale by shifting flows to longer arcs, and larger and cheaper modes of

transport. Hub-to-hub arcs that are too long could be penalized in a similar way to ensure they are not used.

Thus, the augmented graph provides a useful tool to set useable shortest paths for collection and distribution

flows (using arcs in EA) to different values than useable shortest paths for transfer flows (using arcs in EH )

to better reflect reality. The custom design of hub networks that better utilize economies of scale is a subject

of growing interest (e.g., see [2]).

As seen below, the augmented graph also leads to a much simplified flow model.

The new flow formulation, apart from variables zm, m ∈ H previously defined, uses variableswijim, wijmj , wijlm i, j ∈

N, l,m ∈ H . The variables wijim, wijlm, and wijmj represent, respectively, the proportions of flow from i

to j that are transferred along arcs (i,m) (origin to hub), (l,m) (hub to hub) and (m, j) (hub to destination).
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Hence, the new flow model, denoted as improved FF, is as follows:

min
∑
i,j∈N

tij [γ
∑
m∈H

cimwijim + δ
∑
l∈H

cljwijlj + α
∑

l,m∈H,l 6=m

clmwijlm] (12)

subject to: ∑
m∈H

zm = p (13)

∑
m∈H

wijim = 1, ∀i, j ∈ N (14)

∑
l∈H

wijlj = 1, ∀i, j ∈ N (15)

wijim +
∑

l∈H,l 6=m

wijlm =
∑

l∈H,l 6=m

wijml + wijmj , ∀i, j ∈ N,m ∈ H, (16)

wijim +
∑

l∈H,l 6=m

wijlm ≤ zm, ∀i, j ∈ N,m ∈ H, (17)

zm ∈ {0, 1}, wijlm, wijlj , wijim ≥ 0, ∀i, j ∈ N, l,m ∈ H. (18)

The objective function (12) reflects the total transportation cost, while constraint (13), as before, imposes

the opening of exactly p hubs. Constraints (14) impose that for each O-D pair (i, j), the flow going from i to

j is completely dispatched to hubs, while constraints (15) ensure that this flow arrives via hubs at destination

j. Flow conservation in the hub sub-network is guaranteed by constraints (16). Constraints (17) impose that

the flow into any node m ∈ H can be accomplished only if a hub is opened at node m. Constraints (16) and

(17) together guarantee that all flows are balanced and any flow path from a source node i to a destination

node j can only use intermediate nodes in H where hubs are opened.

The last constraints (18) describe the variables.

The above model has n+ n3 + n4 variables and 1 + 2n2 + 2n3 constraints (without constraints (18)).

This is a significant improvement in comparison to the preceding flow formulation FF.
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4.3.2. Improved 3-index formulation for G-UMApHMP

The next 3-index formulation is similar to G-UMApHMP1 and 2 with an exception that the augmented

graph is used here. The variables uim, i ∈ N,m ∈ H quantify the total flow from origin i that is transferred

along arc (i,m); the variables vilj , i, j ∈ N, l ∈ H denote the flow from origin i to destination j delivered

on arc (l, j); and yilm, i ∈ N, l,m ∈ H, l 6= m gives the total amount of flow from origin i transferred

along arc (l,m). In this model, binary variables zm are used as well, with the same meaning as earlier.

Hence, the new model, referred to as 3-index G-UMApHMP3 (G-UMApHMP3 for short), is as follows:

min [γ
∑

i∈N,m∈H
cimuim + δ

∑
i,j∈N,l∈H

cljvilj + α
∑

i∈N,l,m∈H,l 6=m

clmyilm] (19)

subject to: ∑
m∈H

zm = p (20)

∑
m∈H

uim = Oi, ∀i ∈ N, (21)

∑
l∈H

vilj = tij , ∀i, j ∈ N, (22)

uim +
∑

l∈H,l 6=m

yilm =
∑
j∈N

vimj +
∑

l∈H,,l 6=m

yiml, ∀i ∈ N,m ∈ H, (23)

uim +
∑

l∈H,l 6=m

yilm ≤ Oizm, ∀i ∈ N,m ∈ H, (24)

zm ∈ {0, 1}, yilm, vilj , uim ≥ 0, ∀i, j ∈ N, l,m ∈ H. (25)

The objective function (19) and constraint (20) are the same as before. Constraints (21) ensure that all

flow originating at node i is dispatched, while constraints (22) guarantee that the demand of each node j

is respected. Flow conservation at each intermediate hub node is achieved by constraints (23). Constraints

(24) ensure that an intermediate node may be only a chosen hub node. The last set of constraints (25)

designate the variables of the model.

Note that an analogous set of constraints as in (7) is omitted here, since these constraints are automati-

cally satisfied. (A similar conclusion may be applied to G-UMApHMP2).
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This model has n + 2n3 variables (similarly as 3-index UMApHMP), and 1 + n + 3n2 constraints.

This represents a significant reduction in the number of constraints compared to the two preceding 3-index

formulations of G-UMApHMP.

Note that under the standard assumption given above where cost parameters along corresponding arcs

for collection, distribution, and transfer have the same value (cij′ = cj′i = ci′j′ = cj′i′), the nodes in H

may be conveniently re-labelled as {1, 2, . . . , n}(= N) without loss of generality in both improved FF and

G-UMApHMP3. In effect we return to the original graph. The duplication of the set of network nodes

N by a new set H in an augmented graph allows us to better conceptualize the flows, and to simplify

the formulations. As discussed above, the augmented graph may also be used as an experimental tool to

derive different hub configurations under different scenarios that better reflect reality, without increasing the

complexity of the model (and, actually, possibly reducing it).

5. Theoretical comparison of LP relaxations

In this section we derive properties comparing the strength of the Linear Programming (LP) relaxations

of the models presented above. By LP relaxation and LP solution, we mean that the integer requirements

on all binary variables are relaxed.

For the sake of simplicity, we set H = N in the proofs below; that is, k ∈ H is the duplicate node of

k ∈ N , ∀k = 1, 2, . . . , n.

Theorem 2. Any feasible LP solution of G-UMApHMP2 is also a feasible LP solution of G-UMApHMP1

and 3.

Proof. First note that the yikk’s can all be set to 0 without changing actual flows in the network. Thus

trivial solutions with any yikk’s > 0 are not considered. For any feasible LP solution of G-UMApHMP2,

it is clear that since (11) is satisfied, then (6) and (10) of G-UMApHMP1 must also be satisfied. All

other constraints of these two models are the same, and hence, the theorem must be true for these two.

Furthermore, transferring the values of all variables in any feasible LP solution of G-UMApHMP2 directly

onto the corresponding variables of G-UMApHMP3 clearly must be feasible in the LP relaxation of G-

UMApHMP3. (The converse is not true since (7) may be violated). Hence, the theorem is also true for

G-UMApHMP2 and 3. �

Corollary 3. The optimal value of the LP relaxation of G-UMApHMP2 is greater than or equal to the

optimal value of the LP relaxation of both G-UMApHMP1 and G-UMApHMP3.
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Theorem 4. The optimal value of the LP relaxation of improved FF is equal to or greater than that of the

LP relaxation of G-UMApHMP3.

Proof. Note that summing up constraints (14), (16) and (17), multiplied by tij , over j ∈ N , setting

uim =
∑

j∈N tijwijim, yilm =
∑

j∈N tijwijlm and replacing vilj = tijwijlj , the improved FF formulation

transforms to the G-UMApHMP3. For example, (14) converts to (21) as follows:

∑
m∈H

wijim = 1, ∀i, j ∈ N

=⇒ tij
∑
m∈H

wijim = tij , ∀i, j ∈ N

=⇒
∑
m∈H

∑
j∈N

tijwijim =
∑
m∈H

uim =
∑
j∈N

tij = Oi, ∀i ∈ N.

Similarly, (16) converts to (23), and (17) converts to (24). Since, G-UMApHMP3 uses aggregated con-

straints from improved FF, the LP relaxation of improved FF is not weaker than the LP relaxation of G-

UMApHMP3.�

Theorem 5. A feasible solution of the LP relaxation of improved FF is a feasible solution of the LP relax-

ations of G-UMApHMP1 and G-UMApHMP2.

