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Abstract: The p-center problem has been the subject of interest in the operational research for 
a long time. It has been well-known since the middle of the previous century. During the last 
decade, an extension of the problem, known as the p-next center problem, has been defined 
in order to handle unexpected incidents that can disable the centers. There are only a few 
papers and algorithms that address the aforementioned problem and therefore we introduce 
a new algorithm for solving the p-next center problem based on the Variable Neighborhood 
Search Method. The proposed algorithm was tested on a set of test instances already known in 
the literature, and the results show that it returns an optimal or at least near-optimal solution 
to the problem in a reasonable amount of time. Compared to existing algorithms, it has been 
shown that the proposed algorithm finds the best known or better solutions.

Keywords: variable neighborhood search, heuristic algorithms, p-next center problem, 
combinatorial optimization.

1. Introduction

The p-center problem was introduced in 
1965 (Hakimi, 1965) and has been the 
subject of many research projects ever since. 
The p-center is a discrete optimization 
problem that represents the identification 
of p functional centers and their assignment 
to appropriate users, all in order to minimize 
the maximum weight determined by the pairs 
(center, user). For example, the problem 
can be presented as a model of determining 
the locations of p ambulances (centers) that 
will serve n settlements (users) in order for 
the distance of the farthest village from the 
assigned ambulance to be minimal, or it 

can present the problem of minimizing the 
maximum distance of all the settlements 
to the nearest of p fire stations, refugee 
reception centers or cultural centers.

Although the p-center has been shown to be 
NP-hard (Kariv and Hakimi, 1979), over the 
time, many exact mathematical models and 
heuristic algorithms have been published 
that address this problem, such as:

• Exact methods:
• Covering method by Minieka (1970);
• Linear programming (LP) model by

Ilhan and Pınar (2001);
• Integer programming (IP) model by
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Elloumi et al. (2004);
• Mixed integer programming (MIP)

formulation and a set covering based 
algorithm by Daskin (2013);

• IP models and an exact algorithm
based on the decomposition of the
models by Calik and Tansel (2013).

• Heuristic algorithms:
• Two-approximation O(|E|log|E|)

algorithm for the unweighted discrete 
problem, with edges satisfying triangle 
inequality, by Hochbaum and Shmoys 
(1985);

• VNS and Tabu Search algorithms by 
Mladenovic et al. (2003);

• Genetic algorithm by Pullan (2008);
• Bee colony optimization for the

p-center problem by Davidovic et al. 
(2011).

Despite the fact that it can be said that the 
p-center problem has been successfully
solved ,  e s pec i a l ly  i n cond it ion s of
humanitar ian catastrophes or severe
weather disasters, it turned out that there
is practically a problem of limited capacity
or collapse of centers, which further leads to
their inability to serve all intended users. The 
question was what to do in a case of failure
of the assigned center. Other problems have 
been defined, partly in response to this
question, such as capacitated p-center, where 
centers have limited capacity, or conditional 
p-center, fault tolerant p-center problem,
etc. The conditional p-center problem
implies that q centers already exist and that
the set of centers can be expanded further
with additional p centers as needed so that
the maximum distance between users and
assigned centers is minimized, taking into
account all q + p centers. Fault tolerant
presents the generalization of a p-center
problem, where each user is assigned with
multiple centers.

Albareda-Sambola et al. (2015) presented 
a logistical solution to the problem of 
possible catastrophes, called the p-next 
center problem. The p-next center problem 
is a variant of the fault tolerant problem and 
it is derived from the p-center problem, 
where the possibility of disabling the 
center is solved by introducing exactly one 
replacement center. The centers assigned 
to the user were given names, references 
and backup center, and the p-next center 
problem was defined as the problem of 
minimizing the maximum distance, among 
all users, to the nearest (reference) center 
plus the distance to its nearest (backup) 
center. The reference center is the closest 
center to the user and in the case it is 
disabled, the customer service is then 
transferred to the assigned backup center. 
Unlike the p-center problem, the solution 
to the p-next center problem is to minimize 
the distance, not to the nearest, but to the 
backup center, where the reference center 
is visited first. In case there are several 
centers at a minimum distance from the 
user, the reference center is the one that 
has the nearest backup center.

