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Abstract
We consider in this work a bicriteria scheduling problem on two different parallel machines with a periodic preventive
maintenance policy. The twoobjectives considered involveminimization of job rejection costs andweighted sumof completion
times. They are handled through a lexicographic approach, due to a natural hierarchy among the two objectives in the
applications considered. The main contributions of this paper are first to present a new problem relevant to practice, second,
to develop a mixed-integer-linear-program model for the problem, and third, to introduce two generalizable tabu-search
metaheuristics relying on different neighborhood structures and solution spaces. Computational results for 120 instances
(generated from a real case) are reported to empirically demonstrate the effectiveness of the proposed metaheuristics.

Keywords Parallelmachine scheduling · Job rejection ·Periodicmaintenance ·Mixed-integer-linear-program ·Metaheuristic ·
Tabu search · Lexicographic optimization

1 Introduction

Scheduling problems have been extensively studied in the
literature under the assumption that all jobs have to be pro-
cessed. However, in many practical cases, one may wish
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or may be forced to postpone the processing of some jobs,
although at some cost.Accordingly, a decision has to bemade
about jobs that will be accepted and those that will be rejected
to produce a good schedule. Nowadays, this situation is
observed in several companies with a weekly planning (e.g.,
pharmaceutical products, luxury watches, fast moving con-
sumer goods). Typically, rejected jobswill get a largerweight
or priority the next week. At the same time, the parallel-
machine scheduling problem has been extensively studied
due to its practical applications in various manufacturing
systems such as printed circuit board manufacturing, group
technology cells and injection molding processes. However,
few studies have been done in the context of parallel-machine
scheduling with job rejection.

Maintenance is another aspect closely connected to pro-
duction scheduling in real manufacturing settings. One of
the most common assumptions in the scheduling literature
is that the machines or processors are always available, but,
in practice, they may have to be stopped due to failures or
preventive maintenance (PM). In particular, the importance
of PM has been gradually recognized by decision makers as
a mean to avoid machine failures. PM is performed when the
machines are idle and, consequently, represents a source of
machine unavailability. Trade-offs to be found between PM
and production activities have led researchers to investigate
different ways of jointly scheduling both activities. Produc-
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tion is expected to be more efficient and revenues to increase
when PM is well managed.

In this regard, we address a scheduling problem (P) with
two different parallel machines (it is formally a 2-Parallel
Machines problemwith PeriodicMaintenance, Job Rejection
and Weighted sum of Completion Times). In this problem,
the two machines must undergo periodic preventive main-
tenance over the scheduling horizon. The two machines are
different as PMs must be done more frequently on the sec-
ond machine. Solution quality is measured with two criteria.
The first one is the total cost of rejected jobs, and the sec-
ond one is the weighted sum of job completion times. In
the former case, jobs are rejected when the capacity of both
machines is reached. In the latter case, the weights can stand
for the holding or inventory cost of the corresponding jobs
as well as their priority level (importance, urgency). A strat-
egy based on lexicographic optimization (LO) is proposed
to deal with this multiobjective problem. In LO, the deci-
sionmaker establishes beforehand a priority order among the
optimization objectives, where each higher-level objective is
infinitely more important than any lower-level objective. LO
is a convenient approach to address multiobjective problems
in practice, as reported in Zykina (2004), Ehrgott (2005),
Thevenin et al. (2017b), Prats et al. (2010), Solnon et al.
(2008), T’kindt and Billaut (2006)).

The contributions of this paper are the following: (1) we
propose a new problem relevant to practice; (2) we formulate
the problem with a Mixed Integer Linear Program (MILP);
(3) a diversified panel of solutions methods is proposed,
namely a greedy constructive procedure, two tabu-search
approaches relying on various neighborhood structures and
different solution spaces, and a baseline local-search heuris-
tic aimed at representing a current-practice rule. The solution
methods are easily generalizable for various job-scheduling
contexts. (4) We generate 120 instances derived from an
industrial case, considering up to 330 jobs. (5) We compare
all the methods not only with respect to the two considered
objective functions, but also with respect to the number of
rejected jobs, which is an important key performance indi-
cator (KPI) for practitioners.

The remainder of this paper is organized as follows.
Section 2 presents the literature review dealing with order
acceptance and scheduling, job rejection, periodic mainte-
nance and multi-availability constraints. Section 3 proposes
a MILP for the problem. The greedy constructive heuristic
is developed in Sect. 4. Two tabu-search metaheuristics and
a baseline local search heuristic are designed in Sect. 5. Sec-
tion 6 reports computational results. Finally, Sect. 7 ends the
paper with a conclusion and some perspectives for the future.

2 Literature review

Based on the three-field notation α | β | γ known as the
Graham triplet (Graham et al. 1979), our problem (P) can
be denoted as P2 | pm | ∑n

j=1 u j ,
∑n

j=1 w jC j . The first
field (α) means that there are two parallel machines. The sec-
ond field (β) indicates that a periodic preventivemaintenance
(pm) must be performed on each machine. Finally, the last
field (γ ) represents the objective functions (see the notation
used inSect. 3). To the best of our knowledge, problem (P) has
never been studied in the literature. Nonetheless, Sects. 2.1
to 2.4 will review works that are related to this problem.
Sections 2.1 and 2.2 are dedicated to the order acceptance
and scheduling literature and to the scheduling problem with
job rejection literature, respectively. In both cases, the same
problematic issue is addressed, namely job scheduling when
the production capacity is not sufficient to allow all jobs to be
scheduled. This situation leads to the rejection (resp. accep-
tance) of some of them, which is penalized (resp. rewarded)
in the objective function. Sections 2.3 and 2.4 focus on the
maintenance and on the lexicographic optimization aspects
in the context of job scheduling. We conclude with Sect. 2.5
bymotivating our methodological choices with respect to the
literature.

2.1 Order acceptance and scheduling

A taxonomy and a general review on order acceptance and
scheduling (OAS) can be found in Slotnick (2011). This
problem is to jointly decide about job acceptance and the
scheduling of accepted jobs. Different problem characteris-
tics and problem-solving methodologies, starting from this
basic scheme, have been proposed in the literature. In the fol-
lowing, papers dealing with a single machine and different
objective functions are reviewed, followed by a discussion
on problems with two or more machines.

2.1.1 Single machine

Oğuz et al. (2010) consider the single-machine scheduling
problem where job acceptance depends on the release date,
due date, deadline, processing time, sequence-dependent
setup time and revenue. The main objective is the maximiza-
tion of the total revenue. The authors propose a MILP and
also develop three heuristic algorithms to solve their prob-
lem. Based on the same objective function, Cesaret et al.
(2012) propose a tabu search to solve a problem that consid-
ers sequence-dependent setup times and tardiness penalties.
Nobibon and Leus (2011) generalize two existing problems
defined in a single-machine environment, that is, the order
acceptance and scheduling problem with weighted-tardiness
penalties reported in Slotnick andMorton (2007) and the total
weighted tardiness scheduling problem reported in Potts and
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Van Wassenhove (1985). The generalized problem reduces
to the latter when the pool of firm planned orders is empty
and all jobs can potentially be rejected. To solve their gener-
alized problem, the authors propose a MILP and two exact
branch-and-bound algorithms. They report solving instances
with up to 50 jobs in less than 2 h. In Thevenin et al.
(2016), the authors address a production scheduling problem
in a single-machine environment with earliness and tardi-
ness penalties, sequence-dependent setup times and costs.
The objective function includes setup costs, job rejection
penalties and weighted tardiness penalties. The authors pro-
pose various methods to solve this problem, ranging from a
basic greedy algorithm to sophisticated metaheuristics (e.g.,
tabu search, adaptivememory algorithm). In another work by
the same authors Thevenin et al. (2015), sequence-dependent
setup times and setup costs between jobs of different fami-
lies, release dates, deadlines and job rejection are taken into
account. They propose and compare a constructive heuris-
tic, local search methods, and population-based algorithms.
Recent papers dealing with OAS in a single-machine envi-
ronment take into account machine availability constraints,
as in Zhong et al. (2014). Here, the authors propose a pseudo-
polynomial algorithm for fixed time intervals between two
consecutive PMs.