Proof. Similarly as in the preceding proof, we set uim =
∑

j∈N tijwijim, yilm =
∑

j∈N tijwijlm and

vilj = tijwijlj , and we pre-set redundant variables yikk = 0, ∀i, k. Then, summing up constraints (14)

and (16) multiplied by tij over j ∈ N , we obtain the constraints (3) and (5). Constraints (4) follow

directly from constraints (15) by applying the imposed relation between variables vilj and wijlj . Summing

(17), multiplied by tij , over j ∈ N , we have the constraint uik +
∑

l∈N,l 6=k yilk ≤ Oizk, i, k ∈ N,

which gives (11) and induces constraints (6) and (10). Note that constraints (16) and (17) impose that

wijkj +
∑

l∈H,l 6=k wijkl ≤ zk, i, j, k ∈ N , and hence, wijkj ≤ zk. Consequently, after multiplication

of wijkj ≤ zk by tij , and summing over i, we have
∑

i∈N tijwijkj =
∑

i∈N vikj ≤
∑

i∈N tijzk =

Djzk,∀j, k ∈ N , which duplicates the constraints (7). �

The next corollary follows from the fact that if an LP solution is feasible for 3-index UMApHMP with

added constraints (10) (i.e., G-UMApHMP1), it is also feasible for the 3-index formulation without (10).

Corollary 6. On instances satisfying the triangle inequality, a feasible solution of the LP relaxation of

improved FF is a feasible solution of the LP relaxation of 3-index UMApHMP.
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All these findings lead to the following corollary.

Corollary 7. The LP relaxation of improved FF is not weaker than that of the standard 3-index UMApHMP

model and all presented 3-index G-UMApHMP models.

The following results refer exclusively to networks that satisfy the triangle inequality. As noted above,

an optimal solution may always be found in such cases having flow paths that all contain at most two hub

nodes. This property also applies to the LP relaxation, where hubs can be partially opened (0 < zk < 1).

Consider the Figure 4, showing a partially opened hub at node k, and an origin node i and destination node

j. Thanks to the triangle inequality, the flow from origin i to destination j that traverses arc (k, j) can be

restricted to paths i → k → j, i → m1 → k → j,..., i → ms → k → j. Similarly, the flow on arc (i, k)

is restricted to paths i → k → j, i → k → l1 → j,..., i → k → lr → j. This observation will be used to

prove the next result.

Figure 4: Flow paths from origin node i to destination node j containing partially-open hub k (triangle inequality applies).

Theorem 8. On instances satisfying the triangle inequality, the optimal value of the LP relaxation of im-
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proved FF is equal to the optimal value of the LP relaxation of 4-index UMApHMP.

Proof. Let {z∗k, k ∈ N} ∪ {y∗ijkl, i, j, k, l ∈ N} denote an optimal LP solution of 4-index UMApHMP.

Referring to the objective function (28), each y∗ijkl > 0 sends tijy∗ijkl units from origin i to destination j

along path i → k → l → j (where l can equal k) at a cost, (γcik + αckl + δclj)tijy
∗
ijkl. To obtain exactly

the same network flows and objective value in the improved FF model, we use the following transformation

(see Figure 4):

zk = z∗k ( or zk = z∗(−k), depending on the labelling used ), ∀k ∈ H;

wijkl = y∗ijkl, ∀i, j ∈ N, k, l ∈ H, k 6= l;

wijik =
∑

l∈N,l 6=k

y∗ijkl + y∗ijkk, ∀i, j ∈ N, k ∈ H;

wijkj =
∑

m∈N,m6=k

y∗ijmk + y∗ijkk, ∀i, j ∈ N, k ∈ H.

Verifying the constraints in the improved FF formulation, we see that constraint (13) is immediately

satisfied. For (14), the transformation gives:∑
k∈H wijik =

∑
k∈N

∑
l∈N y∗ijkl = 1 (from (30));

similarly, (15) is satisfied; for (16) we get:

wijik +
∑

l∈H,l 6=k wijlk =
∑

l∈N,l 6=k y
∗
ijkl + y∗ijkk +

∑
l∈N,l 6=k y

∗
ijlk =

∑
l∈H,l 6=k wijkl + wijkj ;

and finally (17): wijik +
∑

l∈H,l 6=k wijlk =
∑

l∈N y∗ijkl ≤ z∗k (from (31) ) = zk.

We conclude that the given optimal LP solution of 4-index UMApHMP is a feasible solution of the LP

relaxation of improved FF.

The reverse transformation that converts an optimal LP solution of improved FF to the same network

flows and objective value in the 4-index UMApHMP model is given by:

yijkl = w∗ijkl, ∀i, j, k, l ∈ N, k 6= l;

yijkk = w∗ijik −
∑

l∈H,l 6=k

w∗ijkl = w∗ijkj −
∑

m∈H,m 6=k

w∗ijmk, ∀i, j, k ∈ N.

In similar fashion, we may verify that all constraints of 4-index UMApHMP are satisfied, and hence, the

given optimal LP solution of improved FF is a feasible solution of the LP relaxation of 4-index UMApHMP.

�.

Now that the equivalence of the LP relaxations of improved FF and 4-index UMApHMP is proven, we

may deduce the following.
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Corollary 9. On instances obeying the triangle inequality, the LP relaxation of 4-index UMApHMP is not

weaker than that of 3-index UMApHMP or all presented 3-index G-UMApHMP formulations.

The following proposition provides more insights on whether adding constraints (10) affects the LP

relaxation of 3-index UMApHMP when the triangle inequality holds.

Property 10. If the triangle inequality holds, an optimal solution of the LP relaxation of 3-index UMApHMP

is not necessarily a feasible solution of the LP relaxation of 3-index UMApHMP with added constraints (10),

(i.e.,G-UMApHMP1).

Proof. In order to show this we compare the LP relaxation values of both models on the entire set of test

instances satisfying the triangle inequality (see Section 6 for more information). The average value of a

solution of the LP relaxation of 3-index UMApHMP is 106520.96. On the other hand, when we add con-

straints (10) the average value of a solution of the LP relaxation of 3-index UMApHMP becomes 106527.90.

This means the optimal solution of the LP relaxation of 3-index UMApHMP does not necessarily satisfy

constraints (10), and therefore it may be infeasible for the LP relaxation of G-UMApHMP1. �

6. Computational results

In this section we present a comparison of all models presented here. Each model is solved using

the CPLEX MIP 12.8 solver with time limit of 3600 seconds imposed on each instance. For each model,

we report the solution value found by CPLEX (Columns ‘value’) and CPU time consumed (Columns

‘time’). A time reported for a certain model of less than 3600 seconds indicates that CPLEX found an

optimal solution; otherwise CPLEX only found a feasible solution. On each test instance not solved to

optimality by a model, we calculate the gap (Columns ‘gap’) as the percentage deviation of the objective

value from the corresponding best lower bound found by CPLEX. For each model M the gap is calculated

as:

gapM =
valueM − LBM

LBM
× 100.

Note that if an instance is solved to optimality, a gap is not provided (gap = 0). Hence, the corresponding

entries contain the sign ‘-’. In addition, on the largest instances we report the number of nodes enumerated

at the branch and bound search tree by CPLEX (Columns ‘# Nodes’).

For testing purposes, we used two data sets: one containing instances where the triangle inequality is

satisfied, and another where the triangled inequality is violated. The first set is actually the AP (Australian
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Post) data set, which is widely used in the hub location literature [15]. In each instance of this set with up to

50 nodes, the cost parameters α, γ and δ are set to 0.75, 3, and 2, respectively. For instances with 100 nodes,

two sets of cost parameters are considered: α = 0.75, γ = 3 and δ = 2; and α = 0.75, γ = δ = 1. The

second data set is generated by the authors (see [6]), and denoted as C AP. Each C AP instance is derived

from an AP instance by multiplying the original edge distances (cij) by randomly generated numbers from

the interval [23 ,
3
2 ]. As a result, the triangle inequality is not satisfied throughout the network as in the original

instance. In addition, the cost parameters in the C AP instances are set to 0.75, 1, and 1, respectively, for

instances with fewer than 100 nodes. For instances with 100 nodes, again, two sets of cost parameters are

considered: α = 0.75, γ = 3 and δ = 2; and α = 0.75, γ = δ = 1.

In the presented tables, the first columns provide the number of nodes in the instance and the number of

hubs sought. More precisely, each entry is in the form APn.p or C APn.p.

6.1. Comparison on AP data set: triangle inequality satisfied

In this section we compare all models presented in the paper, except G-UMApHMP1 and G-UMApHMP2,

on the AP data set, where each test instance satisfies the triangle inequality. G-UMApHMP1 and G-

UMApHMP2 are not included in the comparison, because they are derived from 3-index UMApHMP by

adding constraints that are redundant in the case when the triangle inequality holds. From reported results,

Tables 1 - 3, we infer that only the 3-index formulations are capable to handle instances with up to 100

nodes, the flow formulation (FF) from Brimberg et al. [6] may solve instances up to 40 nodes, while the

two remaining formulations (4-index UMApHMP and improved FF) solve instances with up to 50 nodes.