In order to define the problem, the following 
notation is introduced: let G = (V, E) be 
an undirected weighted graph where the 
weights of the branches are determined by 
the distance between their ends, V is the set 
of all nodes, and E is the set of branches of the 
graph. Centers and other users represent the 
nodes of the graph, and d(i, j) is the shortest 
distance between nodes i and j, calculated as 
a result of an algorithm for determining the 
shortest paths in graph G. The solution to 
the p-next center problem is a set of centers

, of cardinality p, so that the maximum 
distance among all the users i ∈ V to the 
closest center j ∈ P, plus the distance to its 
closest center k ∈ P is minimized.
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 (1)

In the paper by Albareda-Sambola et al. 
(2015), along with the definition of the 
problem, there is also formal proof that the 
p-next center problem is NP-hard. In the
same paper, several exact mathematical
models are presented that solve smaller
instances of the problem. In addition to these 
solutions, there are heuristic algorithms for 
the p-next center problem presented in the
paper by Lopez-Sanchez et al. (2018). They 
introduced Greedy Randomized Adaptive
Search Procedure (GR ASP), Variable
Neighborhood Search (VNS) as well as a
hybrid version of these algorithms.

GRASP is based on a metaheuristic initially 
proposed by Feo and Resende (1989). It is 
presented as a multi-start framework that 
consists of a construction and a local search 
phase. In the construction phase, a solution 
is gradually generated in such a way, that 
in each iteration, a new element is added 
to the current solution. The combination 
of greediness and randomness approach is 
achieved by randomly selecting the element 
to join the solution, from a predefined list of 
candidates, and the candidate list is generated 
using a function that selects candidates based 
on the hyper-parameter α that controls 
the degree of greediness and randomness 
combination. If α = 1, the candidates are 
chosen completely randomly, and α = 0 
determines the completely greedy function 
that selects the candidates based on the most 
promising criteria. The second phase of the 
GRASP algorithm is a local search that tries 
to identify the local optimum. It implements 
a simple search algorithm that visits adjacent 
(N1) solutions in a random order and if it 
encounters a solution that improves the 
current one, it accepts the new one as the 

current solution. The local search is repeated 
as long as it is possible to find a solution that 
is better than the current one. The complete 
algorithm is executed until a predetermined 
number of solutions is generated. 

V N S  i m p l e m e n t s  t h e  b a s i c  V N S 
metaheuristic which is explained in detail 
in the next section. It consists of a shaking 
and a local search phase that is implemented 
in the same way as the local search of the 
GRASP algorithm.

T he hybr id version of the a lgor ithm 
combines GRASP and VNS so that the local 
search phase of the GR ASP algorithm is 
replaced by a complete VNS algorithm.

All the algorithms from the work of Lopez-
Sanchez et al. (2018) were tested over the 
same test set as the solutions from the work 
of Albaredo-Sambola et al. (2015) and it 
turned out that the hybrid version returns 
much better solutions compared to others, 
but also requires much more CPU time. 
GRASP and VNS algorithms gave results 
of approximately the same quality.

This paper introduces a new heuristic VNS 
algorithm that solves the p-next center 
problem, comparable to the most successful 
so far, i.e. hybrid algorithm from the work 
of Lopez-Sanchez et al. (2018). To this end, 
in the next section, through a more detailed 
description and pseudo-code, we wil l 
discuss the proposed algorithm, and in the 
third section, we will present the obtained 
results in a table form, in comparison with 
the mentioned hybrid algorithm. We will 
end the paper with a short summary and an 
announcement of our future work.
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2. Algorithm

The algorithm we propose as a new solution 
to the p-next center problem is bui lt 
upon the Variable Neighborhood Search 
Method (in the rest of the text VNS). VNS 
was first introduced by Mladenovic and 
Hansen (1997) as a generic framework for 
building search algorithms that guarantees a 
systematically structured visit to neighboring 
solutions. The Variable Neighborhood 
Method relies on search of near and far 
neighborhoods of the current solution. 
Neighborhood N1(P), of a solution P, defines 

a complete set of solutions that differ from 
the set P in one center. For example, let P = 
{1, 2, 3} be the current solution to the p-next 
center problem for p = 3 and V = {1, 2, 3, 4,…, 
n} users. Neighborhood N1(P) = {{1, 2, 4},
{1, 2, 5},…, {1, 2, n}, {1, 4, 3},…, {n, 2, 3 }}
is a set of sets obtained by replacing exactly 
one center from solution P with a new center 
outside that solution.