2.1.2 Multiple machines

In Ou and Zhong (2017), the authors study the OAS prob-
lem for n jobs on m parallel machines where the number of
rejected jobs should not exceed a given limit L . The objec-
tive is to minimize the completion time of the last scheduled
job plus the total cost of rejected jobs. For the special case
of a single machine, they present an exact algorithm of com-
plexity O(n · log(n)). For m machines, they first propose
a heuristic of complexity O(n · log(n)) with a worst-case
bound of 2− 1

m . They also develop a heuristic based on LP-
relaxation and bin-packing techniques. The OAS with two
machines in a flow shop is considered in Wang et al. (2013).
The authors present a heuristic and a branch-and-bound algo-
rithm based on dominance rules and relaxation techniques.
Their objective is to maximize the total net profit of accepted
jobs, where the latter is the revenue minus the weighted tar-
diness. In Wang et al. (2015), the authors solve a scheduling
problem with two parallel machines with two heuristics and
an exact algorithm, using some properties of optimal solu-
tions to maximize the total profit. In another environment
with parallel machines, Jiang et al. (2017) study the OAS
problem with batch delivery in a supply chain consisting of
a manufacturer and a customer. The objective is to minimize
theweighted sumof themaximumlead timesof accepted jobs
and the total delivery cost. To solve the problem, two approxi-
mation algorithms are proposed. Finally, Emami et al. (2016)
report a MILP model and a Lagrangian relaxation algorithm

to solve an OAS problem with the objective of maximizing
the total profit.

2.2 Scheduling problemwith job rejection

The scheduling problem with job rejection has been studied
in different contexts, as indicated in a recent survey (Shab-
tay et al. 2013), and is motivated by industrial applications
(Thevenin et al. 2017a), although mostly for single-machine
problems.

In Li and Chen (2017), the authors consider the schedul-
ing problem with job rejection and a maintenance activity
that becomes less effective over time. The main objective is
to determine the timing of the maintenance activity and the
sequence of accepted jobs to minimize the scheduling cost of
accepted jobs plus the total cost of rejected jobs. The authors
provide polynomial time algorithms for this problem. Shab-
tay et al. (2012) propose a bicriteria analysis of a large class of
single-machine scheduling problems with a common prop-
erty, namely the consideration of rejection costs plus other
additional criteria (makespan, sum and variation of comple-
tion times, earliness and tardiness costs).

Since scheduling with rejection is mostly studied in bicri-
teria contexts (Shabtay et al. 2013), concepts from the theory
of bicriteria scheduling are commonly used when dealing
with such problems. Below, we review papers address-
ing the weighted sum of completion times and the total
cost of rejected jobs. Cao et al. (2006) first prove that
the problem for a single machine is NP-hard. A few years
later, a pseudo-polynomial algorithm and a fully polynomial
time approximation scheme (FPTAS) for multiple parallel
machines are proposed by Zhang et al. (2009). Engels et al.
(2003) also report more general techniques such as linear
programming relaxations. In Moghaddam et al. (2012), the
authors study a single-machine scheduling problem with
job rejection, while considering again minimization of the
weighted sum of completion times plus the total cost of
rejected jobs. They propose a mathematical formulation and
three different bi-objective simulated annealing algorithms
to estimate the Pareto-optimal front for large-size instances.
The authors in Zhong et al. (2017) study a scheduling prob-
lem on two parallel machines with release times and job
rejection. The objective is to minimize the makespan of
accepted jobs plus the total cost of rejected jobs. They
develop a (1.5 + ε)-approximation algorithm to solve the
problem. Ou et al. (2015) consider m parallel machines in
a context where job rejection is allowed. The objective is to
minimize the makespan plus the total cost of rejected jobs.
They develop a heuristic of complexity O(n · log(n) + n/ε)

to solve the problem with a worst-case bound of 1.5 + ε.
With the same goal, Zhong and Ou (2017) present a 2-
approximation algorithm with a complexity of O(n · log(n))

by making use of specific data structures. The authors also
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propose a PTAS to solve the problem. InMa andYuan (2016),
the authors consider that the information about each job,
including processing time, release date, weight and rejec-
tion cost, is not known in advance. They develop a technique
namedGreedy-Interval-Rejection to produce good solutions.
Finally, the authors in Agnetis and Mosheiov (2017) con-
sider the minimization of the makespan in a flow shop with
position-dependent job processing times and job rejection. A
polynomial time procedure is proposed to solve this problem.

2.3 Periodic maintenance andmulti-availability
constraints

The authors in Kaabi and Harrath (2014) have written a
comprehensive survey about scheduling in parallel-machine
environments in the presence of availability constraints
(which can be induced, in particular, by maintenance activ-
ities). Sun and Li (2010) consider two problems. In the
first problem, they minimize the makespan on two parallel
machines when maintenance activities are performed peri-
odically. In the second problem, maintenance activities are
determined jointlywith job scheduling,whileminimizing the
sumof the job completion times. They introduce an algorithm
of complexity O(n2) and show that the classical shortest
processing time algorithm (SPT) is efficient for the second
problemwith aworst-case bound less than or equal to 1+2·σ ,
where σ = t/T , and T is the maximum continuous working
time for each machine and t is the time required to per-
form each maintenance activity. Li et al. (2017) investigate
a parallel-machine scheduling problem where each machine
must undergo periodic maintenance. The authors propose
two mathematical programming models and two heuristic
approaches to address instances of large size. In Qi et al.
(2015), the authors investigate a scheduling problem on a sin-
gle machine with maintenance, in which the starting time of
the maintenance is given in advance but its duration depends
on the previous machine load.

2.4 Multiobjective scheduling problem using
lexicographic optimization

LO is particularly relevant for industrial applications, as high-
lighted by Gallay and Zufferey (2018). LO is widely used
in control engineering and scheduling applications (T’kindt
and Billaut 2006; Aggelogiannaki and Sarimveis 2006; Ker-
rigan and Maciejowski 2002; Ocampo-Martinez et al. 2008;
Respen et al. 2016). In a work closely related to ours, the
authors in Thevenin et al. (2017b) model a parallel-machine
scheduling problem with job incompatibility through an
extension of the graph coloring problem. Different objec-
tives like makespan, number of job preemptions and total
time spent by the jobs in the production shop are consid-
ered and addressed through LO. A mathematical model, two

greedy constructive algorithms, two tabu searchmethods and
an adaptive memory algorithm are proposed to solve the
problem.

2.5 Motivation of our methodological choices with
respect to the literature

In this subsection, we highlight how the literature led us to
consider the proposedmethods, neighborhood structures and
objective-function priority.

As discussed before, despite the industrial relevance of
the combination of features that characterizes the considered
problem (P) (e.g., different parallelmachines, rejection costs,
inventory penalties, maintenances), it has not attracted atten-
tion in academia. Relying on the above literature review, we
can, however, deduce that the following ingredients are rel-
evant when facing the features of (P): small-sized instances
can be solved with the use of a MILP formulation, whereas
meta/heuristics are required for large-sized instances. For
tackling the large-sized instances, constructive heuristics are
useful, in particular for generating initial solutions for local-
search algorithms. Our motivation to employ tabu search
comes from its great success for various job-scheduling
problems, in particular in a parallel-machine production envi-
ronment when various objectives are considered (Respen
et al. 2016; Thevenin et al. 2017a, b).

Regarding the neighborhood structures, four moves are
widely employed and well known in the job-scheduling
literature (Thevenin et al. 2015): insert (i.e.,move a job some-
where else in the schedule), swap (i.e., exchange two jobs in
the schedule), drop (i.e., remove a job from the schedule) and
add (i.e., insert a non-scheduled job in the schedule). None of
these neighborhood structures can be used alone (in particu-
lar when considering job rejection), as a single type of move
does not allow to reach all the solutions of the solution space
(which means that the search space would not be connected).
Several papers [e.g., Shin et al. (2002)] confirmed that using
jointly several types of moves leads to better results. For
these reasons, the local search that we propose employs vari-
ous types of moves, including swapping a scheduled job with
a non-scheduled jobs (which corresponds to a drop-and-add
combination) or reinserting a block of jobs somewhere else
in the schedule (which corresponds to an imposed sequence
of insert moves).

The two objective functions f1 (rejection penalty, which
is related to shortage costs) and f2 (weighted sum of
completion times, which is related to inventory costs) are
well known in the literature. However, the consideration of
both of them, furthermore in a lexicographic fashion (i.e.,
f1 > f2), is new. Their joint consideration within such a
hierarchy corresponds to natural priorities encountered in
practice, for example Respen et al. (2016), where minimiz-
ing shortage is more important than minimizing inventory

123



Journal of Scheduling (2022) 25:89–105 93

Fig. 1 feasible solution of problem (P)

penalties, Thevenin et al. (2018), where maximizing the gain
of the scheduled jobs is more important than minimizing an
inventory-oriented penalty, and more generally, throughout
the order-acceptance-and-scheduling literature (Cesaret et al.
2012; Shabtay et al. 2013).

3 Mathematical model

In the following, we first introduce some notation and a brief
description of our problem. This is followed by the MILP.