The flow formulation of [6] turns out to be the slowest. On instances with up to 40 nodes, it consumes much

more CPU time to optimally solve an instance than any other formulation. We also observe that improved

FF is significantly faster than the previous FF (e.g., compare CPU times on instance AP40.5 where im-

proved FF is about 5 times faster). This observation confirms our expectations that reducing the number of

constraints by defining the problem on an augmented graph may enable FF to solve larger instances in less

CPU time. However, if we compare results of the 4-index formulation and improved FF, we observe that the

4-index formulation is almost two times faster although both formulations use 4-index variables. This may

be explained by the fact that 4-index UMApHMP is based on the assumption that each path may have at

most two hubs, while improved FF considers the more general case where a larger number of intermediate

hubs is allowed. In other words, the solution space of improved FF is much larger than that of 4-index

UMApHMP. If we compare the results of formulations that use 3-index variables (i.e., 3-index UMApHMP
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and G-UMApHMP3), we observe that 3-index UMApHMP is slightly faster. Both formulations are able to

optimally solve instances with up to 50 nodes and instances with 100 nodes and the number of requested

hubs ranging from 50 to 95. In addition, they both succeeded to optimally solve the instance AP100.40 for

cost parameters α = 0.75, γ = 3, δ = 2. On the other hand both fail to do so on instances with 100 nodes

and the number of requested hubs ranging from 5 up to 30. Besides these instances, the instance AP100.40

for cost parameters α = 0.75, γ = δ = 1 remained elusive for both models. On instances AP100.5 and

AP100.10, for any choice of cost parameters, G-UMApHMP3 found much better solutions than the ones

obtained by solving 3-index UMApHMP. On the remaining instances not solved optimally (AP100.20, and

AP100.30 instances), solutions of 3-index UMApHMP and G-UMApHMP3 are equal for cost parameters

α = 0.75, γ = 3, δ = 2, while for cost parameters α = 0.75, γ = δ = 1, solutions provided by

G-UMApHMP3 are slightly better. In addition, it may be observed that lower bounds obtained solving G-

UMApHMP3 for one hour are much better than those obtained solving 3-index UMApHMP. This leads to

the conclusion that G-UMApHMP3 is the best choice for solving instances satisfying the triangle inequal-

ity although not specifically designed for such instances. It should be also emphasized that on instances

not solved optimally, a solution value provided by G-UMApHMP3 is in the range [0.09%, 4.80%] above

the corresponding lower bound value. These are very encouraging results compared to the state-of-the-art

where even specialized algorithms are unable to solve test instances over the range of values for parameters

n and p considered here. For example, the branch-and-cut algorithm developed in [18] is not even able to

find a feasible solution within a CPU time limit of 10 hours for AP instances with n = 100 and p ≤ 45.

Comparing number of nodes enumerated at the branch and bound search tree by CPLEX, we observe that

G-UMApHMP3 is usually able to enumerate more nodes than 3-index UMApHMP. In addition, we observe

that the on instances with the cost parameters α = 0.75, γ = 3, δ = 2, the average number of enumerated

nodes is smaller than the average number of nodes enumerated solving instances with the cost parameters

α = 0.75, γ = δ = 1. The similar observation may be derived comparing the average time consumed to

solve an instance. Hence, we may conclude that the instances with the cost parameters α = 0.75, γ = δ = 1

are a bit harder than the other one. This may be explained by the fact that in the case γ = δ the collection

and distribution costs are equally important in the objective function (unlike the case γ 6= δ). Therefore the

solution space contains much more non-dominated solutions that cannot be easily discarded while exploring

the branch and bound search tree.
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Table 1: Comparison on AP data set - instances with up to 50 nodes
Optimal 4-index UMApHMP improved FF FF 3-index UMApHMP G-UMApHMP3

instance value time time time time time

AP10.2 163603.94 0.25 0.26 0.60 0.21 0.37

AP10.3 131581.79 0.28 0.26 0.70 0.48 0.40

AP10.4 107354.73 0.25 0.37 0.51 0.43 0.39

AP10.5 86028.88 0.25 0.23 0.49 0.29 0.35

AP20.2 168599.79 4.07 3.20 7.55 0.74 1.21

AP20.3 148048.30 4.29 3.69 10.36 1.16 2.21

AP20.4 131665.43 4.90 5.54 8.32 0.97 3.00

AP20.5 118934.97 4.54 5.01 8.28 1.00 4.52

AP20.10 80287.81 3.40 2.57 6.98 0.83 2.96

AP25.2 171298.10 14.55 18.63 29.35 1.63 2.73

AP25.3 151080.66 15.30 21.64 28.29 2.75 6.26

AP25.4 135638.58 12.89 19.55 34.77 2.66 10.35

AP25.5 120581.99 9.53 14.78 23.34 1.78 7.76

AP25.10 86754.96 10.84 13.73 19.40 1.43 7.30

AP40.2 173415.96 208.75 207.95 668.15 13.59 28.93

AP40.3 155458.61 297.02 305.00 1069.36 60.62 66.73

AP40.4 140682.74 150.73 246.96 1071.49 60.06 82.34

AP40.5 130384.74 154.76 231.25 1056.82 41.65 63.14

AP40.10 99452.67 145.91 162.25 537.27 24.97 42.28

AP50.2 174390.03 749.54 640.42 - 65.72 105.73

AP50.3 156014.73 642.92 1055.61 - 302.72 309.06

AP50.4 141153.38 559.72 692.08 - 241.47 274.60

AP50.5 129412.60 528.65 1984.03 - 193.74 186.47

AP50.10 100508.95 447.60 1432.75 - 219.60 143.22

AP50.15 85032.89 350.01 530.37 - 161.56 83.51

AP50.20 73490.33 321.84 400.78 - 70.59 56.99

AP50.25 65127.00 201.02 240.75 - 46.57 29.98

AP50.30 58868.00 224.63 259.89 - 29.36 23.57

AP50.35 65127.00 195.23 237.93 - 44.82 29.57

Average 122413.09 181.51 301.29 - 54.94 54.34
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Table 2: Comparison of 3-index formulations on AP data set: instances with 100 nodes α = 0.75, γ = 3, δ = 2

3-index UMApHMP G-UMApHMP3

instance value gap #Nodes time value gap #Nodes time

AP100.5 141671.46 10.58 0 3600.79 134683.47 3.19 0 3600.16

AP100.10 106111.56 3.86 0 3600.82 105310.31 2.01 0 3600.51

AP100.20 79191.02 0.83 0 3600.86 79191.02 0.38 0 3600.39

AP100.30 67177.97 0.32 0 3601.46 67177.97 0.09 61 3600.89

AP100.40 59563.04 - 39 1644.42 59563.04 - 447 927.13

AP100.50 54461.94 - 198 419.09 54461.94 - 176 286.71

AP100.80 47213.08 - 24 100.84 47213.08 - 30 152.61

AP100.90 46000.79 - 0 70.05 46000.79 - 11 113.63

AP100.95 45533.51 - 0 27.21 45533.51 - 5 43.60

Average 71880.49 3.90 29.00 1851.73 71015.01 1.42 81.11 1769.51

Table 3: Comparison of 3-index formulations on AP data set: instances with 100 nodes, α = 0.75, γ = δ = 1

3-index UMApHMP G-UMApHMP3

instance value gap #Nodes time value gap #Nodes time

AP100.5 70582.50 15.02 0 3600.56 65954.30 4.80 0 3600.53

AP100.10 60633.10 6.80 0 3600.87 59538.52 3.18 0 3600.67

AP100.20 53547.20 1.93 0 3600.44 53463.75 1.36 0 3600.86

AP100.30 50554.59 0.89 0 3601.89 50393.03 0.51 9 3601.53

AP100.40 48636.01 0.36 23 3601.07 48634.90 0.26 416 3601.47

AP100.50 47370.42 - 573 3190.90 47370.42 - 878 2234.84

AP100.80 45703.26 - 0 116.03 45703.26 - 5 219.32

AP100.90 45442.16 - 0 46.26 45442.16 - 0 107.16

AP100.95 45533.51 - 0 24.31 45533.51 - 0 46.58

Average 52000.30 5.00 66.22 2375.81 51337.09 2.02 145.33 2290.33

6.2. Comparison on C AP data set: triangle inequality violated

In this section we compare models on our C AP data set containing instances with violated triangle

inequality. The 4-index UMApHMP model is excluded from the comparison since it is not applicable

when the triangle inequality is violated. On the other hand, 3-index UMApHMP is included in the com-

parison, since we have added constraints (10) in G-UMApHMP1, and added (11) and subtracted (6) in

G-UMApHMP2, in order to make the model suitable for instances with violated triangle inequality. The

results are provided in Tables 4 - 7.

