
HAL Id: hal-03528328
https://uphf.hal.science/hal-03528328v1

Submitted on 27 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Filtered variable Neighborhood search method for the
P-Next center problem

Dalibor Ristić, Nenad Mladenovic, Raca Todosijević, Dragan Urošević

To cite this version:
Dalibor Ristić, Nenad Mladenovic, Raca Todosijević, Dragan Urošević. Filtered variable Neighbor-
hood search method for the P-Next center problem. INTERNATIONAL JOURNAL FOR TRAFFIC
AND TRANSPORT ENGINEERING, 2021, 11 (2), pp.294-309. �10.7708/ijtte.2021.11(2).09�. �hal-
03528328�

https://uphf.hal.science/hal-03528328v1
https://hal.archives-ouvertes.fr

FILTERED VARIABLE NEIGHBORHOOD
SEARCH METHOD FOR THE P-NEXT CENTER
PROBLEM
Dalibor Ristić1, Nenad Mladenović2, Raca Todosijević3, Dragan Urosević1, 4

1 School of Computing, Union University, Belgrade, Serbia
2 Khalifa University, Abu Dhabi, United Arab Emirates
3 Polytechnic University of Hauts-de-France, Valenciennes, France
4 Mathematical Institute, University of Belgrade, Belgrade, Serbia

Abstract: The p-center problem has been the subject of interest in the operational research for
a long time. It has been well-known since the middle of the previous century. During the last
decade, an extension of the problem, known as the p-next center problem, has been defined
in order to handle unexpected incidents that can disable the centers. There are only a few
papers and algorithms that address the aforementioned problem and therefore we introduce
a new algorithm for solving the p-next center problem based on the Variable Neighborhood
Search Method. The proposed algorithm was tested on a set of test instances already known in
the literature, and the results show that it returns an optimal or at least near-optimal solution
to the problem in a reasonable amount of time. Compared to existing algorithms, it has been
shown that the proposed algorithm finds the best known or better solutions.

Keywords: variable neighborhood search, heuristic algorithms, p-next center problem,
combinatorial optimization.

1. Introduction

The p-center problem was introduced in
1965 (Hakimi, 1965) and has been the
subject of many research projects ever since.
The p-center is a discrete optimization
problem that represents the identification
of p functional centers and their assignment
to appropriate users, all in order to minimize
the maximum weight determined by the pairs
(center, user). For example, the problem
can be presented as a model of determining
the locations of p ambulances (centers) that
will serve n settlements (users) in order for
the distance of the farthest village from the
assigned ambulance to be minimal, or it

can present the problem of minimizing the
maximum distance of all the settlements
to the nearest of p fire stations, refugee
reception centers or cultural centers.

Although the p-center has been shown to be
NP-hard (Kariv and Hakimi, 1979), over the
time, many exact mathematical models and
heuristic algorithms have been published
that address this problem, such as:

• Exact methods:
• Covering method by Minieka (1970);
• Linear programming (LP) model by

Ilhan and Pınar (2001);
• Integer programming (IP) model by

DOI : 10.7708/ijtte.2021.11(2).09 1

INTERNATIONAL JOURNAL FOR TRAFFIC AND TRANSPORT ENGINEERING
11-2 (2021) 294-309

Elloumi et al. (2004);
• Mixed integer programming (MIP)

formulation and a set covering based
algorithm by Daskin (2013);

• IP models and an exact algorithm
based on the decomposition of the
models by Calik and Tansel (2013).

• Heuristic algorithms:
• Two-approximation O(|E|log|E|)

algorithm for the unweighted discrete
problem, with edges satisfying triangle
inequality, by Hochbaum and Shmoys
(1985);

• VNS and Tabu Search algorithms by
Mladenovic et al. (2003);

• Genetic algorithm by Pullan (2008);
• Bee colony optimization for the

p-center problem by Davidovic et al.
(2011).

Despite the fact that it can be said that the
p-center problem has been successfully
solved , e s pec i a l ly i n cond it ion s of
humanitar ian catastrophes or severe
weather disasters, it turned out that there
is practically a problem of limited capacity
or collapse of centers, which further leads to
their inability to serve all intended users. The
question was what to do in a case of failure
of the assigned center. Other problems have
been defined, partly in response to this
question, such as capacitated p-center, where
centers have limited capacity, or conditional
p-center, fault tolerant p-center problem,
etc. The conditional p-center problem
implies that q centers already exist and that
the set of centers can be expanded further
with additional p centers as needed so that
the maximum distance between users and
assigned centers is minimized, taking into
account all q + p centers. Fault tolerant
presents the generalization of a p-center
problem, where each user is assigned with
multiple centers.

Albareda-Sambola et al. (2015) presented
a logistical solution to the problem of
possible catastrophes, called the p-next
center problem. The p-next center problem
is a variant of the fault tolerant problem and
it is derived from the p-center problem,
where the possibility of disabling the
center is solved by introducing exactly one
replacement center. The centers assigned
to the user were given names, references
and backup center, and the p-next center
problem was defined as the problem of
minimizing the maximum distance, among
all users, to the nearest (reference) center
plus the distance to its nearest (backup)
center. The reference center is the closest
center to the user and in the case it is
disabled, the customer service is then
transferred to the assigned backup center.
Unlike the p-center problem, the solution
to the p-next center problem is to minimize
the distance, not to the nearest, but to the
backup center, where the reference center
is visited first. In case there are several
centers at a minimum distance from the
user, the reference center is the one that
has the nearest backup center.