Similarly, Nk(P) neighborhood, where 1 ≤ k ≤ 
|P|, is a set of solutions obtained by replacing 
exactly k centers from solution P with new 
centers that are not included in solution P:

(2)

The basic VNS implementation contains 
two phases that are executed alternately: 
the local search phase and the change of 
the current neighborhood. The local search 
phase implements the current solution 
search algorithm in order to identify the 
local optimum. The phase of changing the 
neighborhood represents a jump from the 
current solution and the locally optimal 
value to one of the solutions from the 
k-neighborhood. The solution is chosen
on a random sample principle, in order to
eliminate the probability of an infinite loop, 
to which often leads reliance on deterministic 
rules. VNS as a generic framework suggests, 
starting with the solution P, and the first
jump into the N1(P) neighborhood (k =
1), and then to more distant (k = k + 1)
neighborhoods. If in the k neighborhood
a local search procedure identifies a better
solution than the current one P, the new
solution becomes current and k is again
set to 1. Otherwise, the new solution is
discarded and the search continues in the
k + 1 neighborhood. The search ends if the
current solution is not improved in the kmax
neighborhood.

It was mentioned that the p-next center 
problem is addressed by the GRASP, VNS 
and Hybrid algorithms from the work of 
Lopez-Sanchez et al. (2018). The paper states 
that GRASP insists on the diversification 
of the solution, and that the advantage of 
the VNS algorithm is in the intensification 
of a single predefined solution. GR ASP 
supports a multi-start approach by initially 
constructing a set of different solutions 
that it gradually improves later, while VNS 
is constantly working on intensifying one 
predefined solution. It turned out that the 
Hybrid algorithm, as a combination of the 
two, inherits the good features of both 
and as such finds the best solutions. This 
observation motivated us to try to improve 
the V NS implementation to achieve a 
sufficient degree of combination of solution 
diversification and intensification to be 
able to identify equally good, and better, 
solutions compared to the hybrid version 
of the algorithm.   

In our VNS implementation of the algorithm 
for the p-next center problem, we achieve 
the maximum diversification of the solution 
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by choosing the largest possible kmax value, 
i.e. kmax = p. On the other hand, the multi-
start approach stands out as a key feature
of GRASP that results in the superiority of
the algorithm in terms of diversification.
To nullify this advantage of the GR ASP
algorithm, we introduce a new hyper-
parameter tmax as the execution time limit.
We end the VNS algorithm when the allowed 
execution time expires, and in case the
maximum (kmax) value of the parameter k
is reached before the time limit is exceeded, 
a new execution is initiated.

It is noticeable that the phase of local 
search of GRASP and VNS algorithm will 
not always identify the local optimum. 
To further improve the efficiency of the 
algorithm, in contrast to the algorithm from 
the work of Lopez-Sanchez et al. (2018) we 
do not accept the first better solution we 
come across during the local search, but 
we try to identify the optimal solution in 
order to maximize the intensification of the 
solution. This would entail more CPU time 

because it would be necessary to process 
all p * (n - p) possible solutions from the N1 
neighborhood. Many of these solutions will 
not improve the objective function value, so 
efficient filtering of these solutions could 
significantly speed up the local search phase. 
The objective function value of the current 
solution P is determined by the maximum 
value of the distance from the user to the 
reference center plus the distance to the 
backup center, taking into account all the 
users. Let the user with the maximum 
distance be the so-called critical user uc, 
its reference center critical center cc, and 
the mentioned distance critical distance fc. 
During a local search, we try to exchange 
the two centers, that is, to replace the 
center cout of the current solution with a 
new cin center by improving the value of the 
target function. In other words, only those 
solutions that reduce the critical distance fc 
come into consideration. The idea is to first 
check the value of the critical user function 
and discard all centers that do not result in 
a reduction of the distance fc. 