From the reported results we may infer that all models are capable to optimally solve instances with up

to 40 nodes. The two fastest formulations turn out to be (3-index) G-UMApHMP3 and (4-index) improved
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FF, followed by G-UMApHMP2 and G-UMApHMP1, while the flow formulation from [6] turns out to

be the slowest. In addition, the flow formulation from [6] is unable to handle any larger instance, while

improved FF succeeds to optimally solve instances with 50 nodes. This once again confirms the benefits

of using an augmented graph to formulate the problem. Note that G-UMApHMP1, G-UMApHMP2, G-

UMApHMP3 failed to optimally solve or provide proof of optimality on 5, 6 and 3 instances with 50 nodes,

respectively. However, on three instances G-UMApHMP3 found optimal solutions but did not prove their

optimality, G-UMApHMP2 on four instances, while G-UMApHMP1 did the same on two instances. On

larger instances with 100 nodes, G-UMApHMP3 exhibits better performance than the other two 3-index

G-UMApHMP formulations: it consumes less time and very often provides a better solution. In addition,

in all instances with 100 nodes the LB found solving G-UMApHMP3 is better than that of G-UMApHMP1

and G-UMApHMP2.

All these observations lead to the conclusion that improved FF and (3-index) G-UMApHMP3 are the

best options for solving instances with up to 50 nodes. Moreover, improved FF is the only one formulation

capable to optimally solve all instances with up to 50 nodes. On larger instances with 100 nodes we may

identify (3-index) G-UMApHMP3 as the best option.

Comparing the number of nodes enumerated at the branch and bound search tree (Tables 6 and 7), we

observe that the best performing G-UMApHMP3 model is usually able to explore more nodes than the

two other models. In addition, we may again conclude that the instances with cost parameters α = 0.75,

γ = δ = 1 are harder to solve than the instances with cost parameters α = 0.75, γ = 3, δ = 2, since the

branch and bound trees enumerate more nodes, and therefore, consume more CPU time.
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Table 4: Comparison on C AP data set: instances with up to 40 nodes
Optimal improved FF FF G-UMApHMP1 G-UMApHMP2 G-UMApHMP3

instance value time time time time time

C AP10.2 74571.32 0.20 0.59 0.29 0.23 0.2

C AP10.3 65503.33 0.34 0.70 0.53 0.25 0.21

C AP10.4 57810.46 0.22 0.62 0.49 0.28 0.22

C AP10.5 51747.21 0.23 0.47 0.37 0.27 0.17

C AP20.2 76151.88 4.16 10.43 4.62 5.11 1.24

C AP20.3 68413.68 7.59 13.27 4.11 4.91 3.04

C AP20.4 62341.22 11.65 16.08 5.75 5.76 6.91

C AP20.5 57562.75 3.22 8.72 8.23 4.42 7.13

C AP20.10 47422.26 4.18 7.99 3.93 3.22 4.16

C AP25.2 78706.76 10.44 29.47 25.63 19.5 4.02

C AP25.3 69864.40 10.10 25.11 13.29 15.18 9.09

C AP25.4 64296.61 9.02 26.43 12.88 11.66 14.69

C AP25.5 60669.25 10.80 27.37 14.31 14.55 16.41

C AP25.10 50716.65 6.96 17.09 19.37 10.73 9.79

C AP40.2 79702.48 221.71 1629.38 473.21 533.84 75.62

C AP40.3 71227.88 455.60 2785.10 685.52 627.85 183.93

C AP40.4 66246.22 329.71 1568.72 446.96 550.84 175.98

C AP40.5 62888.63 369.47 1594.90 349.03 440.15 144.08

C AP40.10 53616.93 400.09 1174.02 863.09 337.87 272.24

Average 64182.10 97.67 470.34 154.30 136.14 48.90

Table 5: Comparison on C AP data set: instances with 50 nodes
improved FF G-UMApHMP1 G-UMApHMP2 G-UMApHMP3

instance value time value gap #Nodes time value gap #Nodes time value gap #Nodes time

C AP50.2 78411.75 516.18 78411.75 - 0 1640.50 78411.75 - 0 2532.70 78411.75 - 0 235.47

C AP50.3 70447.52 1210.91 70447.52 2.79 6 3600.38 70447.52 3.53 5 3600.35 70447.52 - 43 750.18

C AP50.4 65597.10 1911.62 65597.10 1.88 156 3600.27 65597.10 0.01 176 3422.05 65597.10 - 276 1006.61

C AP50.5 61995.40 1759.66 61995.40 - 422 3413.26 61995.40 1.11 493 3600.31 61995.40 - 455 1229.87

C AP50.10 53395.73 3390.48 53401.50 1.67 1603 3600.34 53435.33 1.87 1933 3600.28 53395.73 1.09 2688 3600.41

C AP50.15 48752.69 3246.70 48830.17 1.85 2555 3600.26 48752.69 1.56 2664 3600.35 48752.69 1.25 3885 3600.72

C AP50.20 45553.04 1331.52 45599.95 1.12 3955 3600.26 45606.51 1.10 4354 3600.28 45553.04 0.42 5594 3600.69

C AP50.25 43085.91 484.25 43085.91 - 5254 1558.42 43085.91 - 2665 926.09 43085.91 - 2489 558.61

C AP50.30 41326.46 371.52 41326.46 - 4019 634.70 41326.46 - 2424 353.65 41326.46 - 2721 287.41

C AP50.35 39891.91 241.36 39891.91 - 1074 183.06 39891.91 - 588 107.37 39891.91 - 622 87.09

Average 54845.75 1446.42 54858.77 1.86 1904.40 2543.15 54855.06 1.53 1530.20 2534.34 54845.75 0.92 1877.30 1495.71
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Table 6: Comparison of 3-index formulations on C AP data set: instances with 100 nodes , α = 0.75, γ = δ = 1

G-UMApHMP1 G-UMApHMP2 G-UMApHMP3

instance value gap #Nodes time value gap #Nodes time value gap #Nodes time

C AP100.5 68944.56 32.14 0 3600.77 68944.56 32.12 0 3600.77 65371.56 17.25 0 3600.97

C AP100.10 56752.48 17.66 0 3600.90 56752.48 17.40 0 3601.65 55685.58 12.01 0 3601.16

C AP100.20 47674.81 8.20 0 3600.98 48483.11 10.08 0 3600.93 48023.72 7.92 0 3601.22

C AP100.30 43829.19 5.67 0 3601.20 43944.72 5.81 0 3600.78 43973.36 5.65 0 3601.34

C AP100.40 41495.17 4.74 0 3601.02 41077.21 3.55 0 3601.19 40966.21 3.08 45 3601.72

C AP100.50 39112.62 1.95 70 3601.69 39083.28 1.78 120 3601.36 39051.98 1.51 251 3602.09

C AP100.80 36290.16 0.13 1232 3601.70 36290.16 0.09 2412 3600.81 36290.16 0.08 2415 3601.21

C AP100.90 35795.85 - 1524 781.21 35795.85 - 972 634.18 35795.85 - 656 463.02

C AP100.95 35627.62 - 46 212.94 35627.62 - 27 392.52 35627.62 - 24 204.89

Average 45058.05 10.07 319.11 2911.38 45111.00 10.12 392.33 2914.91 44531.78 6.79 376.78 2875.29

Table 7: Comparison of 3-index formulations on C AP data set: instances with 100 nodes, α = 0.75, γ = 3, δ = 2