3.1 Formal description of problem (P)

Let J be a set of n independent jobs to be scheduled on two
parallel, differentmachinesMi , i ∈ I = {1, 2}. The planning
horizon is five days (i.e., 7200 min). Accordingly, we define
d̃ = 7200 min as the common deadline for all jobs in set J . If
a job cannot be feasibly scheduled during the current week,
it is then postponed to the next week and a rejection cost is
incurred. A feasible solution S of problem (P) is illustrated
in Fig. 1. It is made of two schedules on machines M1 and
M2, with the corresponding sets JS and J S of accepted and
rejected jobs, respectively. Each machine Mi must undergo
a PM at intervals that cannot exceed Ti minutes. In other
words, the interval between the end time of a given PM and
the start time of the next PM cannot exceed Ti minutes. The
jobs scheduled between two consecutive PMs define a block,
where Bi

k is the kth block on machine Mi scheduled between
the (k − 1)th and kth PMs (the 0th and last PMs are the start
and end of the schedule, respectively). The scheduling of a
PM activity on each machine Mi is flexible and can actually
occur before Ti minutes have elapsed, if it is not possible to
avoid it or if it is beneficial to do so. Accordingly, the time
length of a block is variable, although it can never exceed Ti
for machine Mi . The duration of a PM activity on machine
Mi is denoted by δi . As illustrated in Fig. 1, there is no idle

time in a schedule between two consecutive jobs or between
a job and a PM.

Each job j ∈ J is characterized by a known processing
time p j , a rejection cost u j and a weight w j = h j + b j

which is the sum of its inventory penalty h j and its priority
level b j , where a larger b j corresponds to a larger penalty. It
should also be noted that no preemption is allowed. The two
machines are different in the sense that PMs must be done
more frequently on M2. Thus, the maximum time interval
T2 between two consecutive PMs is smaller than T1 (i.e.,
T2 < T1). A feasible solution S of problem (P) is evaluated
first through objective f1, which is the total rejection cost
of the jobs in J S , and second through objective f2, which
is the weighted sum of the completion times of the jobs in
JS . Formally, we have f2 = ∑n

j=1 w jC j , where C j is the
completion time of job j . With respect to f2, the WSPT
(weighted shortest processing time) rule introduced in Smith
(1956) is particularly important, because it optimally solves
the 1 || ∑n

j=1 w jC j scheduling problem, which minimizes
the weighted sum of completion times on a single machine
without side constraints. The WSPT rule states that the jobs
should be scheduled in decreasing order of thew j/p j ratios.
This rule will be exploited in our algorithms, although in a
heuristic way since we have two machines with some oper-
ational constraints.

In our study and in line with the literature (Thevenin and
Zufferey 2019), u j depends on b j and p j . Moreover, we
have calibrated f2 in order to give the same importance
to the inventory penalty h j and to the priority b j of each
job j , as both values belong to the same interval (which
is [10, 30] in our experiments). Note that if the two com-
ponents b j and h j of w j = b j + h j are fully in conflict
for a given job j , it means that h j = 10 (or 30, respec-
tively) whereas b j = 30 (or 10, respectively). As a result,
w j = b j +h j = 40, which corresponds to the average value
ofw j over all jobs. In other words, a job j such that its inven-
tory penalty and its priority are fully in conflict will have a
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mediumweight (or importancew j ) in the schedulingprocess,
which is consistent with f2. In contrast, if b j and h j are not
in conflict, it means either thatw j is low (typically below 30)
or high (typically above 50). Therefore, from this calibration
of ( f2, u j , b j , h j ), we can deduce the following hierarchy of
KPIs: (1) minimize the rejection costs; (2) minimize the bad
scheduling of high-priority jobs; (3) minimize the inventory
penalties. This hierarchy is in line with the industrial KPIs of
various companies (Thevenin et al. 2015, 2016; Respen et al.
2017; Thevenin and Zufferey 2019). Note, however, that our
models andmethods proposed below are general: they do not
depend on the calibration of ( f2, u j , b j , h j ). Actually, this
calibration has to be made in collaboration with the involved
industrial partner in order to capture its KPIs.

3.2 MILP for problem (P)

The mathematical programming formulation of problem (P)
is presented below. It involves five different types of decision
variables.

C j : completion time of job j

mi
k : start time of PMkon machineMi

xil j =
{
1 if job l is scheduled before job j on machine Mi

0 otherwise

zij =
{
1 if job j is scheduled on machineMi

0 otherwise

yijk =
{
1 if job j is scheduled in blockk on machine Mi

0 otherwise

It is important to note that job j is rejected when z1j =
z2j = 0. For the sake of the MILP formulation, two dummy
jobs 0 and n + 1 with no processing time are added to the
model with completion times C0 = 0 and Cn+1 = d̃. We
also have m1

0 = m2
0 = 0. Note finally that M is an arbitrary

large number.
Due to the lexicographic ordering of the two objectives,

problem (P) can be solved optimally in two steps with an
exact solver. A first model is solved with the objective of
minimizing f1 (while ignoring f2). Next, a second model is
solved, with the objective of minimizing f2, that includes a
constraint for not exceeding the optimal value of f1.

The first model is the following:

min ( f1) =
n∑

j=1

u j (1 − (z1j + z2j )) (1)

mi
k ≤ mi

k−1 + δi + Ti ∀i ∈ I , ∀k ∈ J (2)

mi
k + δi ≤ d̃ ∀i ∈ I , ∀k ∈ J (3)

C j ≤ mi
k + M(1 − yijk) ∀i ∈ I ,∀ j, k ∈ J (4)

C j ≥ mi
k−1 + δi + p j y

i
jk − M(1 − yijk) ∀i ∈ I ,

∀ j, k ∈ J (5)
n+1∑

l=1,l �= j

x ijl = zij ∀i ∈ I , j = 0, . . . , n (6)

n∑

l=0,l �= j

x il j = zij ∀i ∈ I , j = 1, . . . , n + 1 (7)

x1l j + x2l j ≤ 1l = 0, . . . , n, j = 1, . . . n + 1, l �= j (8)

C j ≥ p j (z
1
j + z2j ) ∀ j ∈ J (9)

C j ≤ d̃(z1j + z2j ) ∀ j ∈ J (10)

Cl ≤ C j − p j x
i
l j + d̃(1 − xil j ) ∀i ∈ I , l = 0, . . . , n,

j = 1, . . . , n + 1, l �= j (11)
n∑

j=1

p j y
i
jk ≤ Ti ∀i ∈ I , ∀k ∈ J (12)

n∑

k=1

yijk = zij ∀i ∈ I , ∀ j ∈ J (13)

y1jk + y2jk ≤ 1 ∀ j, k ∈ J (14)

z1j + z2j ≤ 1 ∀ j ∈ J (15)

zil + zij ≥ 2(xil j + xijl) ∀i ∈ I , ∀l, j ∈ J , l �= j (16)

C0 = 0, Cn+1 = d̃, m1
0 = m2

0 = 0 (17)

yijk ∈ {0, 1} ∀i ∈ I , ∀ j, k ∈ J (18)

zij ∈ {0, 1} ∀i ∈ I , j = 0, . . . , n + 1 (19)

xil j ∈ {0, 1} ∀i ∈ I , l = 0, . . . , n,

j = 1, . . . , n + 1, l �= j (20)

mi
k ≥ 0 ∀i ∈ I , ∀k ∈ J (21)

This model relies on the fact that the number of PMs and
blocks on amachine is at most the total number of jobs. Since
a machine has normally fewer PMs and blocks in a solution,
there are variables mi

k that do not correspond to real PMs
and whose values do not matter. Equation (1) corresponds
to the first objective function considered in this work. Con-
straints (2) define the relationship between the start time of
two consecutive PMs on a machine. The end time of a PM
cannot exceed the due date d̃ , as indicated by constraints (3).
Constraints (4) and (5) establish a relationship between vari-
ables C j and mk

i . Basically, they state that the completion
time of a job assigned to block k on a machine lies between
the end time of PM k − 1, plus the processing time of the
job, and the start time of PM k. Constraints (6) indicate that
every scheduled job, including job 0, must have a successor.
Constraints (7) indicate that every scheduled job, including
job n + 1, must have a predecessor. Constraints (8) state
that two jobs scheduled consecutively must be assigned to
the same machine. Constraints (9) and (10) define bounds
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on the completion time of each scheduled job. In particu-
lar, they force the completion time of a rejected job to be
0. Constraints (11) indicate that two jobs scheduled on the
same machine cannot overlap. Constraints (12) state that the
sum of processing times over all jobs in the same block on
machine Mi must be less than or equal to Ti . Constraints
(13) indicate that an accepted job must be part of a block
on a machine. Constraints (14) force each accepted job to
be scheduled in a block of either machine M1 or M2 but not
both. Similarly, constraints (15) force each accepted job to
be scheduled either on M1 or M2 but not both. Constraints
(16) state that if two jobs l and j are scheduled on the same
machine, then l is scheduled either before or after j . Con-
straints (17) set the completion times of dummy jobs 0 and
n+1, and the start time of the dummyPM0 on eachmachine.
Constraints (18), (19) and (20) define the binary variables,
whereas the continuous variables are defined in constraints
(21).