Fig. 1.
Example of Current Solution P = {2, 5, 11} of the p-next Center Problem for n = 15 and p = 3
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Fig. 2.
Identification of cin and cout Centers to be exchanged during the Local Search phase

For example, let P = {2, 5, 11} be the current 
solution of the p-next center problem for n 
= 15 users and p = 3 centers, as shown in 
Fig. 1. The centers are represented by dark 
grey and the users by light grey nodes. The 
critical user is 8, the critical center is 5, and 
its backup center is 2, so the critical distance 
fc is d(8, 5) + d(5, 2). The goal is to determine 
the optimal pair of centers cin and cout, the 
exchange of which reduces the current 
value of the objective function. At first, all 
potential centers, whose inclusion in the 
current solution does not relax the distance 
of the critical user 8 to its (old or new) backup 

center by passing through the (old or new) 
reference center, are eliminated. In Fig. 2, 
users, i.e. potential new centers, which are 
rejected, are marked in white. Among the 
remaining users and current centers, a pair 
(cin, cout) is required whose exchange reduces 
the fc value to the minimum. This is the user 
cin = 4 and the center cout = 11. After their 
exchange, a new current solution P = {2, 4, 
5} was obtained, where the new critical user
is uc = 1, and the critical center is cc = 2 (Fig.
3). The new critical distance is fc = d(1, 2)
+ d(2, 5), where it is guaranteed to be less
than the previous d(8, 5) + d(5, 2).
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The previously described and illustrated 
characteristics of the new VNS implemen-
tation are the key to achieving the greatest 
possible degree of diversification and inten-
sification of the solution. The following is a 
description of the proposed algorithm and 
pseudo-code.

To calculate the objective function value 
( fvalue), auxiliary functions f(P, u) and f(P, u, 
cin, cout) are used, which respectively return 
the value of the user u distance to the nearest 
(reference) center plus the distance to its 
nearest (backup) center in the current 

solution P, and referred to the second 
function, the same just in the case that the 
cout center of the solution P is replaced by a 
new cin center (cin ∈ V \ P). Also, the function 
reference(P, u) finds the reference center of 
the user u in the solution P. In the case 
that several centers from P are at the same 
minimum distance from u, the one that has 
the closest center among other centers of the 
solution P is chosen as the reference center, 
that is, any of those who have the next center 
at the same minimum distance. In the worst 
case, these functions visit all current centers 
so that the worst time complexity is O(p). 

Fig. 3.
New Current Solutions P = {2, 4, 5} of the p-next Center Problem for n = 15 and p = 3 after the 
Exchange of cin = 4 and cout = 11 Centers
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Algoritam 1: VNS(G = (V, E), P, kmax, tmax)
1: k = 1; fvalue = ∞
2: Do 
         Generating a solution at random from kth neighborhood: 
3: P’ = Shake(P, k) 
         Determining the objective function value for the solution P’:
4:  f ’ = 0
5:  For-Each u ∈ V
6:       If f(P’, u) > f ’
7:            f ’ = f(P’, u); cu’ = u   
8:       End If
9:  End For-Each
            Local search:
10:  Main loop: While(True)
11:       f ’’ = ∞
12:       For-Each cin ∈ V \ P’

NULL indicates that no one center is closed
13:             If f ’ > f(P’, cu’, cin, NULL) or f ’ > f(P’, cu’, cin, reference(P’, cu’))
14:                 For-Each cout ∈ P’
15: fcur = 0
16: For-Each u ∈ V
17: If fcur < f(P’, u, cin, cout)
18: fcur = f(P’, u, cin, cout); ucur = u 
19: End If
20: End For-Each
21: If f ’’ > fcur
22: f ’’ = fcur; in = cin; out = cout; cu’’ = ucur 
23: End If
24:                 End For-Each
25:             End If
26:         End For-Each
27:         If f ’’ < f ’
28:             f ’ = f ’’; cu’ = cu’’; P’ = P’ ∪ {in} \ {out} 
29:         Else
30:             Break Main loop 
31:         End If
32:     End Main loop  
             Jump into a new neighborhood:
33:     If fvalue ≥ f ’
34:         fvalue = f ’; P = P’
35:         k = 1
36:     Else
37:         k = k % kmax + 1
38:     End If
39: While CPU_Time() ≤ tmax
40: Return fvalue, P
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Starting from k = 1 and the predefined 
solution P, the search continues in a randomly 
selected new solution P’ from the Nk(P) 
neighborhood (line 3). After initialization 
of the objective function value f ’ of the 
solution P’ and identification of the critical 
user cu’ (lines 4 - 9), i.e. users whose distance 
to the backup via the reference center is the 
largest, the local search phase begins (lines 
10 - 32). Only cin centers that potentially 
reduce the distance related to the critical 
user cu’ are considered (line 13). A pair of 
(cin, cout) centers is required, where cout ∈ P’ 
and cin ∈ V \ P’, whose exchange yields a new 
N1(P’) solution with the smallest value of the 
objective function. The search continues as 
long as it is possible to find at least one such 
pair of centers.