G-UMApHMP1 G-UMApHMP2 G-UMApHMP3

instance value gap #Nodes time value gap #Nodes time value gap #Nodes time

C AP100.5 146053.31 22.57 0 3600.45 153821.26 29.07 0 3600.54 139835.04 17.56 0 3600.59

C AP100.10 110821.07 20.26 0 3600.39 110821.07 19.96 0 3600.41 104458.69 11.68 0 3601.06

C AP100.20 77996.23 11.83 0 3600.73 78608.93 12.36 0 3600.64 76780.86 8.51 0 3600.46

C AP100.30 61413.44 5.44 0 3600.49 61681.89 6.06 0 3601.39 61388.03 4.55 4 3601.55

C AP100.40 52453.95 2.58 0 3601.52 52453.95 2.51 0 3600.55 52446.00 2.23 53 3601.41

C AP100.50 46621.41 1.17 137 3601.09 46693.75 1.21 55 3601.63 46608.94 0.79 634 3601.43

C AP100.80 37902.79 - 1896 1873.81 37902.79 - 1979 2544.07 37902.79 - 1764 1434.92

C AP100.90 36330.40 - 64 129.89 36330.40 - 74 140.71 36330.40 - 99 164.93

C AP100.95 35847.91 - 37 160.97 35847.91 - 30 195.00 35847.91 - 29 104.91

Average 67271.17 10.64 237.11 2641.04 68240.22 11.86 237.56 2720.55 65733.18 7.55 287.00 2590.14

6.2.1. Breaking symmetry in the 3-index G-UMApHMP3 model: the case δ = γ

In the case δ = γ, sending flow of tji units from node j to node i along a path P will have exactly the

same cost as sending tji units along path P but in the reverse direction from i to j. Hence, in this case the

problem may be reformulated as sending (tij + tji) units of flow from node i to node j, for each pair (i, j),

i < j and zero flow between pairs (i, j), i > j. Taking this observation into account the preceding 3-index
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model may be simplified by replacing constraints (22) by:

∑
l∈H

vilj =


0 if i > j

tii if i = j

tij + tji if i < j

(26)

Note also that the Oi (rhs of (21)) must be re-calibrated:

Oi = tii +
∑

j∈N,j>i

(tij + tji) (27)

The 3-index G-UMApHMP3 formulation which exploits symmetry by using the above constraints will be

referred to as 3-index G-UMApHMP symmetry. The comparison of the G-UMApHMP3 formulation and

3-index G-UMApHMP symmetry on the largest instances is presented in Table 8. As we can see, on all

instances but one, G-UMApHMP symmetry provides better or equal solutions consuming less CPU time on

average. In addition, it proves optimality of one more solution. Regarding the quality of the lower bounds,

it provides lower bounds with greater values on all instances.

Table 8: Symmetry breaking: Comparison of 3-index formulations on C AP instances with 100 nodes
G-UMApHMP3 3-index G-UMApHMP symmetry

instance value LB gap time value LB gap time

C AP100.5 65371.56 55754.70 17.25 3600.97 65285.92 57818.88 12.91 3600.64

C AP100.10 55685.58 49716.01 12.01 3601.16 56728.10 50921.78 11.40 3600.64

C AP100.20 48023.72 44497.72 7.92 3601.22 48019.48 44638.81 7.57 3601.20

C AP100.30 43973.36 41619.85 5.65 3601.34 43494.05 41848.15 3.93 3601.97

C AP100.40 40966.21 39743.75 3.08 3601.72 40883.08 39838.64 2.62 3601.50

C AP100.50 39051.98 38471.36 1.51 3602.09 38987.19 38558.37 1.11 3600.98

C AP100.80 36290.16 36260.07 0.08 3601.21 36290.16 - - 2133.76

C AP100.90 35795.85 - - 463.02 35795.85 - - 309.91

C AP100.95 35627.62 - - 204.89 35627.62 - - 262.90

Average 44531.78 43723.35 6.79 2875.29 44567.94 45604.11 6.59 2701.50

6.3. Managerial insights

In this section, we aim to provide some managerial insights. For this purpose we took the C AP40.5 test

instance, a medium size instance among those tested, and solved it by applying the formulation allowing

at most two hubs on each path (i.e., 4-index UMApHMP) and a formulation allowing more than two hubs

on a path (i.e., Improved FF). The aim of such a test is to verify if the sets of selected hubs in these two
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cases differ or not, as well as to check the amount of savings one may gain allowing more than two hubs

on a path. The summary results are presented in the Tables 9 and 10. In these two tables we consider

different parameter settings for α, δ and γ, and report the optimal objective function values and optimal set

of hubs for each case (more than two hubs allowed and at most two hubs on each path). The column ‘(%)

deviation’ reports the percentage gain of allowing more than two hubs on a path, which is calculated

as:

deviation =
valueUMApHMP − valueG−UMApHMP

valueUMApHMP
× 100,

where valueUMApHMP corresponds to the optimal solution value of the 4-index UMApHMP formulation,

which allows not more than two hubs on a path, while valueG−UMApHMP corresponds to the optimal

solution value of Improved FF, which allows more than two hubs on a path. Finally, the last column ‘same

hubs’ indicates if the optimal solutions in the two considered cases are the same or not.

From the reported results we infer that even on a relatively small instance with 40 nodes, savings may

be up to 1.33%. On instances with γ = 3 and δ = 2, the saving increases as α increases, while on instances

with γ = δ = 1, this is not the case. An interesting issue may be observed for the parameter setting

α = γ = δ = 1, where the sets of optimal hubs differ in one hub, but the saving is only 0.02%. Apart

from that case, for all other parameter settings, the savings are in the range [0.50%, 1.33%]. Comparing the

optimal sets of selected hubs, we observe that only on 2 out of 8 cases, they coincide. However, even in

these two cases with the same sets of optimal hubs, the savings are not negligible, i.e., 0.50%, and 1.33%.

Finally, we should observe that changing the value of parameter α may affect the optimal set of chosen

hubs either when at most two hubs are allowed (UMApHMP case) or more than two hubs are allowed (G-

UMApHMP case). For parameter setting γ = 3 and δ = 2, we have 2 different solutions for G-UMApHMP

and 3 different solutions for UMApHMP. The same conclusion holds when γ = δ = 1.

Table 9: Comparison of solutions on C AP40.5 instance with different α values: γ = 3, δ = 2

more than 2 hubs allowed on a path at most two hubs allowed (%) same

α value hubs value hubs deviation hubs

0.25 113399.59 4 12 23 27 28 113971.29 4 12 23 27 28 0.50 yes

0.50 123308.59 4 12 23 27 28 124304.57 4 12 23 27 30 0.81 no

0.75 132070.43 12 15 27 28 30 133350.46 4 12 23 27 30 0.97 no

1 137787.35 12 15 27 28 30 139624.24 12 15 27 28 30 1.33 yes
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Table 10: Comparison of solutions on C AP40.5 instance with different α values: γ = δ = 1

more than 2 hubs allowed on a path at most two hubs allowed (%) same

α value hubs value hubs deviation hubs

0.25 52056.87 4 12 23 27 28 52472.65 4 12 23 27 30 0.80 no

0.50 58571.95 12 15 27 28 30 59243.37 12 13 27 28 31 1.15 no

0.75 62888.63 12 15 27 28 30 63252.19 12 13 27 28 31 0.58 no

1 65608.89 12 15 27 28 30 65624.14 12 22 27 28 30 0.02 no

In the next series of experiments, we aim to count the number of paths that use exactly k intermediate

hubs, where k ∈ {1, 2, . . . p}, and also to count the number of nodes that are allocated to exactly k hubs.

Again, for testing purposes we choose the C AP40.5 instance, and apply the Improved FF to solve it for

any choice of parameters α, γ and δ. The summary results are provided in Tables 11 and 12. The tables

report the number of paths using exactly k hubs for the k value specified in the column heading. Similarly

we report the number of nodes allocated to exactly k hubs, where k is given in the column heading. Finally,

we report the total collection and distribution costs in the optimal solution as well as the total transfer cost

divided by α. Note that the total collection cost is specified by the first term, the total distribution cost is

expressed by the second term, while the total transfer cost is given by the third term in the objective function

(12).

From the reported results we infer that as α increases, the total transfer cost decreases while the collec-

tion and distribution costs increase. Also, we observe that as α increases, the number of paths that use only

one hub increases. This may be explained by the fact that as α increases, the transfer cost becomes more

important in the objective function, and therefore, the paths with zero transfer cost are favored. In addition,

we observe that for any choice of α value, we have paths that use up to 4 intermediate hubs, and nodes

may be allocated to up to 5 hubs. Interestingly, for γ = 3, δ = 2, the number of nodes allocated to 3 or

more hubs is not greater than 8, while for γ = δ = 1, this number goes up to 26. Also, it should be noted

that in the cases when optimal solutions of G-UMApHMP for different α values coincide, the structure of

solutions in terms of the number of used hubs on a path and the number of hubs allocated to a node may be

very different (e.g., compare the solutions in Table 11 for α = 0.50 and α = 1).