Let f �
1 be the optimal value of f1 after solving the above

model. In a second step, constraint f1 ≤ f �
1 is added to the

model and the latter is solved with objective f2 only. In other
words, the model below is considered:

min ( f2) =
n∑

j=1

w jC j (22)

s.t . Constraints (2 − 20) (23)
n∑

j=1

u j (1 − (z1j + z2j )) ≤ f �
1 (24)

Equation (22) corresponds to the second objective, while
constraint (24) bounds the value of the first objective. The
solution obtained at the end of this second step is the optimal
solution of (P). We observed that the CPLEX solver could
only be used for small instances. More precisely, we were
able to solve instances with up to 25 jobs within approx-
imately 16 h of computation time. But CPLEX had to be
stopped after 24 h of computation time, with a very large
optimality gap, on instances with 40 jobs. These results sup-
port the use of heuristics and metaheuristics for instances of
larger, more realistic, size.

In the following, our problem-solving methodologies are
presented, startingwith the greedy heuristic to generate a first
feasible schedule, which is then improved with tabu search-
based metaheuristics.

4 Greedy heuristic GrH

The greedy heuristic GrH calls a construction procedure
which is aimed at producing a feasible schedule of good
quality from a given set of jobs. In particular, GrH calls the

construction procedure within a loop where the considered
set of jobs is gradually reduced until all jobs in the reduced set
can be scheduled. In each proposed procedure of this work,
ties are broken randomly if no other information is provided.

4.1 Main procedure

We can see from the description in Algorithm 1 that GrH
starts by calling the greedy construction procedure (presented
in Algorithm 2) with a set of jobs J ′, which is initially the
set of all jobs J (steps 1 and 2). The construction procedure
then returns a feasible solution S, which is associated with
a set of accepted jobs JS and a set of rejected jobs J S . If
not all jobs in J ′ are accepted in solution S, we select the
|JS| jobs in J with the largest u j to obtain a smaller set J ′
(step 3a). The construction procedure is then called again
with the new J ′ (step 3b). If the solution S obtained does
not contain all jobs in J ′, we select again the |JS| jobs in J
with the largest u j to obtain a new set J ′ (step 3a again), and
the construction procedure is called with the latter (step 3b
again). This is repeated until all jobs in J ′ are accepted in
the obtained solution S, that is, when JS = J ′. Thus, the aim
of the loop (step 3) is to schedule as many jobs as possible
with the largest rejection costs, since f1 is themain objective.
Next (step 4), we consider the rejected jobs in the last solution
obtained and we try to add them at the end of the schedule of
machines M1 and M2. These jobs are considered one by one
in decreasing order of rejection costs. First, we check if the
current job j can be added without exceeding the deadline d̃
(if the addition of job j leads to exceeding the due time of
the next PM, a PMmust also be added before job j). If job j
is feasible on a single machine, it is added to this machine; if
job j is feasible on both machines, it is added to the machine
with minimum completion time C j (in order to account for
f2); if job j is not feasible on any machine, it is skipped.
One can remark that steps 3 and 4 are complementary.

Indeed, step 3 aims at scheduling as many jobs with the top
(i.e., highest) rejection costs. Next, step 4 fills the “holes” in
the schedule, by greedily adding other jobs to the solution
(i.e., with respect to decreasing rejection costs).

4.2 Construction procedure

The construction procedure, described in Algorithm 2, pro-
duces a solution S from scratch in a greedy way. Using the
set J ′ of jobs provided in input, a new job j is selected and
added, at each iteration, at the end of the schedule of M1 or
M2. This is repeated (step 3) as long as there are jobs which
can be added to the schedule of at least one machine with-
out exceeding the deadline d̃ (if the addition of job j leads
to exceeding the due time of the next PM, a PM must also
be added before job j). This feasibility check is performed
through calls to AssignFeasible, as described in Algorithm 3.
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Algorithm 1 GrH . Input: J .
Output: S.

1. J ′ ←− J
2. S ←− Construction(J ′)
3. Repeat until JS = J ′:

(a) J ′ ←− subset of |JS | jobs j ∈ J with largest u j
(b) S ←− Construction(J ′)

4. For each job j ∈ J S (taken in decreasing order of u j ), do:

(a) Try to add j at the end of schedule of M1 and M2, while pro-
gramming a PM before j if required

(b) If job j is feasible on one machine, add j to this machine
(c) If job j is feasible on both machines, add j to the machine with

minimum C j

AssignFeasible considers the set of jobs provided in input and
returns only the subset of feasible jobs. In the process, each
feasible job is tentatively assigned (but not scheduled) to a
machine. If job j is feasible on a single machine, it is added
to this machine; if job j is feasible on both machines, it is
added to the machine with minimum completion time C j (to
account for f2). Note that the procedure AssignFeasible is a
variant of the worst-fit greedy heuristic for the well-known
bin-packing problem (Korte et al. 2012; Johnson 1973).

In the construction procedure, the selection of the next job
is done as follows. First (step 3a),we consider the subset J ′

1 ⊂
J ′ of the q1 (parameter < n) jobs with the largest w j/p j

ratio, which is a good heuristic rule with respect to objective
f2. Second (steps 3b and 3c), we select the subset J ′

2 ⊂ J ′
1

containing the q2 (parameter < q1) jobs with the smallest
completion times C j , as determined in AssignFeasible. For
each job j ∈ J ′

2 (and its associated machine), we compute
the slack time with the due time of the next PM, and we
finally select the job j� with the smallest slack time. The
slack time is the time period between the completion time
of the last job scheduled in the considered machine and the
due starting time of the next PM. The job j� is then added
(as well as a PM before j�, if required) at the end of the
schedule of its associated machine. Note that we choose to
schedule jobs with the smallest slack times in order to try
to reduce the number of PMs (as we are likely to better use
the available working time between two consecutive PMs).
Finally, it should be noted that all jobs are considered in the
first and second steps when the number of remaining jobs is
smaller than q1 and q2, respectively.

Preliminary experiments that are not reported here showed
that the following parameter setting is reasonable: (q1, q2) =
(0.2n, 0.1n). We have tested q1 ∈ {0.05n, 0.1n, 0.2n, 0.3n,

0.4n, 0.5n, n} and q2 = q1
2 .

Algorithm 2 Construction. Input: J ′.
Output: S.

1. S ←− ∅
2. J ′ ←− AssignFeasible(J ′)
3. While J ′ �= ∅, do:

a Select subset J ′
1 ⊂ J ′ (of size q1) of jobs j with largest ratio

w j/p j (J ′ is selected if |J ′| < q1)
b Select subset J ′

2 ⊂ J ′
1 (of size q2) of jobs j with smallest recorded

C j (J ′
1 is selected if |J ′

1| < q2)
c Select j� ∈ J ′

2 with smallest slack time with the next required
PM on assigned machine

d Add j� at the end of schedule of assigned machine, while pro-
gramming a PM before j� if required

e J ′ ←− AssignFeasible(J ′\{ j�})

Algorithm 3 AssignFeasible. Input: J ′.
Output: J ′.

1. For each job j ∈ J ′, do:

(a) Try to add j at the end of schedule of M1 and M2, while pro-
gramming a PM before j if required

(b) If j is feasible on a single machine, assign j to this machine
and record C j

(c) If j is feasible on both machines, assign j to the machine with
minimum C j and record C j

(d) If j is not feasible on any machine, J ′ ←− J ′\{ j}

5 Local searchmethods

Introduced in Glover (1989), tabu search is a well-known
metaheuristic for solving hard combinatorial optimization
problems (Gendreau and Potvin 2019). Starting with some
initial solution, a neighborhood of the current solution is gen-
erated at each iteration through local modifications (moves).
The best solution in the neighborhood then becomes the new
current solution, even if it does not provide an improvement.
To avoid cycling in the solution space, a tabu list is also
defined to forbid certain moves. Since tabu lists are not per-
fect filters, the tabu status of a move can always be revoked
through aspiration criteria if there is no risk of cycling. The
tabu search terminates when a stopping criterion is satisfied.
The best solution found is returned at the end.