If a better or the same solution is found 
during the local search, the new solution 
becomes current and the search is reset to k = 
1 (lines 33 - 35); otherwise the new solution 
is discarded and the search continues by 
jumping into k + 1 neighborhood (line 37). 
If the maximum value (kmax) is exceeded, k 
is also reset to the initial value. The search 
ends when the time limit tmax is exceeded.

Since the time complexity of auxiliary 
functions in the worst case is O(p), it is 

simple to determine the time complexity 
of the local search iteration (main loop) as 
O(n * (p + p * n * p)) = O(p2 n2 ) in the 
worst case.

3. Results

The algorithm is implemented in the C++ 
programming language, and all tests were 
performed on an Intel Core i7-8700K 
(3.7GHz) CPU with 32GB R A M. Test 
examples are taken from the work of Lopez-
Sanchez et al. (2018), and the obtained results 
were compared with the hybrid algorithm as 
the best version of the algorithms proposed 
in the same paper.

Test instances were generated based on 
the OR-Library (Beasley, 1990) data set 
by considering the first n nodes from the 
pmed1-pmed4 and pmed6-pmed8 examples 
with different p values. All test instances are 
divided into two groups: smaller up to 50 
and larger up to 200 nodes. 

The proposed algorithm was executed 20 
times on each test instance with values 
kmax = p and tmax = 2n seconds where n is the 
total number of nodes (users) in a given test 
example. The results are presented in Tables 
1-3.
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Table 1
The Results of the Algorithm applied to Smaller Instances Compared to the Results of the Hybrid Algorithm 

P N Optimal Hybrid
Value

Time
(sec)

Worst 
Value

AVG 
Value

Best 
Value #Best

Gap
Worst

vs.
Hybrid

(%)

Gap
AVG

vs.
Hybrid

(%)

Gap
Best
vs.

Hybrid
(%)

pmed1 5 10 84 84 0.002 84 84 84 20 0 0 0
pmed1 5 20 120 120 0.034 120 120 120 20 0 0 0
pmed1 10 20 95 95 0.029 95 95 95 20 0 0 0
pmed1 5 30 126 126 0.032 148 131.50 126 15 17.46 4.37 0
pmed1 10 30 95 95 0.316 100 95.25 95 19 5.26 0.26 0
pmed1 5 40 144 144 3.700 154 146.25 144 12 6.94 1.56 0
pmed1 10 40 111 111 13.334 111 111 111 20 0 0 0
pmed1 20 40 89 89 0.229 89 89 89 20 0 0 0
pmed1 10 50 110 111 6.656 115 112.30 110 2 3.60 1.17 -0.90
pmed1 20 50 89 89 26.83 91 89.10 89 19 2.25 0.11 0
pmed2 5 10 121 128 0.003 128 124.15 121 11 0 -3.01 -5.47
pmed2 5 20 147 147 0.014 166 153.65 147 13 12.93 4.52 0
pmed2 10 20 99 99 0.150 99 99 99 20 0 0 0
pmed2 5 30 169 169 0.223 179 169.65 169 18 5.92 0.38 0
pmed2 10 30 110 110 0.849 110 110 110 20 0 0 0
pmed2 5 40 164 164 0.276 164 164 164 20 0 0 0
pmed2 10 40 112 112 5.625 138 124.70 112 6 23.21 11.34 0
pmed2 20 40 96 96 3.589 96 96 96 20 0 0 0
pmed2 10 50 140 140 2.175 145 140.40 140 18 3.57 0.29 0
pmed2 20 50 99 99 8.719 102 99.15 99 19 3.03 0.15 0
pmed3 5 10 77 77 0.002 77 77 77 20 0 0 0
pmed3 5 20 145 145 0.033 167 149.60 145 14 15.17 3.17 0
pmed3 10 20 77 77 0.047 129 87.40 77 16 67.53 13.51 0
pmed3 5 30 157 157 0.094 167 159 157 16 6.37 1.27 0
pmed3 10 30 122 122 0.096 133 122.55 122 19 9.02 0.45 0
pmed3 5 40 157 157 0.190 167 164.05 157 5 6.37 4.49 0
pmed3 10 40 105 105 2.635 125 111.55 105 13 19.05 6.24 0
pmed3 20 40 77 77 2.572 77 77 77 20 0 0 0
pmed3 10 50 125 125 9.641 127 126.30 125 7 1.60 1.04 0
pmed3 20 50 87 87 11.380 87 87 87 20 0 0 0
pmed4 5 10 126 126 0.003 126 126 126 20 0 0 0
pmed4 5 20 139 139 0.023 179 145 139 17 28.78 4.32 0
pmed4 10 20 125 125 0.188 125 125 125 20 0 0 0
pmed4 5 30 173 173 0.086 180 174.40 173 16 4.05 0.81 0
pmed4 10 30 122 122 0.439 122 122 122 20 0 0 0
pmed4 5 40 175 175 0.369 175 175 175 20 0 0 0
pmed4 10 40 122 122 5.590 145 124.05 122 7 18.85 1.68 0
pmed4 20 40 85 85 2.049 85 85 85 20 0 0 0
pmed4 10 50 126 126 14.698 140 130.20 126 14 11.11 3.33 0
pmed4 20 50 91 91 12.589 92 91.70 91 6 1.10 0.77 0
AVG 3.388 16.05 6.83 1.56 -0.16
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Table 1 columns represent respectively: 
the name of the test instance, the number 
of centers p, the number of users n, the 
optimal value of the solution, the solution 
obtained by the hybrid algorithm (Lopez-
Sanchez et al., 2018), average time to find 
the best solution, the worst solution among 
20 algorithm executions, the average and 
the best solution, how many times the best 
solution was found, gap of the worst, the 
average and the best solution in relation to the 
hybrid algorithm solution. The gaps between 
the obtained solutions and the solutions 
of the hybrid algorithm were calculated as 