In order to define the problem, the following
notation is introduced: let G = (V, E) be
an undirected weighted graph where the
weights of the branches are determined by
the distance between their ends, V is the set
of all nodes, and E is the set of branches of the
graph. Centers and other users represent the
nodes of the graph, and d(i, j) is the shortest
distance between nodes i and j, calculated as
a result of an algorithm for determining the
shortest paths in graph G. The solution to
the p-next center problem is a set of centers

, of cardinality p, so that the maximum
distance among all the users i ∈ V to the
closest center j ∈ P, plus the distance to its
closest center k ∈ P is minimized.

DOI : 10.7708/ijtte.2021.11(2).09 2

 (1)

In the paper by Albareda-Sambola et al.
(2015), along with the definition of the
problem, there is also formal proof that the
p-next center problem is NP-hard. In the
same paper, several exact mathematical
models are presented that solve smaller
instances of the problem. In addition to these
solutions, there are heuristic algorithms for
the p-next center problem presented in the
paper by Lopez-Sanchez et al. (2018). They
introduced Greedy Randomized Adaptive
Search Procedure (GR ASP), Variable
Neighborhood Search (VNS) as well as a
hybrid version of these algorithms.

GRASP is based on a metaheuristic initially
proposed by Feo and Resende (1989). It is
presented as a multi-start framework that
consists of a construction and a local search
phase. In the construction phase, a solution
is gradually generated in such a way, that
in each iteration, a new element is added
to the current solution. The combination
of greediness and randomness approach is
achieved by randomly selecting the element
to join the solution, from a predefined list of
candidates, and the candidate list is generated
using a function that selects candidates based
on the hyper-parameter α that controls
the degree of greediness and randomness
combination. If α = 1, the candidates are
chosen completely randomly, and α = 0
determines the completely greedy function
that selects the candidates based on the most
promising criteria. The second phase of the
GRASP algorithm is a local search that tries
to identify the local optimum. It implements
a simple search algorithm that visits adjacent
(N1) solutions in a random order and if it
encounters a solution that improves the
current one, it accepts the new one as the

current solution. The local search is repeated
as long as it is possible to find a solution that
is better than the current one. The complete
algorithm is executed until a predetermined
number of solutions is generated.

V N S i m p l e m e n t s t h e b a s i c V N S
metaheuristic which is explained in detail
in the next section. It consists of a shaking
and a local search phase that is implemented
in the same way as the local search of the
GRASP algorithm.

T he hybr id version of the a lgor ithm
combines GRASP and VNS so that the local
search phase of the GR ASP algorithm is
replaced by a complete VNS algorithm.

All the algorithms from the work of Lopez-
Sanchez et al. (2018) were tested over the
same test set as the solutions from the work
of Albaredo-Sambola et al. (2015) and it
turned out that the hybrid version returns
much better solutions compared to others,
but also requires much more CPU time.
GRASP and VNS algorithms gave results
of approximately the same quality.

This paper introduces a new heuristic VNS
algorithm that solves the p-next center
problem, comparable to the most successful
so far, i.e. hybrid algorithm from the work
of Lopez-Sanchez et al. (2018). To this end,
in the next section, through a more detailed
description and pseudo-code, we wil l
discuss the proposed algorithm, and in the
third section, we will present the obtained
results in a table form, in comparison with
the mentioned hybrid algorithm. We will
end the paper with a short summary and an
announcement of our future work.

DOI : 10.7708/ijtte.2021.11(2).09 3

2. Algorithm

The algorithm we propose as a new solution
to the p-next center problem is bui lt
upon the Variable Neighborhood Search
Method (in the rest of the text VNS). VNS
was first introduced by Mladenovic and
Hansen (1997) as a generic framework for
building search algorithms that guarantees a
systematically structured visit to neighboring
solutions. The Variable Neighborhood
Method relies on search of near and far
neighborhoods of the current solution.
Neighborhood N1(P), of a solution P, defines

a complete set of solutions that differ from
the set P in one center. For example, let P =
{1, 2, 3} be the current solution to the p-next
center problem for p = 3 and V = {1, 2, 3, 4,…,
n} users. Neighborhood N1(P) = {{1, 2, 4},
{1, 2, 5},…, {1, 2, n}, {1, 4, 3},…, {n, 2, 3 }}
is a set of sets obtained by replacing exactly
one center from solution P with a new center
outside that solution.

Similarly, Nk(P) neighborhood, where 1 ≤ k ≤
|P|, is a set of solutions obtained by replacing
exactly k centers from solution P with new
centers that are not included in solution P:

(2)

The basic VNS implementation contains
two phases that are executed alternately:
the local search phase and the change of
the current neighborhood. The local search
phase implements the current solution
search algorithm in order to identify the
local optimum. The phase of changing the
neighborhood represents a jump from the
current solution and the locally optimal
value to one of the solutions from the
k-neighborhood. The solution is chosen
on a random sample principle, in order to
eliminate the probability of an infinite loop,
to which often leads reliance on deterministic
rules. VNS as a generic framework suggests,
starting with the solution P, and the first
jump into the N1(P) neighborhood (k =
1), and then to more distant (k = k + 1)
neighborhoods. If in the k neighborhood
a local search procedure identifies a better
solution than the current one P, the new
solution becomes current and k is again
set to 1. Otherwise, the new solution is
discarded and the search continues in the
k + 1 neighborhood. The search ends if the
current solution is not improved in the kmax
neighborhood.