There is another indirect but important benefit of allowing O-D paths with more than two intermediate

hubs. For example, compare the path i → h
(1)
1 → h

(1)
2 → j with two intermediate hubs, and i → h

(2)
1 →

h
(2)
2 → h

(2)
3 → j with three. The two-hub path provides a dedicated flow from node i to node j, while

the 3-hub path allows some flow to disembark or embark at an additional point (the middle hub). The end
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result is that smaller but more frequent shipments are possible between O-D pairs, and hence, better quality

service.

Table 11: Structure of solutions on C AP40.5 instances with different α: γ = δ = 1

# paths using 1-5 hubs # nodes assigned 1-5 hubs costs

α 1 2 3 4 5 1 2 3 4 5 collection transfer/α distribution

0.25 602 812 166 20 0 30 8 0 2 0 19245.00 38480.67 23191.70

0.50 820 626 142 12 0 19 13 6 1 1 21009.45 20696.11 27214.45

0.75 1060 470 62 8 0 10 16 11 2 1 22672.74 14545.49 29306.77

1 1376 213 10 1 0 1 13 15 7 4 26707.13 3713.97 35187.79

Table 12: Structure of solutions on C AP40.5 instances with different α: γ = 3, δ = 2

# paths using 1-5 hubs # nodes assigned 1-5 hubs costs

α 1 2 3 4 5 1 2 3 4 5 collection transfer/α distribution

0.25 507 855 210 28 0 32 6 2 0 0 56965.96 40872.57 46215.48

0.50 593 819 168 20 0 30 8 0 2 0 57496.81 38850.50 46386.52

0.75 657 744 169 30 0 24 10 4 2 0 60586.62 24046.76 53448.75

1 756 668 157 19 0 19 13 6 1 1 61234.43 21997.89 54555.03

6.4. Comparison of LP relaxations

In this section we compare the linear programming (LP) relaxations of the various models. The LP

relaxations are derived from their original formulations by relaxing integrality requirements of all variables

(i.e., all variables are considered as continuous). The results are presented in Tables 13-18. For each

formulation, we report the value of the LP relaxation and the time needed to solve it. In addition, the second

column in each table reports optimal solution values (if known) of the original problem formulation. In the

case an optimal value is not known, we report the best solution value found so far (BKS) and emphasize

that value using italics.

From the reported results we infer that the G-UMApHMP3 formulation has the weakest LP relaxation,

but also requires the least CPU time. Solving the LP relaxation of the G-UMApHMP3 formulation requires

not more than 200 seconds on the largest instances. On the other hand solving the LP relaxation of the 3-

index UMApHMP, G-UMApHMP1 and G-UMApHMP2 formulations may consume a significant portion

of time. For example, on instance C AP100.5, G-UMApHMP1 and G-UMApHMP2 consume more than

2000 seconds. However, the quality of an LP solution of G-UMApHMP1 and G-UMApHMP2 is much
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better than that of the G-UMApHMP3. As noted in Corollary 3, G-UMApHMP2 has the strongest LP

relaxation. Empirical results show that it is slightly better than the LP relaxation of G-UMApHMP1, but

solution times are generally larger.

On AP instances with up to 50 nodes, LP relaxations of 4-index UMApHMP and Improved FF formu-

lations exhibit an interesting performance. The LP relaxation values, of both formulations, coincide with

the optimal ones an all test cases. In addition, the same phenomenon arises for the FF model on 5 out of 29

instances (see the boldfaced values in Table 13). Regarding average CPU time consumptions, solving LP

relaxations of 4-index UMApHMP and Improved FF require similar time. Note that the LP relaxation of

Improved FF yields better solution values in shorter time than that of FF.

On C AP instances with up to 50 nodes we also remark that LP relaxation values of the Improved FF

and FF models may be the same as the optimal ones on several instances. In the case of the Improved FF

model, this happens on 11 out of 29 instances, while in the case of FF, matching occurs on 2 out of 29

instances (see the boldfaced values in Table 16). In addition, we may again conclude that the LP relaxation

of Improved FF provides better solution values in shorter time than that of FF.

Overall, we may conclude that the 4-index UMApHMP and Improved FF formulations have the strongest

LP relaxations, while the weakest LP relaxation is that of 3-index G-UMApHMP3. In addition, we may say

that the LP relaxation of 3-index UMApHMP provides the best trade-off between solution quality and CPU

time consumption. Comparing LP relaxations of Improved FF and FF, empirical evidence shows that the

LP relaxation of Improved FF is better than the LP relaxation of FF in terms of both solution quality and

CPU time consumption. This observation may justify the superiority of the Improved FF model over the FF

model, and confirm the usefulness of modelling on the augmented graph.

28



Table 13: Comparison of LP relaxations on AP data set: instances up to 50 nodes
4-index UMApHMP Improved FF FF 3-index UMApHMP G-UMApHMP3

instance OPT value time value time value time value time value time

AP10.2 163603.94 163603.94 0.14 163603.94 0.21 160019.25 0.27 159987.33 0.25 115652.34 0.14

AP10.3 131581.79 131581.79 0.13 131581.79 0.17 123300.27 0.21 124069.04 0.08 92697.34 0.13

AP10.4 107354.73 107354.73 0.11 107354.73 0.19 100660.75 0.19 102371.78 0.08 78367.63 0.14

AP10.5 86028.88 86028.88 0.10 86028.88 0.15 84207.16 0.18 84171.68 0.08 66707.41 0.18

AP20.2 168599.79 168599.79 1.88 168599.79 2.34 168599.79 4.32 166044.99 0.54 125322.27 0.33

AP20.3 148048.30 148048.30 2.18 148048.30 2.30 145680.02 4.29 140918.18 0.27 103265.80 0.22

AP20.4 131665.43 131665.43 1.93 131665.43 2.28 130729.31 4.44 125155.95 0.22 92914.10 0.24

AP20.5 118934.97 118934.97 2.11 118934.97 1.93 117826.94 4.96 113197.15 0.23 85084.73 0.23

AP20.10 80287.81 80287.81 0.82 80287.81 1.27 79344.65 1.96 77681.88 0.22 62580.47 0.15

AP25.2 171298.10 171298.10 5.45 171298.10 6.51 171188.00 12.00 169042.94 0.67 127846.36 0.59

AP25.3 151080.66 151080.66 6.56 151080.66 7.25 150524.40 14.10 145170.18 0.74 105168.61 0.39

AP25.4 135638.58 135638.58 6.79 135638.58 8.10 134000.79 12.43 129069.78 0.49 94760.67 0.34

AP25.5 120581.99 120581.99 4.20 120581.99 5.64 120147.10 12.61 116369.56 0.46 86948.79 0.33

AP25.10 86754.96 86754.96 4.07 86754.96 4.25 86188.18 6.10 83408.06 0.27 66302.22 0.27

AP40.2 173415.96 173415.96 64.72 173415.96 108.46 173415.96 161.44 171713.44 9.52 130249.07 2.44

AP40.3 155458.61 155458.61 82.37 155458.61 114.92 155458.61 192.67 148518.59 4.86 108638.25 1.90

AP40.4 140682.74 140682.74 89.63 140682.74 96.44 140682.74 165.20 134222.11 3.68 98611.62 1.82

AP40.5 130384.74 130384.74 86.89 130384.74 97.61 130301.26 228.85 124450.58 2.36 92131.17 1.37

AP40.10 99452.67 99452.67 59.87 99452.67 85.19 98918.23 154.27 95581.67 1.14 74528.96 0.95

AP50.2 174390.03 174390.03 277.23 174390.03 419.93 174330.42 732.17 171902.25 23.12 130859.20 7.37

AP50.3 156014.73 156014.73 432.81 156014.73 471.07 156014.73 676.60 148879.41 21.53 108674.75 5.78

AP50.4 141153.38 141153.38 324.21 141153.38 354.33 141134.83 852.77 134431.57 11.45 98876.74 5.69

AP50.5 129412.60 129412.60 525.24 129412.60 366.01 129294.39 672.95 124367.12 8.37 92056.79 4.57

AP50.10 100508.95 100508.95 329.01 100508.95 360.48 100261.55 764.25 96350.28 3.10 73903.95 2.88

AP50.15 85032.89 85032.89 357.39 85032.89 335.70 84736.27 584.19 82061.48 2.90 65557.64 1.62

AP50.20 73490.33 73490.33 307.87 73490.33 343.32 73466.98 425.59 71784.14 2.45 59734.08 1.47

AP50.25 65127.00 65127.00 251.38 65127.00 207.63 65115.52 253.99 64083.00 2.08 55485.90 1.18

AP50.30 58868.00 58868.00 161.24 58868.00 154.24 58800.77 176.63 58119.73 1.93 52210.91 1.07

AP50.35 65127.00 65127.00 248.81 65127.00 198.23 65115.52 261.52 64083.00 2.08 55485.90 1.12

Average 122413.09 122413.09 125.35 122413.09 129.52 121360.84 220.04 118179.55 3.63 89676.68 1.55
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Table 14: Comparison of LP relaxations on AP data set: instances with 100 nodes, α = 0.75, γ = 3, δ = 2