. The table contains the test 
results on smaller test instances, and it was 
shown that from 20 executions the algorithm 
managed to find the optimal solution. The 
optimal solutions were obtained by exact 
mathematical models from the work of 
Albared-Sambol et al. (2015). The average 
CPU time required to find the best solution 
is 3,388s, and an average of 16.05 out of 20 

executions identifies the optimal solution. 
On the other hand, in comparison with the 
results obtained by the hybrid algorithm, 
the deviation of the values of the worst and 
average solutions is noticeable. For example, 
an instance of pmed3 for p = 10 and n = 20 
results in a gap of 67.53% and 13.51% in 
the worst and average case, respectively, 
relative to the result of the hybrid algorithm. 
Nevertheless, execution over that instance 
returned the optimal solution in 16 out of 
the 20 executions, so it can be concluded 
that the algorithm applied to smaller test 
instances gives acceptable results. The best 
results in a couple of examples: pmed1 for 
p = 10 and n = 50, as well as pmed2 for p = 
5 and n = 10 improve the solutions of the 
hybrid algorithm, i.e. return a negative gap 
of -0.90% and -5.47%. In fact, in the second 
example, the algorithm as its worst solution 
identifies the hybrid algorithm solution, so 
that the average solution with gap of – 3.01% 
is better.

Table 2
The Results of the Algorithm Applied to Larger Instances compared to the Results of the Hybrid Algorithm 

P N Hybrid
Value

Time
(sec)

Worst
Value

AVG
Value

Best
Value

#Best

Gap
Worst

vs.
Hybrid

(%)

Gap
AVG

vs.
Hybrid

(%)

Gap
Best

vs. Hybrid
(%)

pmed6 20 150 79 222.75 91 84.60 80 4 15.19 7.09 1.27
pmed6 30 150 71 250.42 85 78.65 74 1 19.72 10.77 4.23
pmed6 50 150 62 240.37 72 63.60 60 2 16.13 2.58 -3.23
pmed6 80 150 56 68.05 57 56.05 56 19 1.79 0.09 0
pmed6 20 200 79 224.10 94 87.20 81 3 18.99 10.38 2.53
pmed6 30 200 72 254.00 89 81.35 77 1 23.61 12.99 6.94
pmed6 50 200 68 139.42 82 76.30 70 1 20.59 12.21 2.94
pmed6 80 200 54 224.10 77 64.50 54 2 42.59 19.44 0
pmed7 20 150 69 226.25 79 71.70 68 1 14.49 3.91 -1.45
pmed7 30 150 62 254.15 70 66.65 63 2 12.90 7.50 1.61
pmed7 50 150 59 209.71 66 59.85 59 15 11.86 1.44 0
pmed7 80 150 59 17.47 59 59.00 59 20 0 0 0
pmed7 20 200 73 195.70 88 82.65 75 1 20.55 13.22 2.74
pmed7 30 200 68 222.79 86 76.05 67 1 26.47 11.84 -1.47
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P N Hybrid
Value