It was mentioned that the p-next center
problem is addressed by the GRASP, VNS
and Hybrid algorithms from the work of
Lopez-Sanchez et al. (2018). The paper states
that GRASP insists on the diversification
of the solution, and that the advantage of
the VNS algorithm is in the intensification
of a single predefined solution. GR ASP
supports a multi-start approach by initially
constructing a set of different solutions
that it gradually improves later, while VNS
is constantly working on intensifying one
predefined solution. It turned out that the
Hybrid algorithm, as a combination of the
two, inherits the good features of both
and as such finds the best solutions. This
observation motivated us to try to improve
the V NS implementation to achieve a
sufficient degree of combination of solution
diversification and intensification to be
able to identify equally good, and better,
solutions compared to the hybrid version
of the algorithm.

In our VNS implementation of the algorithm
for the p-next center problem, we achieve
the maximum diversification of the solution

DOI : 10.7708/ijtte.2021.11(2).09 4

by choosing the largest possible kmax value,
i.e. kmax = p. On the other hand, the multi-
start approach stands out as a key feature
of GRASP that results in the superiority of
the algorithm in terms of diversification.
To nullify this advantage of the GR ASP
algorithm, we introduce a new hyper-
parameter tmax as the execution time limit.
We end the VNS algorithm when the allowed
execution time expires, and in case the
maximum (kmax) value of the parameter k
is reached before the time limit is exceeded,
a new execution is initiated.

It is noticeable that the phase of local
search of GRASP and VNS algorithm will
not always identify the local optimum.
To further improve the efficiency of the
algorithm, in contrast to the algorithm from
the work of Lopez-Sanchez et al. (2018) we
do not accept the first better solution we
come across during the local search, but
we try to identify the optimal solution in
order to maximize the intensification of the
solution. This would entail more CPU time

because it would be necessary to process
all p * (n - p) possible solutions from the N1
neighborhood. Many of these solutions will
not improve the objective function value, so
efficient filtering of these solutions could
significantly speed up the local search phase.
The objective function value of the current
solution P is determined by the maximum
value of the distance from the user to the
reference center plus the distance to the
backup center, taking into account all the
users. Let the user with the maximum
distance be the so-called critical user uc,
its reference center critical center cc, and
the mentioned distance critical distance fc.
During a local search, we try to exchange
the two centers, that is, to replace the
center cout of the current solution with a
new cin center by improving the value of the
target function. In other words, only those
solutions that reduce the critical distance fc
come into consideration. The idea is to first
check the value of the critical user function
and discard all centers that do not result in
a reduction of the distance fc.

Fig. 1.
Example of Current Solution P = {2, 5, 11} of the p-next Center Problem for n = 15 and p = 3

DOI : 10.7708/ijtte.2021.11(2).09 5

Fig. 2.
Identification of cin and cout Centers to be exchanged during the Local Search phase

For example, let P = {2, 5, 11} be the current
solution of the p-next center problem for n
= 15 users and p = 3 centers, as shown in
Fig. 1. The centers are represented by dark
grey and the users by light grey nodes. The
critical user is 8, the critical center is 5, and
its backup center is 2, so the critical distance
fc is d(8, 5) + d(5, 2). The goal is to determine
the optimal pair of centers cin and cout, the
exchange of which reduces the current
value of the objective function. At first, all
potential centers, whose inclusion in the
current solution does not relax the distance
of the critical user 8 to its (old or new) backup

center by passing through the (old or new)
reference center, are eliminated. In Fig. 2,
users, i.e. potential new centers, which are
rejected, are marked in white. Among the
remaining users and current centers, a pair
(cin, cout) is required whose exchange reduces
the fc value to the minimum. This is the user
cin = 4 and the center cout = 11. After their
exchange, a new current solution P = {2, 4,
5} was obtained, where the new critical user
is uc = 1, and the critical center is cc = 2 (Fig.
3). The new critical distance is fc = d(1, 2)
+ d(2, 5), where it is guaranteed to be less
than the previous d(8, 5) + d(5, 2).

DOI : 10.7708/ijtte.2021.11(2).09 6

The previously described and illustrated
characteristics of the new VNS implemen-
tation are the key to achieving the greatest
possible degree of diversification and inten-
sification of the solution. The following is a
description of the proposed algorithm and
pseudo-code.

To calculate the objective function value
(fvalue), auxiliary functions f(P, u) and f(P, u,
cin, cout) are used, which respectively return
the value of the user u distance to the nearest
(reference) center plus the distance to its
nearest (backup) center in the current

solution P, and referred to the second
function, the same just in the case that the
cout center of the solution P is replaced by a
new cin center (cin ∈ V \ P). Also, the function
reference(P, u) finds the reference center of
the user u in the solution P. In the case
that several centers from P are at the same
minimum distance from u, the one that has
the closest center among other centers of the
solution P is chosen as the reference center,
that is, any of those who have the next center
at the same minimum distance. In the worst
case, these functions visit all current centers
so that the worst time complexity is O(p).