3-index UMApHMP G-UMApHMP3

instance OPT/BKS value time value time

AP100.5 134683.47 127022.54 832.69 93920.41 449.39

AP100.10 105310.31 99822.58 100.37 76512.34 190.58

AP100.20 79191.02 76639.61 32.40 62749.74 53.98

AP100.30 67177.97 65688.85 24.58 56518.28 24.31

AP100.40 59563.04 58695.33 18.79 52594.01 17.27

AP100.50 54461.93 54079.88 17.20 49934.15 12.00

AP100.80 47213.08 47145.70 13.48 46311.42 10.60

AP100.90 46000.79 45962.68 12.55 45649.66 9.63

AP100.95 45533.51 45532.51 10.34 45418.85 10.69

Average 71113.07 68954.41 118.04 58845.43 86.49

Table 15: Comparison of LP relaxations on AP data set: instances with 100 nodes, α = 0.75, γ = δ = 1

3-index UMApHMP G-UMApHMP3

instance OPT/BKS value time value time

AP100.5 65954.30 59061.76 1038.65 51244.51 199.98

AP100.10 59538.52 54629.37 172.19 49330.29 93.29

AP100.20 53463.75 50990.10 41.69 47712.74 47.30

AP100.30 50393.03 49096.80 24.85 46885.08 20.33

AP100.40 48634.90 47841.12 17.10 46353.55 12.96

AP100.50 47370.42 46999.23 16.68 45983.83 10.27

AP100.80 45703.26 45641.19 16.53 45436.06 8.47

AP100.90 45442.16 45416.60 11.69 45341.53 8.92

AP100.95 45533.51 45334.91 10.93 45306.82 8.51

Average 51337.09 49445.67 150.03 47066.05 45.56
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Table 16: Comparison of LP relaxations on C AP data set: instances up to 50 nodes
Improved FF FF G-UMApHMP1 G-UMApHMP2 G-UMApHMP3

instance OPT value time value time value time value time value time

C AP10.2 74571.32 74571.32 0.10 73885.08 0.26 67547.22 0.12 67547.22 0.07 49875.66 0.03

C AP10.3 65503.33 65373.79 0.10 61566.77 0.22 56304.45 0.10 56304.45 0.04 46866.77 0.02

C AP10.4 57810.46 57810.46 0.10 54565.84 0.23 51085.20 0.09 51085.20 0.06 44915.34 0.10

C AP10.5 51747.21 51747.21 0.07 50340.42 0.19 47859.24 0.07 47859.24 0.05 43497.04 0.09

C AP20.2 76151.88 76151.88 2.33 75867.21 4.11 69951.04 0.56 69951.04 0.66 50474.22 0.26

C AP20.3 68413.68 67684.31 2.27 66313.84 4.14 59213.17 0.34 59213.17 0.37 47215.31 0.20

C AP20.4 62341.22 61893.66 2.40 60442.15 3.42 54235.77 0.24 54235.77 0.22 45612.04 0.20

C AP20.5 57562.75 57562.75 1.83 56808.15 3.44 51391.88 0.21 51392.05 0.22 44610.16 0.20

C AP20.10 47422.26 47399.94 1.34 47001.88 2.25 44848.85 0.14 44848.85 0.18 41719.18 0.17

C AP25.2 78706.76 78706.76 7.98 78646.34 12.61 71150.16 1.61 71150.16 1.87 52518.44 0.28

C AP25.3 69864.40 69864.40 7.04 69723.29 13.54 61535.72 0.85 61539.38 1.03 48736.49 0.25

C AP25.4 64296.61 64296.61 5.62 64296.61 13.18 56317.66 0.39 56319.19 0.47 46909.00 0.23

C AP25.5 60669.25 60664.07 7.06 60075.24 11.13 53427.36 0.30 53428.58 0.36 45793.57 0.24

C AP25.10 50716.65 50716.65 3.94 50436.82 6.50 47093.68 0.21 47105.30 0.20 43148.94 0.19

C AP40.2 79702.48 79160.16 131.10 78862.54 278.92 70721.81 23.51 70722.61 26.55 51994.37 1.54

C AP40.3 71227.88 70400.70 149.70 69939.45 400.21 61514.37 10.73 61517.90 13.71 47795.52 1.07

C AP40.4 66246.22 65491.55 135.78 65045.87 217.00 56629.37 4.90 56633.83 6.20 46169.75 0.84

C AP40.5 62888.63 62187.27 190.35 61771.38 190.63 53820.38 2.38 53822.40 2.91 45218.78 0.68

C AP40.10 53616.93 53037.71 151.80 52540.36 210.98 47765.82 0.82 47796.87 1.01 42801.70 0.46

C AP50.2 78411.75 78411.75 599.84 78411.75 871.85 70272.84 80.31 70273.99 102.93 51036.81 5.31

C AP50.3 70447.52 69666.20 530.64 69346.61 959.35 60227.63 52.83 60235.14 136.22 46554.06 4.05

C AP50.4 65597.10 64569.35 650.35 64193.25 1148.95 55395.78 19.38 55398.60 42.79 44724.26 2.71

C AP50.5 61995.40 61003.69 539.65 60637.06 846.31 52505.70 13.18 52515.24 25.86 43594.83 2.47

C AP50.10 53395.73 52285.50 767.31 51936.27 747.57 46558.00 1.92 46588.95 5.46 40051.30 1.06

C AP50.15 48752.69 47920.57 434.42 47552.59 541.45 43879.58 1.49 43899.81 3.19 41205.47 1.36

C AP50.20 45553.04 45155.57 310.30 44886.42 393.60 42031.01 1.48 42044.29 3.18 39257.33 1.03

C AP50.25 43085.91 43065.71 279.04 42928.54 395.34 40677.32 1.51 40682.37 3.27 38679.18 0.99

C AP50.30 41326.46 41311.13 224.71 41244.84 319.21 39617.64 1.46 39617.76 3.28 38226.95 0.93

C AP50.35 39891.91 39891.91 171.16 39868.77 281.13 38775.74 1.43 38777.71 3.23 37874.60 0.85

Average 60962.67 60620.78 183.05 59970.18 271.65 54219.12 7.67 54224.38 13.30 45071.62 0.96
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Table 17: Comparison of LP relaxations on C AP data set: , α = 0.75, γ = δ = 1

G-UMApHMP1 G-UMApHMP2 G-UMApHMP3

instance OPT/BKS value time value time value time

C AP100.5 65285.92 52177.34 2055.86 52183.12 2465.57 42540.48 197.79

C AP100.10 55685.58 45840.76 366.85 45864.76 371.82 39902.67 103.86

C AP100.20 47674.81 41641.14 68.18 41654.80 68.64 38086.72 31.90

C AP100.30 43829.19 39483.91 28.32 39494.82 23.93 37183.61 17.67

C AP100.40 40966.21 38137.99 14.39 38140.49 14.26 36610.10 12.38

C AP100.50 39051.98 37281.08 14.06 37283.82 13.57 36233.94 10.87

C AP100.80 36290.16 35846.47 14.04 35847.61 13.29 35654.03 10.20

C AP100.90 35795.85 35625.36 9.98 35625.89 13.04 35559.63 11.69

C AP100.95 35627.62 35553.16 8.52 35553.16 10.13 35529.64 10.85

Average 45259.12 40178.17 286.69 40183.16 332.69 37477.87 45.25

Table 18: Comparison of LP relaxations on C AP data set: , α = 0.75, γ = 3, δ = 2