Three local-search methods are proposed sequentially
in this section: Tabu Search with Multiple Neighborhoods
(TSMN), Consistent Tabu Search (CTS) and a Baseline
Local-Search Heuristic (BLSH). TSMN and CTS are tabu-
search metaheuristics, whereas BLSH is a simplified version
of CTS that captures what a decision maker is likely to do
in practice. The major difference between TSMN and CTS
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relies in the management of feasibility: it is always preserved
in TSMN but often temporarily violated in CTS. More pre-
cisely, amove (i.e., a solutionmodification) is never enforced
in TSMN : if a move leads to infeasibility, it is ignored (i.e.,
the move is not investigated further). In contrast, each move
is enforced in CTS, even if it leads temporarily to an infeasi-
ble solution. In such a case, a move is made of two phases:
(a) enforce a solution modification; (b) repair the solution
to make it feasible again, but without overruling (a). Con-
sequently, considering the same types of moves (e.g., swap,
insert), TSMN will perform more iterations than CTS (i.e.,
TSMN is somewhat faster than CTS), as no repair process
is employed. The diversification and exploration ability of
TSMN appears to be better as well, as more solutions are vis-
ited per second. However, in counterpart, CTS has a better
intensification and exploitation ability of the solution space
(sincemany solutions in the same region of the solution space
can be investigated).

5.1 Tabu search withmultiple neighborhoods TSMN

TSMN improves the initial starting solution produced by the
greedy heuristic GrH, while always maintaining feasibility.
As shown in Algorithm 4, TSMN has three different phases
with different neighborhood structures. The algorithm stops
when I TSMN global iterations have been performed (step 2)
and the best-encountered solution S� is returned. The latter
is updated after each step of Algorithm 4 with respect to the
lexicographic ranking f1 > f2.

Each global iteration corresponds to three consecutive
tabu search phases. Phase 1 optimizes objective f1, whereas
the sequence of scheduled jobs obtained at the end of Phase
1 is modified in Phases 2 and 3 to optimize f2. In these two
last phases, no scheduled job can be rejected; thus, only the
sequences of jobs on the two machines are modified.

The neighborhood structures of the tabu search procedures
exploit different types ofmoves for updating the current solu-
tion (as explained below). The best non-tabu move—over a
randomproportion Pr of all possiblemoves—isperformedat
each iteration of each tabu search procedure. The following
values have been tested for parameter Pr in our computa-
tional study: 0.25, 0.5, 0.75 and 1. Each modification to the
current solution needs to be correctly evaluated. It implies
that jobs may have to be shifted to the right or to the left (in
the latter case, to fill any idle time between two consecutive
jobs). However, this is done only from the point of insertion
of a new job to the end of the schedule, since nothing changes
before the insertion point.

When a move is performed, its reverse move is forbid-
den for tab iterations, where tab is an integer randomly
chosen in [5, 10] for Phases 1 and 3, and in [3, 7] for
Phase 2 (these intervals were tuned after preliminary experi-
ments).TSMNcomprises a standard criterion aspiration: The

tabu status of a move is revoked if it leads to a solution which
is better than the best-encountered solution. There is no risk
of cycling in this case, since this new best solution has clearly
not been previously visited. The stopping criterion for each
Phase l ∈ {1, 2, 3} corresponds to amaximumnumber of iter-
ations, denoted as I TSMN

l . Preliminary experiments that are
not reported here showed that the following parameter set-
ting is reasonable: (I TSMN

1 , I TSMN
2 , I TSMN

3 ) = (2n, n/5, 3n).
It should be noted that I TSMN

2 is smaller than the two other
values given the relatively small size of the corresponding
neighborhood, where blocks are moved rather than individ-
ual jobs.

Algorithm 4 TSMN. Input: J .
Output: S�

1. S ←− GrH(J )

2. For t = 1 to I TSMN, do:

(a) Phase 1: S ←− Tabu(S; SWAP1; INSERT1)

(b) Phase 2: S ←− Tabu(S; SWAP2)

(c) Phase 3: S ←− Tabu(S; SWAP3)

The neighborhood structures used in Phases 1, 2 and 3 of
TSMN are the following:
Phase 1. The tabu search Tabu(S; SWAP1; INSERT1) opti-
mizes only f1 (rejection cost) using a neighborhood structure
based on SWAP1 and INSERT1. More precisely, a move con-
sists in sequentially swapping two jobs j ∈ JS and j ′ ∈ J S

(SWAP1), and then, in trying to insert in the schedule jobs
j ′′ ∈ J S with a large rejection cost (INSERT1). In SWAP1,
every pair of jobs j ∈ JS and j ′ ∈ J S are considered for
exchange (it could appear as a disadvantage at first sight, but
it helps in diversifying the exploration of the solution space).
That is, a scheduled job is rejected and replaced by a previ-
ously rejected job. After each such potential exchange, the
jobs j ′′ ∈ J S are sorted in decreasing order of rejection cost
u j ′′ . Then, INSERT1 considers the jobs in J S one by one for
insertion in the schedule, with the goal of inserting as many
jobs as possible while keeping solution feasibility. Indeed,
when a swap is applied between j ∈ JS and j ′ ∈ J S , the
processing time p j ′ can well be greater than p j , which may
lead to exceeding the deadline d̃ (if it occurs, such a swap
move is ignored). Conversely, when p j ′ is smaller than p j ,
some idle time is created in the schedule and this flexibil-
ity can then be exploited by INSERT1. Note that each swap
move is evaluated with respect to objective f1 after having
performed the subsequent insertion moves.
Phase 2. The tabu searches in Phases 2 and 3 are aimed
at improving the scheduling of accepted jobs, as identified
in Phase 1, with respect to objective f2. The neighborhood
structure SWAP2 exchanges every pair of blocks scheduled
on the same machine only. Indeed, after some preliminary
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Fig. 2 Infeasible solution after
swapping two blocks between
M1 and M2

tests, we discovered that swapping blocks between the two
machines was not beneficial because the blocks are not of the
same size (T2 < T1). Consequently, the schedule of machine
M2 often exceeded the deadline after such a move, as illus-
trated in Fig. 2 for the exchange of blocks B2

1 and B1
2 .

Phase 3. The neighborhood structure in Phase 3 is based
on SWAP3 moves where pairs of jobs, scheduled on the
same machine or not, are exchanged. We consider all pos-
sible swaps between two jobs j and j ′, except when j
appears before j ′ in the schedule of a given machine and
w j ′/p j ′ < w j/p j (to be in line with the WSPT rule). The
goal here is to obtain a better scheduling of the jobs within
the blocks with respect to objective f2.

5.2 Consistent tabu search CTS

This tabu search is inspired from the work in Zufferey and
Vasquez (2015), where satellite range scheduling problems
are addressed. As opposed to TSMN, infeasible neighbor
solutions are considered but are immediately repaired to
restore feasibility. This approach leads to the design of a
simpler algorithmic scheme, as shown in Algorithm 5. There
are two main phases in CTS, each based on a tabu search
which is aimed at optimizing one of the two objectives.

An initial solution S is first generated using the greedy
heuristic GrH (step 1). A total number of I CTS global iter-
ations are then performed (step 2). First, objective function
f1 is optimized in Phase 1 through insertion moves (based
on the below-described INSERT2 neighborhood structure).
A maximum number of I CTS1 iterations are performed with
this tabu search, but the procedure is repeated as long as an
improvement to the best-encountered solution is observed
(step 2a). Next, f2 is optimized in Phase 2 with the SWAP4

neighborhood structure (step 2b), which is similar to the
SWAP3 used in TSMN. This tabu search is stopped after a
maximum number of I CTS2 iterations. As opposed to Phase
1, the procedure is not repeated as long as an improvement

to the best-encountered solution is observed, because f2 is a
secondary objective. Since the two neighborhood structures
explored in CTS are similar to the ones in Phases 1 and 3 of
TSMN, we have also fixed (I CTS1 , I CTS2 ) = (2n, 3n).