Fig. 3.
New Current Solutions P = {2, 4, 5} of the p-next Center Problem for n = 15 and p = 3 after the
Exchange of cin = 4 and cout = 11 Centers

DOI : 10.7708/ijtte.2021.11(2).09 7

Algoritam 1: VNS(G = (V, E), P, kmax, tmax)
1: k = 1; fvalue = ∞
2: Do
 Generating a solution at random from kth neighborhood:
3: P’ = Shake(P, k)
 Determining the objective function value for the solution P’:
4: f ’ = 0
5: For-Each u ∈ V
6: If f(P’, u) > f ’
7: f ’ = f(P’, u); cu’ = u
8: End If
9: End For-Each
 Local search:
10: Main loop: While(True)
11: f ’’ = ∞
12: For-Each cin ∈ V \ P’

NULL indicates that no one center is closed
13: If f ’ > f(P’, cu’, cin, NULL) or f ’ > f(P’, cu’, cin, reference(P’, cu’))
14: For-Each cout ∈ P’
15: fcur = 0
16: For-Each u ∈ V
17: If fcur < f(P’, u, cin, cout)
18: fcur = f(P’, u, cin, cout); ucur = u
19: End If
20: End For-Each
21: If f ’’ > fcur
22: f ’’ = fcur; in = cin; out = cout; cu’’ = ucur
23: End If
24: End For-Each
25: End If
26: End For-Each
27: If f ’’ < f ’
28: f ’ = f ’’; cu’ = cu’’; P’ = P’ ∪ {in} \ {out}
29: Else
30: Break Main loop
31: End If
32: End Main loop
 Jump into a new neighborhood:
33: If fvalue ≥ f ’
34: fvalue = f ’; P = P’
35: k = 1
36: Else
37: k = k % kmax + 1
38: End If
39: While CPU_Time() ≤ tmax
40: Return fvalue, P

DOI : 10.7708/ijtte.2021.11(2).09 8

Starting from k = 1 and the predefined
solution P, the search continues in a randomly
selected new solution P’ from the Nk(P)
neighborhood (line 3). After initialization
of the objective function value f ’ of the
solution P’ and identification of the critical
user cu’ (lines 4 - 9), i.e. users whose distance
to the backup via the reference center is the
largest, the local search phase begins (lines
10 - 32). Only cin centers that potentially
reduce the distance related to the critical
user cu’ are considered (line 13). A pair of
(cin, cout) centers is required, where cout ∈ P’
and cin ∈ V \ P’, whose exchange yields a new
N1(P’) solution with the smallest value of the
objective function. The search continues as
long as it is possible to find at least one such
pair of centers.

If a better or the same solution is found
during the local search, the new solution
becomes current and the search is reset to k =
1 (lines 33 - 35); otherwise the new solution
is discarded and the search continues by
jumping into k + 1 neighborhood (line 37).
If the maximum value (kmax) is exceeded, k
is also reset to the initial value. The search
ends when the time limit tmax is exceeded.

Since the time complexity of auxiliary
functions in the worst case is O(p), it is

simple to determine the time complexity
of the local search iteration (main loop) as
O(n * (p + p * n * p)) = O(p2 n2) in the
worst case.

3. Results

The algorithm is implemented in the C++
programming language, and all tests were
performed on an Intel Core i7-8700K
(3.7GHz) CPU with 32GB R A M. Test
examples are taken from the work of Lopez-
Sanchez et al. (2018), and the obtained results
were compared with the hybrid algorithm as
the best version of the algorithms proposed
in the same paper.

Test instances were generated based on
the OR-Library (Beasley, 1990) data set
by considering the first n nodes from the
pmed1-pmed4 and pmed6-pmed8 examples
with different p values. All test instances are
divided into two groups: smaller up to 50
and larger up to 200 nodes.

The proposed algorithm was executed 20
times on each test instance with values
kmax = p and tmax = 2n seconds where n is the
total number of nodes (users) in a given test
example. The results are presented in Tables
1-3.

DOI : 10.7708/ijtte.2021.11(2).09 9

Table 1
The Results of the Algorithm applied to Smaller Instances Compared to the Results of the Hybrid Algorithm

P N Optimal Hybrid
Value

Time
(sec)

Worst
Value

AVG
Value

Best
Value #Best

Gap
Worst

vs.
Hybrid

(%)

Gap
AVG

vs.
Hybrid

(%)

Gap
Best
vs.