G-UMApHMP1 G-UMApHMP2 G-UMApHMP3

instance OPT/BKS value time value time value time

C AP100.5 139835.04 119154.92 2393.69 119178.54 2468.50 84904.34 316.35

C AP100.10 104458.69 90622.32 853.62 90700.23 839.87 67080.52 160.88

C AP100.20 76780.86 67581.76 181.78 67654.84 207.75 53427.59 50.80

C AP100.30 61388.03 56085.00 50.21 56130.20 50.50 46989.82 18.67

C AP100.40 52446.00 49285.14 20.46 49318.83 24.00 43025.95 13.81

C AP100.50 46608.94 44675.19 13.85 44689.80 13.78 40333.54 9.04

C AP100.80 37902.79 37324.17 13.54 37327.08 12.64 36514.96 8.22

C AP100.90 36330.40 36141.00 9.00 36142.70 12.68 35856.54 7.95

C AP100.95 35847.91 35751.01 8.70 35752.47 8.40 35635.64 8.28

Average 67271.17 59624.50 393.87 59654.97 404.24 49307.66 66.00

7. Conclusions

This paper proposes several new mathematical models for the Uncapacitated Multiple Allocation p-Hub

Median Problem (UMApHMP). Two of these models are improved flow formulations on a new ”augmented

graph”, which allows a substantial reduction in the number of constraints. The performance of the newly

proposed models is assessed using a generic off-the-shelf software (CPLEX) on a wide set of instances, and

compared with performances of existing UMApHMP models. The main benefit of the new models is that

they can be used when the triangle inequality is satisfied in the problem data or, more generally when it is

not. In addition, they enable us to solve in reasonable computing time (less than one hour) test instances of
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both types having up to 100 nodes (n = 100), and a wide range of values of p. As expected, the results for

triangular networks are better than non-triangular. Note that the current best model from the literature that

is capable of handling instances with violated triangle inequality (see [6]) can only solve instances with up

to 40 nodes on CPLEX. Meanwhile, for the standard triangular case, the specialized algorithm given in [18]

is not even able to find a feasible solution for n = 100, p ≤ 45, and a CPU time limit of 10 hours. Thus,

the computational results obtained here are very encouraging.

Moreover, we show that the 3-index model for UMApHMP designed for instances with the triangle

inequality cannot be directly used for solving instances where the triangle inequality is violated. However,

we provide a set of constraints to be added to the model in order to make it capable to handle instances with

and without the triangle inequality.

The paper provides also a theoretical and empirical study of the linear programming relaxations of

all models presented in the paper. These observations may be used in the future for developing efficient

matheuristics capable of solving larger problem instances, and/or finding tighter lower bounds on the op-

timal solution. We also present a parametric analysis on the unit transfer cost (α), which compares some

aggregate measures affecting solution quality when flow paths with more than two intermediate hubs are

allowed. This type of analysis may help managers better understand the nature of hub networks, and hence,

better design and manage them.

The concept of an ”augmented graph” introduced here not only allows more efficient formulations (as

shown in the new models), but also increases flexibility in modelling. As a future research direction, we

intend to study the usefulness of the augmented graph as an experimental tool for designing hub networks.

Some hub related problems that can be studied in this context are those with path-based formulations,

which also work with graphs that do not satisfy the triangle inequality and/or allow more than two hubs

on a path. Some recent examples include hub location problems with multiple capacity levels [9], service

network design and hub location problem [30], modular hub location problem with single assignments

[34], multiple allocation incomplete hub location problem [12], and the profit maximizing capacitated hub

location problem with multiple demand classes [33].

References

[1] Alumur, S., Kara, B. Y., 2008. Network hub location problems: The state of the art. European Journal of Operational Research

190 (1), 1–21.

33



[2] Alumur, S. A., Campbell, J. F., Contreras, I., Kara, B. Y., Marianov, V., OKelly, M. E., 2020. Perspectives on modeling hub

location problems. European Journal of Operational Research, DOI: doi.org/10.1016/j.ejor.2020.09.039.

[3] Boland, N., Krishnamoorthy, M., Ernst, A. T., Ebery, J., 2004. Preprocessing and cutting for multiple allocation hub location

problems. European Journal of Operational Research 155 (3), 638–653.
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Appendix

4-index formulation

The four index formulation [7] uses two sets of variables: binary variables zk, k ∈ N that take the value

1, if and only if, a node k is used as a hub (i.e., a hub is opened at node k), and 0 otherwise; and continuous
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variables yijkl which determine the portion of flow from i to j that is transferred via hubs k and l. Recall

that when the triangle inequality applies throughout the network, each O-D path will traverse at most two

hub nodes. The standard 4-index model (denoted as 4-index UMApHMP) is given by (28)-(33):

min
∑

i,j,k,l∈N
tij(γcik + αckl + δclj)yijkl (28)

subject to:

∑
k∈N

zk = p, (29)

∑
k,l∈N

yijkl = 1, ∀i, j ∈ N, (30)

∑
l∈N

yijkl ≤ zk, ∀i, j, k ∈ N, (31)

∑
k∈N

yijkl ≤ zl, ∀i, j, l ∈ N, (32)

yijkl ≥ 0, zk ∈ {0, 1}, ∀i, j, k, l ∈ N, (33)

The objective function (28) minimizes the total transportation cost. Constraint (29) ensures the estab-

lishment of exactly p hub nodes, while constraints (30) ensure that flow between each O-D pair is entirely

routed. Constraints (31) and (32) guarantee that the flow between each O-D pair is routed only via hub

nodes. More precisely, if zk = 0, then all variables yijkl and yijlk are zero, and therefore any transfer of

flow via an intermediate non-hub node k is forbidden. Finally, the last set of constraints describes the type

and range of the variables used in the model.

The above model contains n4 + n variables and 1 + n2 + 2n3 constraints (not including variable type

in (33)).

Flow formulation of Brimberg et al. 2019 [6]

The flow formulation (FF) of [6] uses the following variables. Binary variables zk, k ∈ N , as before,

are used to indicate if node k is chosen as a hub or not. Flow variables wijlm, i, j, l,m ∈ N , which are

binary, are used to determine if the flow from node i to node j is transferred along the arc (l,m), or not. The
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remaining two sets of variables are also binary, and used to identify hubs to which origin and destination

nodes are allocated. So, we have variables uijm, i, j,m ∈ N , such that variable uijm receives value 1, if

and only if, origin node i is directly allocated to hub node m in order to transfer flow to destination node j.

Similarly, variables vijm i, j,m ∈ N receive value 1, if and only if, node j is directly allocated to hub node

m in order to receive flow from node i. Hence, we have the following formulation, denoted as FF:

min
∑
i,j∈N

tij [(γ − α)
∑
m∈N

cimuijm + (δ − α)
∑
l∈N

cljvijl + α
∑

l,m∈N
clmwijlm] (34)

subject to: ∑
m∈N

zm = p, (35)

∑
m∈N

wijlm −
∑
m∈N

wijml =


1, if l = i

0, if l 6= i, j,

−1, if l = j

, i, j, l ∈ N, i 6= j (36)

∑
m∈N

wiilm −
∑
m∈N

wiiml = 0, ∀i, l ∈ N (37)

∑
m∈N

wiiim = 1, ∀i ∈ N (38)

∑
l∈N

wijlm ≤ zm, ∀i, j,m ∈ N,m 6= j (39)

∑
l∈N

wijlm ≤ zm + 1, ∀i, j,m ∈ N,m = j (40)

wijij ≤ zi + zj , ∀i, j ∈ N (41)

uijm ≤ wijim, ∀i, j,m ∈ N (42)

∑
m∈N

uijm = 1, ∀i, j ∈ N (43)

vijm ≤ wijmj , ∀i, j,m ∈ N (44)
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∑
m∈N

vijm = 1, ∀i, j ∈ N (45)

zm, wijlm, uijm, vijm ∈ {0, 1}, ∀i, j, l,m ∈ N. (46)

The objective function and constraint (35) have the same meaning as in the previous models. Constraints

(36) are the flow conservation constraints for each O-D pair (i, j), i 6= j. On the other hand, constraints

(37) and (38) ensure the flow conservation on the cycle that appears in the case i = j, and guarantee that

the transfer of flow is accomplished along a cycle. Constraints (39) - (41) imply that solely hub nodes are

used as intermediate nodes on a path (cycle) established between an O-D pair. In addition, constraints (41)

allow direct transportation between an O-D pair only if at least one of them is a hub. Constraints (42)-(45)

determine direct node-hub assignments. Namely, for each O-D pair (i, j) on the established path from i to

j, there is exactly one hub assigned directly to i and exactly one hub assigned directly to j. Constraints (46)

explicitly define the variables of the model.

This model has n+ 2n3 + n4 variables and 1 + n+ 3n2 + 4n3 constraints (not including variable type

constraints (46)).
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