Like TSMN, a tabu tenure is associated with eachmove. In
Phase 1, a rejected job is tabu for reinsertion in the schedule
for tab iterations, whereas the reverse swap move is tabu in
Phase 2. In both cases, tab is an integer randomly chosen in
the interval [5, 10], based on preliminary experiments. The
aspiration criterion is the same as in TSMN. The neighbor-
hood structures are now presented.
Phase 1. Objective f1 (rejection cost) is optimized using the
neighborhood structure INSERT2, where every rejected job
is considered for insertion at every position in the schedule
of machines M1 and M2. It is important to note that the inser-
tion is enforced even if the deadline d̃ is exceeded. In such a
case, the tentative solution is immediately repaired by remov-
ing accepted jobs that are positioned from the maintenance
occurring just before j (or from the first job if there is no
maintenance before j) to the end of the schedule (the selec-
tion of such candidate jobs to be removed limits the impact
of a job removal on the solution structure, while facilitating
the evaluation). More precisely, while the solution is not fea-
sible, we sequentially remove a job j ′ from JS in increasing
order of their rejection costs (i.e., focus on f1), and we break
ties with the smallest ratio w j ′/p j ′ (i.e., focus on f2).
Phase 2. Objective f2 (weighted sum of completion times)
is optimized using the neighborhood structure SWAP4 (see
SWAP3 in TSMN).When a swap leads to exceeding the dead-
line d̃ on a machine, feasibility is restored as in Phase 1.

5.3 Baseline local-search heuristic BLSH

The baseline local-search heuristic works as CTS, with the
following simplifications in order to better capture what a
decision maker would do in practice.
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Algorithm 5 CTS. Input: J .
Output: S�

1. S ←− GrH(J )

2. For t = 1 to I CTS, do:

(a) Repeat as long as S� is improved: Phase 1: S ←− Tabu(S;
INSERT2)

(b) Phase 2: S ←− Tabu(S; SWAP4)

• Phase (1): perform a local-search descent employing the
I N SERT 2 moves.

• Phase (2): perform a local-search descent employing the
SW AP4 moves.

Indeed, from a practical standpoint, a decisionmaker is likely
to perform two modifications. First, s/he could enforce the
scheduling of a rejected job j (even if other jobs have to be
rescheduled or removed to maintain feasibility) because j
has suddenly received a big priority with respect to a client.
Second, s/he could swap two scheduled jobs, for instance, to
easily delay the production of a job because its raw material
or components are not yet available.

In order to compare, in a fair manner, BLSH with TSMN
and CTS, BLSH is restarted with a different initial solution
provided by GrH , as long as the computation time limit
(employed for TSMN and CTS as well) is not reached, and
the best-encountered solution is returned at the end.

6 Computational experiments

This section reports computational results obtained with the
proposed algorithms. The instances are presented inSect. 6.1.
RegardingTSMN, the impact of its Phases 2 and3 ismeasured
in Sect. 6.2. In Sect. 6.3, TSMN and the constructive heuris-
tic GrH are compared to the MILP for the small instances.
Finally, the local search heuristics (TSMN, CTS and BLSH)
are compared on the large instances in Sect. 6.4. Given that
f1 (rejection cost) is the main objective and subsumes f2
(weighted sum of completion times), we will sometimes
report only the values of f1 in the following results for brevity
purposes.

All algorithms were coded in Java and the computational
experiments were performed on an i7 Intel Core at 2.50
GHz with 16 GB of RAM. The MIP solver is CPLEX 12.7
(default settings) coupled with Concert Technology for the
Java interface. The stopping condition of the MILP is 2 h,
whereas it is T = 2n/10 min for the local-search algorithms
(we use a time limit instead of the global iteration coun-
ters I TSMN and I CTS, to allow a fair comparison among all
the meta/heuristics). Preliminary experiments showed that
larger values of T do not lead to better results. Moreover,

it roughly corresponds to an hour of computation for the
largest instances, which is in line with the industrial practice
(Respen et al. 2017). Since TSMN, CTS and BLSH are all
stochastic algorithms, they are run 10 times on each instance
and average results are reported. Note by the way that the
relative standard deviation is always smaller than 0.2, which
is a robustness indicator.

6.1 Presentation of the instances

Since there are no available benchmark instances in the lit-
erature for problem (P), we carried out experiments based
on randomly generated data, inspired from a real case in
the pharmaceutical industry, as reported in Zufferey et al.
(2017). We propose small-sized instances (with n = 20
jobs) for experiments involving the MILP, and large-sized
instances for comparing the meta/heuristics (with n ≥ 100).
The weight w j = b j + h j is distributed in the interval [20,
60]. That is, the priority b j is randomly selected in the set
{10, 20, 30}, whereas h j is uniformly distributed over the
interval [10, 30]. Finally, u j is uniformly distributed over the
interval [b j p j/2, 2b j p j ], since the rejection cost of a job j
depends on its priority b j and its processing time p j . All the
instances and best results can be found in http://dx.doi.org/
10.17632/hbs7pm7yhb.1.

6.1.1 Small instances

We propose 30 small instances to measure the performance
of different meta/heuristics with respect to the CPLEX solver
(which relies on theMILP formulation). We have considered
n = 20 jobs, which is acceptable to often find optimal solu-
tions with CPLEX. A PM is performed on each machine i
after a maximum of Ti minutes of use, with T1 = 6400 and
T2 = 4800. The time required to perform amaintenance is set
to 4%of Ti , which translates into δ1 = 250min and δ2 = 200
min. Onemaintenance is thus required for eachmachinewith
respect to the planning horizon of 7200 min (i.e., one full
week). Three groups of 10 instances are proposed, denoted
as S1, S2 and S3 (where “S” refers to small). Different dis-
tributions of processing times (in minutes) are considered
in each group, in order to better measure the impact on the
rejected jobs.

Group S1 has its processing times p j uniformly dis-
tributed in the interval [315, 1260]. The average value of p j

is thus 787.5 min. In order to roughly estimate the expected
number of rejected jobs, we consider that p j = 787.5 for
each job j . Thus, 15,750 min of work are required to per-
form 20 jobs and the PMs have a total duration of 250 + 200
= 450 min. Consequently, 16,200 min of activity is required,
but the available time for the two machines is 7200 + 7200
= 14,400 min. The missing time is thus 16,200 − 14,400 =
1800 min, which corresponds to the duration of 1800/787.5
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= 2.28 jobs. Therefore, the rejection of 3 jobs is expected.
Group S2 has its processing times p j uniformly distributed
in the interval [330, 1320] (the average value is 825min).We
can estimate that 3.1 jobs will be rejected, which corresponds
to rejecting 4 jobs. Group S3 has its processing times p j uni-
formly distributed in the interval [390, 1560] (the average
value is 975 min). Similarly, we can estimate that 5.69 jobs
will be rejected, which corresponds to rejecting 6 jobs.

6.1.2 Large instances

In order the compare the implemented meta/heuristics, we
have generated 90 large instances, considering 9 different
sizes and 10 instances per size. More precisely, we first pro-
pose to consider n ∈ {100, 200, 300} jobs. Next, to better
measure how many additional jobs are rejected (and the
impact on the augmentation of f1) with some slight augmen-
tations of n, we propose slightly larger instances for each
previous value of n. Thus, we have three groups of instances,
denoted as L1, L2 and L3 (where “L” refers to large). The
instance groups, the different values of n, the processing-time
intervals (uniform distribution), the maintenance parameters
(Ti , δi ), and the estimations on the number of rejected jobs
(as computed above) are presented in Table 1. When a cell is
empty, it means that the same value than the one in the cell
above is considered.

6.2 Impact of Phase 2 and Phase 3 in TSMN

Considering the large instances, Table 2 reports the impact
of Phase 2 and Phase 3 of TSMN with respect to the objec-
tive functions f1 and f2. At this point, we must remember
that Phase 1 is aimed at reducing f1, whereas Phases 2 and
3 both focus on f2. For each value of n (which involves
10 instances) and each objective function fi (i ∈ {1, 2}),
we report the following information: the average value of fi
obtained by TSMN (i.e., with all its phases), the augmenta-
tion percentage (Gap(%)) of fi ifTSMN is performedwithout
Phase 2, and the augmentation percentage of fi if TSMN is
performedwithout Phase 3. The larger the gaps are, theworse
the solutions are.

The following observations can be made. First and inter-
estingly, even if Phase 2 and Phase 3 are dedicated to f2 only,
theyboth contribute to the reduction of f1 because all the gaps
associated with f1 are positive. In other words, Phase 2 and
Phase 3 propose promising solutions to Phase 1, and the col-
laboration among the phases seems to be efficient. Second,
regarding f2 (and often regarding f1), Phase 3 seems to be
more important than Phase 2, as the values of “Gap(%) w/o
Ph3” are larger than “Gap(%)w/o Ph2.” In otherwords,when
reworking the schedule of one machine at a time, swapping
two jobs appears to be more beneficial than swapping two
blocks. Finally, when observing f1 for one instance group

at a time (i.e., L1, L2 and L3), the following trend appears:
the gaps decrease when n moves from its smallest value to
its largest value (i.e., from n = 100 to n = 110 in L1, from
n = 200 to n = 220 in L2, from n = 300 to n = 330 in
L3). This can be explained by the fact that more jobs are
likely to be rejected if we have more jobs to schedule within
the same planning horizon. In other words, the augmentation
of n has a bigger impact on f1 when compared to f2, since
f1 is directly associated with job rejection. Therefore, the
importance of Phase 2 and Phase 3 often decreases with the
increase of n.