Hybrid
(%)

pmed1 5 10 84 84 0.002 84 84 84 20 0 0 0
pmed1 5 20 120 120 0.034 120 120 120 20 0 0 0
pmed1 10 20 95 95 0.029 95 95 95 20 0 0 0
pmed1 5 30 126 126 0.032 148 131.50 126 15 17.46 4.37 0
pmed1 10 30 95 95 0.316 100 95.25 95 19 5.26 0.26 0
pmed1 5 40 144 144 3.700 154 146.25 144 12 6.94 1.56 0
pmed1 10 40 111 111 13.334 111 111 111 20 0 0 0
pmed1 20 40 89 89 0.229 89 89 89 20 0 0 0
pmed1 10 50 110 111 6.656 115 112.30 110 2 3.60 1.17 -0.90
pmed1 20 50 89 89 26.83 91 89.10 89 19 2.25 0.11 0
pmed2 5 10 121 128 0.003 128 124.15 121 11 0 -3.01 -5.47
pmed2 5 20 147 147 0.014 166 153.65 147 13 12.93 4.52 0
pmed2 10 20 99 99 0.150 99 99 99 20 0 0 0
pmed2 5 30 169 169 0.223 179 169.65 169 18 5.92 0.38 0
pmed2 10 30 110 110 0.849 110 110 110 20 0 0 0
pmed2 5 40 164 164 0.276 164 164 164 20 0 0 0
pmed2 10 40 112 112 5.625 138 124.70 112 6 23.21 11.34 0
pmed2 20 40 96 96 3.589 96 96 96 20 0 0 0
pmed2 10 50 140 140 2.175 145 140.40 140 18 3.57 0.29 0
pmed2 20 50 99 99 8.719 102 99.15 99 19 3.03 0.15 0
pmed3 5 10 77 77 0.002 77 77 77 20 0 0 0
pmed3 5 20 145 145 0.033 167 149.60 145 14 15.17 3.17 0
pmed3 10 20 77 77 0.047 129 87.40 77 16 67.53 13.51 0
pmed3 5 30 157 157 0.094 167 159 157 16 6.37 1.27 0
pmed3 10 30 122 122 0.096 133 122.55 122 19 9.02 0.45 0
pmed3 5 40 157 157 0.190 167 164.05 157 5 6.37 4.49 0
pmed3 10 40 105 105 2.635 125 111.55 105 13 19.05 6.24 0
pmed3 20 40 77 77 2.572 77 77 77 20 0 0 0
pmed3 10 50 125 125 9.641 127 126.30 125 7 1.60 1.04 0
pmed3 20 50 87 87 11.380 87 87 87 20 0 0 0
pmed4 5 10 126 126 0.003 126 126 126 20 0 0 0
pmed4 5 20 139 139 0.023 179 145 139 17 28.78 4.32 0
pmed4 10 20 125 125 0.188 125 125 125 20 0 0 0
pmed4 5 30 173 173 0.086 180 174.40 173 16 4.05 0.81 0
pmed4 10 30 122 122 0.439 122 122 122 20 0 0 0
pmed4 5 40 175 175 0.369 175 175 175 20 0 0 0
pmed4 10 40 122 122 5.590 145 124.05 122 7 18.85 1.68 0
pmed4 20 40 85 85 2.049 85 85 85 20 0 0 0
pmed4 10 50 126 126 14.698 140 130.20 126 14 11.11 3.33 0
pmed4 20 50 91 91 12.589 92 91.70 91 6 1.10 0.77 0
AVG 3.388 16.05 6.83 1.56 -0.16

DOI : 10.7708/ijtte.2021.11(2).09 10

Table 1 columns represent respectively:
the name of the test instance, the number
of centers p, the number of users n, the
optimal value of the solution, the solution
obtained by the hybrid algorithm (Lopez-
Sanchez et al., 2018), average time to find
the best solution, the worst solution among
20 algorithm executions, the average and
the best solution, how many times the best
solution was found, gap of the worst, the
average and the best solution in relation to the
hybrid algorithm solution. The gaps between
the obtained solutions and the solutions
of the hybrid algorithm were calculated as

. The table contains the test
results on smaller test instances, and it was
shown that from 20 executions the algorithm
managed to find the optimal solution. The
optimal solutions were obtained by exact
mathematical models from the work of
Albared-Sambol et al. (2015). The average
CPU time required to find the best solution
is 3,388s, and an average of 16.05 out of 20

executions identifies the optimal solution.
On the other hand, in comparison with the
results obtained by the hybrid algorithm,
the deviation of the values of the worst and
average solutions is noticeable. For example,
an instance of pmed3 for p = 10 and n = 20
results in a gap of 67.53% and 13.51% in
the worst and average case, respectively,
relative to the result of the hybrid algorithm.
Nevertheless, execution over that instance
returned the optimal solution in 16 out of
the 20 executions, so it can be concluded
that the algorithm applied to smaller test
instances gives acceptable results. The best
results in a couple of examples: pmed1 for
p = 10 and n = 50, as well as pmed2 for p =
5 and n = 10 improve the solutions of the
hybrid algorithm, i.e. return a negative gap
of -0.90% and -5.47%. In fact, in the second
example, the algorithm as its worst solution
identifies the hybrid algorithm solution, so
that the average solution with gap of – 3.01%
is better.