6.3 Comparison of TSMNwith theMILP for small
instances (n = 20)

Table 3 presents the following results for the 30 small
instances (labeled from I1 to I30) with respect to f1. First,
for the MILP, we indicate either “Optimal” if an optimal
solution was found within the allowed 2 h of computing
time, or “Feasible” if only a feasible solution was found
(i.e., without any proof of optimality). The associated time
to find an optimal/feasible solution is also given. The num-
ber of rejected jobs is indicated in column OUT(MILP) for
the MILP, and OUT(TSMN) for TSMN. Next, we indicate
the gap in percentage between GrH and MILP, computed as
100 × [(GrH − MILP)/MILP] (for a single run of GrH ).
A positive gap means that MILP is better than GrH . Finally,
we provide the same information, but for the best tabu search
TSMN (see the next subsection for a comparison between
TSMN and CTS). Note that no computing time is given for
GrH and TSMN , because such methods can find their best
solutions in an order of magnitude of a second.

The following observations can be made.

• Considering 20 jobs seems to meet the limits of CPLEX
within 2 h of computation, which is a large comput-
ing time for such small instances. Indeed, a constructive
heuristic such as GrH can find the same objective-
function values for 16 instances (for which the gaps are
0), but GrH requires only up to a second of computing
time.

• The MILP is only able to prove optimality when no job
is rejected, which corresponds to 9 out of 30 instances.
However, the scope if this study is precisely the situation
for which the production capacity is not able to schedule
all the jobs.

• GrH outperforms the MILP for six instances (namely
I5, I11, I22, I24, I27 and I30). However, there are eight
instances for which theMILP performs better thanGrH .
For such instances, TSMN performs as well as the MILP
for I14, I15 and I28, and improves the solution provided
by the MILP for I4, I21, I25, I26 and I29.
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Table 1 Presentation of the
large instances

Group n Interval for p j (T1, δ1) (T2, δ2) Rejected jobs (estimations)

L1 100 [60, 240] (960, 40) (720, 30) 8

105 13

110 18

L2 200 [30, 120] (480, 20) (360, 15) 16

210 26

220 36

L3 300 [20, 80] (320, 13) (240, 9) 23

315 38

330 53

Table 2 Contribution of each phase of TSMN with respect to f1 and f2

Instance f1 f2

Group n Average value Gap(%) w/o Ph2 Gap(%) w/o Ph3 Average value Gap(%) w/o Ph2 Gap(%) w/o Ph3

L1 100 14, 314 5.42 8.49 9, 652, 798 11.52 12.3

105 15, 279 9.36 7.95 10, 080, 315 7.22 10.59

110 31, 102 3.06 4.34 9, 455, 368 5.64 5.95

L2 200 11, 147 3.29 3.22 19, 218, 401 10.27 11.15

210 20, 438 3.87 2.61 18658, 798 11.39 12.54

220 24, 772 1.16 1.14 19, 269, 283 9.81 14.86

L3 300 10, 305 1.95 3.06 29, 421, 036 7.98 9.3

315 18, 108 1.63 5.27 29, 077, 599 1.73 3.45

330 29, 417 1.5 1.85 27, 628, 725 6.75 13.07

• Unsurprisingly (see the estimations on the number of
rejected jobs presented in Sect. 6.1.1), more jobs are
rejected when moving from S1 to S3, as the range of
p j values are shifted to larger values. TSMN is able to
schedule more jobs than the MILP for 10 instances, and
both methods schedule the same number of jobs for the
other 20 instances.

• TSMN is obviously the best method. Moreover, its supe-
riority over the other methods grows when moving from
S1 to S3 (i.e., when the production capacity decreases
because the job processing times increase).

Considering the objective function f2 and the same time
limits, additional experiments (not reported here) were per-
formed for the nine instances for which the MILP is able to
prove optimality on f1. For such experiments, each method
was constrained by the fact that no job can be rejected (i.e.,
f1 cannot be deteriorated). The average results are the fol-
lowing: the MILP was able to generate a feasible solution
in 7.4 min (without proving optimality within the allocated
2 h); the MILP outperforms GrH by 9.63%; TSMN outper-
forms the MILP by 1.87% (but using less than 5 s to do it).
In other words, such experiments are in line with the results
on f1.

6.4 Comparison of BLSH, CTS and TSMN for large
instances (n ≥ 100)

Tables 4 and 5 compare BLSH, CTS and TSMN with respect
to objectives f1 and f2, respectively. For each size n (which
involves a group of 10 instances),we give the following infor-
mation.

• The average objective-function value of BLSH.
• The average improvement percentage of CTS over BLSH

(computed as 100×[(BLSH−CTS)/BLSH]). A positive
value indicates that CTS produced improved solutions
when compared to BLSH. For instance, for n = 10, CTS
improves the results of BLSH by 9.47%.

• The number of best values (out of the 10 instances) gen-
erated by CTS while considering all the methods. For
instance, for n = 10, CTS has generated 2 times the best
solutions.

• The same information is also provided for TSMN. Note
that if both TSMN and CTS have generated the best-
solution values for a specific size n (out of 10 instances),
they are counted in both columns labeled as “Nb. best val-
ues.” The summation of these two cells can thus exceed
10.
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Table 3 Comparison of MILP, GrH and TSMN for small instances (n = 20) on f1

Group Instance Interval for p j MILP Time (MILP) OUT(MILP) OUT(TSMN) Gap(%) for GrH Gap(%) for TSMN

S1 I1 [315, 1260] Optimal 123.03 0 0 0 0

I2 Optimal 147 0 0 0 0

I3 Feasible 3895 3 3 0 0

I4 Feasible 24 6 4 0.68 −18

I5 Feasible 159 6 3 −9.34 −15.25

I6 Feasible 5986.2 2 2 0 0

I7 Feasible 8956 2 2 0 0

I8 Optimal 6895 0 0 0 0

I9 Optimal 6489.2 0 0 0 0

I10 Optimal 4899 0 0 0 0

S2 I11 [330, 1320] Feasible 236.3 3 3 −8.03 −8.03

I12 Feasible 350 4 4 0 0

I13 Feasible 2398 3 3 0 0

I14 Feasible 14.2 7 5 9.52 0

I15 Feasible 10.8 4 4 26.62 0

I16 Optimal 1296 0 0 0 0

I17 Optimal 2398.7 0 0 0 0

I18 Optimal 6580 0 0 0 0

I19 Optimal 3598.99 0 0 0 0

I20 Feasible 3.98 5 5 0 0

S3 I21 [390, 1560] Feasible 4877.06 3 2 70.81 −0.53

I22 Feasible 43.55 1 1 −3.32 −75.20

I23 Feasible 1171.2 6 6 0 0

I24 Feasible 106.3 3 2 −5.35 −80.99

I25 Feasible 5487.13 5 2 10.28 −74.35

I26 Feasible 33 5 4 6.97 −1.81

I27 Feasible 19 4 3 −2.94 −23.46

I28 Feasible 120 4 4 4.49 0

I29 Feasible 19 7 4 61.37 −3.07

I30 Feasible 4.78 3 1 −7.02 −89.88

Table 4 Comparison of BLSH , CTS and TSMN with respect to f1

Instance BLSH CTS TSMN

Group n Avg. f1 Improvement (%) Nb. best values Improvement (%) Nb. best values

L1 100 16, 711 9.47 2 14.34 9

105 17, 716 10.29 6 13.76 9

110 32, 542 0.02 2 4.42 10

L2 200 11, 957 2.45 4 6.77 8

210 21, 710 5.29 8 5.86 10

220 26, 425 2.39 7 6.26 10

L3 300 11, 033 3.56 6 6.6 10

315 19, 083 0.6 0 5.11 10

330 30, 392 2.28 9 3.21 10
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Table 5 Comparison of BLSH , CTS and TSMN with respect to f2

Instance BLSH CTS TSMN

Group n Avg. f2 Improvement (%) Nb. best values Improvement (%) Nb. best values

L1 100 10, 121, 838 6.21 9 4.63 1

105 10, 439, 980 6.2 10 3.45 0

110 9, 651, 740 3.46 9 2.03 1

L2 200 19, 332, 230 1.87 10 0.59 0

210 18, 696, 767 1.63 10 0.20 0

220 19, 304, 129 1.52 10 0.18 0

L3 300 29, 471, 555 4.76 10 0.17 0

315 29, 166, 405 4.83 10 0.30 0

330 29, 181, 677 8.66 10 5.32 0

The following observations can be made.

• As expected, for each group L1, L2 and L3, the aver-
age value of f1 increases (often significantly) with the
increase of n. In contrast, f2 does not vary a lot when n
increases.

• Both TSMN and CTS are significantly better than BLSH.
It means that our tabu-search approaches are better than
a baseline heuristic aimed at representing a common rule
used in practice. Actually, the sequence of moves per-
formed by BLSH is likely to be much longer than the
sequence of moves that a decision maker would do in
practice. In other words, the improvement percentages
of TSMN and CTS with respect to BLSH are likely to
represent the worst improvement percentages that our
tabu-search metaheuristics can bring to practice.

• TSMN outperforms CTS with respect to f1. Indeed,
TSMN proposes larger improvements than CTS when
compared to BLSH. We can also remark this superiority
when counting the number of best solutions generated by
TSMN.

• CTS outperforms TSMN with respect to f2 and the num-
ber of best solutions generated.

Relying on the above observations, the superiority of
TSMN over CTS for objective f1 could be explained by
the larger diversification ability of TSMN (i.e., its capacity
to explore various regions of the solution space). Indeed,
in contrast with CTS, TSMN does not spend any energy in
repairing infeasible solutions, but only focuses on the quick
generation of feasible solutions. Moreover, its Phase 2 brings
some diversity (as full blocks of jobs are swapped). On the
contrary, the superiority of CTS over TSMN for objective f2
could be explained by the larger exploitation ability of CTS
(i.e., its capacity to intensify the search in a specific region
of the solution space). Indeed, relying on an efficient repair
process, CTS is able to enforce some solution modifications

Table 6 Average number of rejected jobs

Group n Estimation GrH BLSH CTS TSMN

L1 100 8 15.9 13.7 12.2 11.2

105 13 16.7 14.7 11.8 12.8

110 18 25.4 23.9 19.7 19.6

L2 200 16 25.3 23.8 22.7 20.1

210 26 40.4 38.3 34 33.3

220 36 44.9 42 37.4 36.8

L3 300 23 33.75 32.5 30.75 31.5

315 38 54 51.6 50.75 49.25

330 53 77.5 77.5 70.75 67

and to deeply investigate a move (indeed, SWAP4 ofCTS can
enforce some swap moves involving two jobs assigned to the
same machine, whereas SWAP3 of TSMN cannot).

The number of rejected jobs (denoted here as R) is
an important KPI from an industrial perspective. For each
instance, a way to estimate R is presented in Sect. 6.1.1.
Considering the large instances, the average performance of
all the solution methods with respect to this KPI is presented
in Table 6, along with the estimations. The following obser-
vations can be made. First and as expected, for each group
of instances, R increases with the increase of n. Second, in
line with the previous results, the methods can be ranked as
follows: GrH < BLSH < CTS < TSMN. Finally, the gap
between the estimated R and the average number of rejected
jobs provided by TSMN is reasonable for the instance groups
L1 and L2, but not for L3. This highlights the complexity in
estimating R for the largest instances.

7 Conclusion and perspectives

In this work, we studied a parallel-machine scheduling prob-
lem (P) with two different machines over a weekly planning
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horizon, while considering periodic preventive maintenance.
Two objectives were considered and addressed with lexico-
graphic optimization, namely minimization of job rejection
cost ( f1) and weighted sum of job completion times ( f2,
which can be seen as an inventory penalty). We first intro-
duced a MILP formulation for the problem. Next, we
developed agreedyheuristic and two tabu search-basedmeta-
heuristics, denoted TSMN and CTS. A baseline local-search
heuristic was also proposed, aimed at representing a current-
practice rule. Computational experiments were performed
on randomly generated data, inspired from a real case. They
showed that TSMN outperforms CTS for f1 (since TSMN
is likely to better explore the solution space than CTS),
whereas CTS did better for f2 (which is explained by its
better intensification ability, relying on the enforcement of
solution modifications thanks to an efficient repair mecha-
nism).

It is important to notice that both the TSMN and CTS
tabu-search methods are easily generalizable for various
job-scheduling contexts. They rely on the following main
features: a collection of complementary neighborhood struc-
tures, the possibility to generate infeasible solutions for
implementing important modifications while being able to
repair them efficiently, diversification mechanisms (e.g.,
reschedule a full block of jobs). Such ingredients are useful
to find a good balance between diversification and intensifi-
cation, which are two key features in the design of solution
methods.

Various research avenues are possible for the future.
On the one hand, alternative problem-solving methodolo-
gies could be explored for problem (P), like the adaptive
large neighborhood search (ALNS). On the other hand, an
extension of (P) could be studied, where several machines
and/or optimization criteria are involved. Finally, a stochas-
tic variant of (P) can be investigated, where randommachine
breakdowns can occur over time.
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Cesaret, B., Oğuz, C., & Salman, F. S. (2012). A tabu search algorithm
for order acceptance and scheduling. Computers & Operations
Research, 39(6), 1197–1205.

Ehrgott, M. (2005). Multicriteria optimization (Vol. 491). Springer.
Emami, S., Sabbagh, M., & Moslehi, G. (2016). A Lagrangian relax-

ation algorithm for order acceptance and scheduling problem: A
globalised robust optimisation approach. International Journal of
Computer Integrated Manufacturing, 29(5), 535–560.

Engels, D. W., Karger, D. R., Kolliopoulos, S. G., Sengupta, S., Uma,
R., & Wein, J. (2003). Techniques for scheduling with rejection.
Journal of Algorithms, 49(1), 175–191.

Gallay,O.,&Zufferey,N. (2018).Metaheuristics for lexicographic opti-
mization in industry. In Proceedings of the 19th EU/MEWorkshop
on Metaheuristics for Industry (EU/ME 2018).

Gendreau, M., & Potvin, J. Y. (2019). Handbook of Metaheuristics.
International Series in Operations Research & Management Sci-
ence (Vol. 146). Springer.

Glover, F. (1989). Tabu search - Part I. ORSA Journal on Computing,
1(3), 190–206.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979).
Optimization and approximation in deterministic sequencing and
scheduling: A survey. Annals of Discrete Mathematics, 5, 287–
326.

Jiang, D., Tan, J., & Li, B. (2017). Order acceptance and scheduling
with batch delivery. Computers & Industrial Engineering, 107,
100–104.

Johnson, D. S. (1973). Near-optimal bin packing algorithms. Ph.D.
Thesis, Massachusetts Institute of Technology.

Kaabi, J., &Harrath, Y. (2014). A survey of parallel machine scheduling
under availability constraints. International Journal of Computer
and Information Technology, 3(2), 238–245.

Kerrigan, E. C., & Maciejowski, J. M. (2002). Designing model pre-
dictive controllers with prioritised constraints and objectives. In
Proceedings of IEEE international symposium on computer aided
control system design, IEEE (pp. 33–38).

Korte, B., Vygen, J., Korte, B., & Vygen, J. (2012). Combinatorial
optimization (Vol. 2). Springer.

Li, G., Liu, M., Sethi, S. P., & Xu, D. (2017). Parallel-machine
scheduling with machine-dependent maintenance periodic recy-
cles. International Journal of Production Economics, 186, 1–7.

Li, S. S., & Chen, R. X. (2017). Scheduling with rejection and a dete-
riorating maintenance activity on a single machine. Asia-Pacific

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Journal of Scheduling (2022) 25:89–105 105

Journal of Operational Research, 34(2), 1750010. https://doi.org/
10.1142/S0217595917500105.

Ma, R., & Yuan, J. J. (2016). Online scheduling with rejection to min-
imize the total weighted completion time plus the total rejection
cost on parallel machines. Journal of the Operations Research
Society of China, 4(1), 111–119.

Moghaddam, A., Amodeo, L., Yalaoui, F., & Karimi, B. (2012). Sin-
gle machine scheduling with rejection: Minimizing total weighted
completion time and rejection cost. International Journal of
Applied Evolutionary Computation, 3(2), 42–61.

Nobibon, F. T., & Leus, R. (2011). Exact algorithms for a gener-
alization of the order acceptance and scheduling problem in a
single-machine environment. Computers & Operations Research,
38(1), 367–378.

Ocampo-Martinez, C., Ingimundarson, A., Puig, V., & Quevedo, J.
(2008). Objective prioritization using lexicographic minimizers
for MPC of sewer networks. IEEE Transactions on Control Sys-
tems Technology, 16(1), 113–121.
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