Table 2
The Results of the Algorithm Applied to Larger Instances compared to the Results of the Hybrid Algorithm

P N Hybrid
Value

Time
(sec)

Worst
Value

AVG
Value

Best
Value

#Best

Gap
Worst

vs.
Hybrid

(%)

Gap
AVG

vs.
Hybrid

(%)

Gap
Best

vs. Hybrid
(%)

pmed6 20 150 79 222.75 91 84.60 80 4 15.19 7.09 1.27
pmed6 30 150 71 250.42 85 78.65 74 1 19.72 10.77 4.23
pmed6 50 150 62 240.37 72 63.60 60 2 16.13 2.58 -3.23
pmed6 80 150 56 68.05 57 56.05 56 19 1.79 0.09 0
pmed6 20 200 79 224.10 94 87.20 81 3 18.99 10.38 2.53
pmed6 30 200 72 254.00 89 81.35 77 1 23.61 12.99 6.94
pmed6 50 200 68 139.42 82 76.30 70 1 20.59 12.21 2.94
pmed6 80 200 54 224.10 77 64.50 54 2 42.59 19.44 0
pmed7 20 150 69 226.25 79 71.70 68 1 14.49 3.91 -1.45
pmed7 30 150 62 254.15 70 66.65 63 2 12.90 7.50 1.61
pmed7 50 150 59 209.71 66 59.85 59 15 11.86 1.44 0
pmed7 80 150 59 17.47 59 59.00 59 20 0 0 0
pmed7 20 200 73 195.70 88 82.65 75 1 20.55 13.22 2.74
pmed7 30 200 68 222.79 86 76.05 67 1 26.47 11.84 -1.47

DOI : 10.7708/ijtte.2021.11(2).09 11

P N Hybrid
Value

Time
(sec)

Worst
Value

AVG
Value

Best
Value

#Best

Gap
Worst

vs.
Hybrid

(%)

Gap
AVG

vs.
Hybrid

(%)

Gap
Best

vs. Hybrid
(%)

pmed7 50 200 63 211.34 70 68.05 63 1 11.11 8.02 0
pmed7 80 200 52 210.42 67 58.40 52 1 28.85 12.31 0
pmed8 20 150 74 244.01 83 78.75 74 2 12.16 6.42 0
pmed8 30 150 61 218.50 83 69.05 63 1 36.07 13.20 3.28
pmed8 50 150 58 263.65 61 58.35 58 16 5.17 0.60 0
pmed8 80 150 58 28.23 58 58.00 58 20 0 0 0
pmed8 20 200 84 222.01 94 91.10 88 5 11.90 8.45 4.76
pmed8 30 200 77 226.27 94 87.25 84 6 22.08 13.31 9.09
pmed8 50 200 68 247.91 88 77.40 68 2 29.41 13.82 0
pmed8 80 200 68 154.88 72 68.20 68 19 5.88 0.29 0
AVG 199.02 6.08 16.98 7.91 1.39

Table 2 presents the results of the algorithm
applied to a group of larger test instances.
Apart f rom that it does not contain a
column with optimal solutions; the other
columns are identical to the columns of
Table 1. We did not have optimal solutions
for larger instances, so we present only
the results of comparison with the results
of the hybrid algorithm. The results of
the proposed algorithm are not as good
as for smaller instances. It is noticeable
that the best solution is obtained only for
6.08 out of 20 executions on average and
that in most cases the worst and average
solution gives a significant gap in relation
to the solution of the hybrid algorithm.

Differences in gaps between the worst,
average, and best solutions, such as in
the case of the pmed6 instance for p = 80
and n = 200 of 42.59%, 19.44%, and 0%,
respectively, suggest that more effort is
needed to stabilize the algorithm. In only
3 out of 24 cases, the algorithm returned
the better values (negative gap in the last
column) than the hybrid algorithm, while
the hybrid algorithm found a better solution
for 10 out of 24 test instances. Although
the average gap value is 1.39%, it is obvious
that the hybrid algorithm has an advantage
when treating larger instances. The average
time to find the best solution is also large,
199.02s.

DOI : 10.7708/ijtte.2021.11(2).09 12

Table 3
Comparison with the Results of the Hybrid Algorithm in Case of increased Time Limit tmax

P N Hybrid
Value

Time
(sec)

Worst
Value

AVG
Value

Best
Value

#Best
Gap

Worst
vs.

Hybrid
(%)

Gap
AVG

vs.
Hybrid

(%)

Gap
Best

vs. Hybrid
(%)

pmed6 20 150 79 496.24 92 83.15 77 1 16.46 5.25 -2.53
pmed6 30 150 71 610.05 81 75.75 67 1 14.08 6.69 -5.63
pmed6 50 150 62 688.80 63 59.10 56 3 1.61 -4.68 -9.68
pmed6 80 150 56 59.43 56 56.00 56 20 0 0 0
pmed6 20 200 79 513.29 91 83.90 80 4 15.19 6.20 1.27
pmed6 30 200 72 428.45 81 79.25 72 1 12.50 10.07 0
pmed6 50 200 68 621.61 81 71.50 62 1 19.12 5.15 -8.82
pmed6 80 200 54 721.79 72 53.80 49 3 33.33 -0.37 -9.26
pmed7 20 150 69 658.24 78 69.85 68 6 13.04 1.23 -1.45
pmed7 30 150 62 602.54 69 65.55 61 1 11.29 5.73 -1.61
pmed7 50 150 59 212.89 63 59.20 59 19 6.78 0.34 0
pmed7 80 150 59 25.78 59 59.00 59 20 0 0 0
pmed7 20 200 73 507.34 84 79.85 70 1 15.07 9.38 -4.11
pmed7 30 200 68 659.96 84 71.95 67 1 23.53 5.81 -1.47
pmed7 50 200 63 594.09 71 65.85 58 1 12.70 4.52 -7.94
pmed7 80 200 52 584.48 63 55.55 48 1 21.15 6.83 -7.69
pmed8 20 150 74 527.45 84 78.35 74 3 13.51 5.88 0
pmed8 30 150 61 521.21 70 65.45 61 1 14.75 7.30 0
pmed8 50 150 58 301.59 61 58.20 58 18 5.17 0.34 0
pmed8 80 150 58 22.25 58 58.00 58 20 0 0 0
pmed8 20 200 84 556.46 93 89.00 84 2 10.71 5.95 0
pmed8 30 200 77 343.06 88 84.90 77 1 14.29 10.26 0
pmed8 50 200 68 754.32 84 72.10 68 4 23.53 6.03 0
pmed8 80 200 68 216.30 68 68.00 68 20 0 0 0
AVG 467.82 6.38 12.41 4.08 -2.46

Given the initially poor results for larger
examples, we decided to increase the time
limit and then again executed the algorithm
20 times for each test instance. By increasing
the execution time limit tmax to 5n seconds,
significantly better results were obtained,
presented in Table 3. It is noticeable that the
average time to find the best solution has
increased to 467.82s, which is not acceptable.
For example, the average execution time of
a hybrid algorithm, scaled to the processor
we used, is 141.65s. Thus, execution time
optimization is required for the algorithm to
be used on larger instances of the problem. On

the other hand, the proposed algorithm, with a
compromise of longer execution time, returns
significantly better results than the hybrid
algorithm. In as many as 11 out of 24 cases,
the algorithm found better solutions than
the hybrid algorithm (negative gap in the last
column), while the hybrid algorithm returned
a better result for only one test instance.

Encouraged by the previous results, we decided
to run the algorithm 20 times and over the
complete OR-Library test set for kmax = p and
tmax = 5n seconds. The results of the executions
are presented in the following table.

DOI : 10.7708/ijtte.2021.11(2).09 13

Table 4
The Results of the Algorithm applied to Complete OR-Library Test Set

P N Time
(sec)

Worst
Value

AVG
Value

Best
Value

#Best Gap
Worst vs. Best

(%)

Gap
AVG vs. Best

(%)
pmed1 5 100 0.50 172 166.30 166 19 3.61 0.18
pmed2 10 100 100.46 147 136.05 135 16 8.89 0.78
pmed3 10 100 87.24 164 153.80 151 15 8.61 1.85
pmed4 20 100 177.84 125 119.35 118 5 5.93 1.14
pmed5 33 100 38.63 85 85.00 85 20 0 0
pmed6 5 200 146.09 111 107.90 107 14 3.74 0.84
pmed7 10 200 390.52 91 86.00 84 2 8.33 2.38
pmed8 20 200 332.01 92 86.85 84 6 9.52 3.39
pmed9 40 200 261.44 75 74.60 71 2 5.63 5.07
pmed10 67 200 9.74 70 70.00 70 20 0 0
pmed11 5 300 168.67 72 70.10 70 19 2.86 0.14
pmed12 10 300 544.26 79 72.75 72 16 9.72 1.04
pmed13 30 300 658.49 65 60.95 52 1 25.00 17.21
pmed14 60 300 515.14 61 60.60 60 8 1.67 1.00
pmed15 100 300 811.39 48 44.95 44 13 9.09 2.16
pmed16 5 400 106.52 57 55.10 55 19 3.64 0.18
pmed17 10 400 791.43 53 49.70 47 4 12.77 5.74
pmed18 40 400 1101.69 55 52.40 50 6 10.00 4.80
pmed19 80 400 1113.12 46 43.50 40 1 15.00 8.75
pmed20 133 400 1079.11 48 43.30 40 4 20.00 8.25
pmed21 5 500 377.36 50 48.80 48 5 4.17 1.67
pmed22 10 500 849.43 58 55.05 52 6 11.54 5.87
pmed23 50 500 1371.95 47 44.40 42 2 11.90 5.71
pmed24 100 500 1196.55 45 38.40 35 1 28.57 9.71
pmed25 167 500 242.45 44 44.00 44 20 0 0
pmed26 5 600 905.53 49 47.95 47 7 4.26 2.02
pmed27 10 600 946.39 43 41.20 40 9 7.50 3.00
pmed28 60 600 20.40 57 57.00 57 20 0 0
pmed29 120 600 1461.31 42 37.25 36 9 16.67 3.47
pmed30 200 600 108.86 40 40.00 40 20 0 0
pmed31 5 700 1057.44 40 36.95 35 7 14.29 5.57
pmed32 10 700 15.29 72 72.00 72 20 0 0
pmed33 70 700 1611.42 37 34.85 33 2 12.12 5.61
pmed34 140 700 72.14 41 41.00 41 20 0 0
pmed35 5 800 927.56 38 36.85 36 4 5.56 2.36
pmed36 10 800 223.52 42 42.00 42 20 0 0
pmed37 80 800 1634.93 38 34.90 33 6 15.15 5.76
pmed38 5 900 1102.41 41 40.20 40 16 2.50 0.50
pmed39 10 900 32.70 74 74.00 74 20 0 0
pmed40 90 900 1394.52 35 32.10 29 1 20.69 10.69
AVG 599.66 10.62 7.97 3.17

DOI : 10.7708/ijtte.2021.11(2).09 14

There have been no results in the literature
for the p-next center problem over a complete
OR-Library test set, so Table 4 gives only
the results for our algorithm. The worst
and average solutions were compared to
the best solution for each test instance. The
solution gap in relation to the best solution
was calculated as . Same as in the
case of application over larger instances from
the work of Lopez-Sanchez et al. (2018), it
is noticeable that there is a deviation of the
worst and average values (7.97% and 3.17%
respectively) in relation to the best solutions,
which indicates that it is necessary to further
stabilize the algorithm. The best solution is
obtained for 10.62 out of 20 executions on
average. The average time to find the best
solution is also large, 599.66s.

4. Conclusion

The paper discusses the p-next center
problem, which is a generalization of the
well-known and highly studied p-center
problem. The Variable Neighborhood Search
algorithm was designed and implemented
as a metaheuristic approach to solving the
p-next center problem. The solution to the
problem is the identification of p centers in
order to minimize the maximum distance
among n users to the nearest center plus the
distance to its nearest center. It provides as
close as possible, not just reference, but also
a backup center, capable of serving the user
after disabling the reference center.

The proposed VNS algorithm was tested
on instances from the l iterature up to
200 nodes and the obtained experimental
results were compared with the results of
the hybrid GR ASP-VNS algorithm from
the work of Lopez-Sanchez et al. (2018). The
algorithm successfully reproduced optimal
solutions over the test instances of smaller

dimensions, while significantly larger CPU
time is required to solve larger instances
of the problem. The proposed algorithm
in all but one case identified the same or
better solutions compared to the hybrid
algorithm, which qualifies it as the most
accurate algorithm for solving the p-next
center problem.

The examples on which we compared the
results are in the domain of small problems,
so the plan is to check the results of the
algorithm applied to larger problems for
which it is certain that solutions cannot be
obtained by exact methods. Taking into
account the obtained results, in order to do
so, it is necessary to optimize the execution
time. The algorithm is designed in such a
way, that it is easy to extend it to take into
account more centers in case the backup
center is disabled. The problem is certainly
realistic and it would be interesting to try
to minimize the maximum distance to the
second, third or all other backup centers.

Acknowledgement

This work was partial ly supported by
the Ministry of Education, Science and
Technological Development of the Republic
of Serbia, through Mathematical Institute of
the Serbian Academy of Sciences and Arts
[grant number OI 174010].

References

Albareda-Sambola, M.; Hinojosa, Y.; Marin, A.;
Puerto, J. 2015. When centers can fail: a close second
opportunity, Computers & Operations Research 62: 145–
156.

Beasley, J.E. 1990. OR-Library: distributing test
problems by electronic mail, Journal of the operational
research society 41(11): 1069–1072.

DOI : 10.7708/ijtte.2021.11(2).09 15

Calik, H.; Tansel, B.C. 2013. Double bound method
for solving the p-center location problem, Computers &
operations research 40(12): 2991–2999.

Daskin, M.S. 2013. Network and discrete location:
models, algorithms, and applications, 2nd edn. Wiley,
Hoboken. 520p.

Davidovic, T.; Ramljak, D.; Selmic, M.; Teodorovic, D.
2011. Bee colony optimization for the p-center problem,
Computers & Operations Research 38: 1367-1376. doi:
10.1016 / j.cor.2010.12.002.

Elloumi, S.; Labbé, M.; Pochet, Y. 2004. A new
formulation and resolution method for the p-center
problem, INFORMS Journal on Computing 16(1): 84–94.

Feo, T.A.; Resende, M.G.C. 1989. A probabilistic
heuristic for a computationally difficult set covering
problem, Operations Research Letters 8(2): 67–71.

Hakimi, S.L. 1965. Optimum distribution of switching
centers in a communication network and some related
graph theoretic problems, Operations Research 13(3):
462–475.

Hochbaum, D.S.; Shmoys, D.B. 1985. A best possible
heuristic for the k-center problem, Mathematics of
Operations Research 10(2): 180–184.

I lhan, T.; Pınar, M.C. 2001. A n ef f icient exact
algorithm for the vertex p-center problem. Technical
report, Department of Industrial Engineering, Bilkent
University

Kariv, O.; Hakimi, S.L. 1979. An algorithmic approach
to network location problems. Part 1: The p-Centers,
SIAM Journal on Applied Mathematics 37(3): 513-538.

Lopez, A.; Sánchez-Oro Calvo, J.; Hernández-Díaz, A.
2018. GRASP and VNS for solving the p-next center
problem, Computers & Operations Research 104: 295-
303. doi: 10.1016 / j.cor.2018.12.017.

Minieka, E. 1970. The m-center problem, SIAM Rev
12:138–139.

Mladenovic, N.; Hansen, P. 1997. Variable neighborhood
search, Comput. Operator. Res. 24 (11): 1097–1100.

Mladenovic, N.; Labbé, M.; Hansen, P. 2003. Solving
the p-center problem with tabu search and variable
neighborhood search, Networks 42 (1): 48–64.

Pullan, W. 2008. A memetic genetic algorithm for the
vertex p-center problem, Evol Comput 16:417–436.

DOI : 10.7708/ijtte.2021.11(2).09 16