Time
(sec)

Worst
Value

AVG
Value

Best
Value

#Best

Gap
Worst

vs.
Hybrid

(%)

Gap
AVG

vs.
Hybrid

(%)

Gap
Best

vs. Hybrid
(%)

pmed7 50 200 63 211.34 70 68.05 63 1 11.11 8.02 0
pmed7 80 200 52 210.42 67 58.40 52 1 28.85 12.31 0
pmed8 20 150 74 244.01 83 78.75 74 2 12.16 6.42 0
pmed8 30 150 61 218.50 83 69.05 63 1 36.07 13.20 3.28
pmed8 50 150 58 263.65 61 58.35 58 16 5.17 0.60 0
pmed8 80 150 58 28.23 58 58.00 58 20 0 0 0
pmed8 20 200 84 222.01 94 91.10 88 5 11.90 8.45 4.76
pmed8 30 200 77 226.27 94 87.25 84 6 22.08 13.31 9.09
pmed8 50 200 68 247.91 88 77.40 68 2 29.41 13.82 0
pmed8 80 200 68 154.88 72 68.20 68 19 5.88 0.29 0
AVG 199.02 6.08 16.98 7.91 1.39

Table 2 presents the results of the algorithm 
applied to a group of larger test instances. 
Apart f rom that it does not contain a 
column with optimal solutions; the other 
columns are identical to the columns of 
Table 1. We did not have optimal solutions 
for larger instances, so we present only 
the results of comparison with the results 
of the hybrid algorithm. The results of 
the proposed algorithm are not as good 
as for smaller instances. It is noticeable 
that the best solution is obtained only for 
6.08 out of 20 executions on average and 
that in most cases the worst and average 
solution gives a significant gap in relation 
to the solution of the hybrid algorithm. 

Differences in gaps between the worst, 
average, and best solutions, such as in 
the case of the pmed6 instance for p = 80 
and n = 200 of 42.59%, 19.44%, and 0%, 
respectively, suggest that more effort is 
needed to stabilize the algorithm. In only 
3 out of 24 cases, the algorithm returned 
the better values (negative gap in the last 
column) than the hybrid algorithm, while 
the hybrid algorithm found a better solution 
for 10 out of 24 test instances. Although 
the average gap value is 1.39%, it is obvious 
that the hybrid algorithm has an advantage 
when treating larger instances. The average 
time to find the best solution is also large, 
199.02s.
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Table 3
Comparison with the Results of the Hybrid Algorithm in Case of increased Time Limit tmax

P N Hybrid
Value

Time
(sec)

Worst
Value

AVG
Value

Best
Value

#Best
Gap

Worst
vs.

Hybrid
(%)

Gap
AVG

vs.
Hybrid

(%)

Gap
Best

vs. Hybrid
(%)

pmed6 20 150 79 496.24 92 83.15 77 1 16.46 5.25 -2.53
pmed6 30 150 71 610.05 81 75.75 67 1 14.08 6.69 -5.63
pmed6 50 150 62 688.80 63 59.10 56 3 1.61 -4.68 -9.68
pmed6 80 150 56 59.43 56 56.00 56 20 0 0 0
pmed6 20 200 79 513.29 91 83.90 80 4 15.19 6.20 1.27
pmed6 30 200 72 428.45 81 79.25 72 1 12.50 10.07 0
pmed6 50 200 68 621.61 81 71.50 62 1 19.12 5.15 -8.82
pmed6 80 200 54 721.79 72 53.80 49 3 33.33 -0.37 -9.26
pmed7 20 150 69 658.24 78 69.85 68 6 13.04 1.23 -1.45
pmed7 30 150 62 602.54 69 65.55 61 1 11.29 5.73 -1.61
pmed7 50 150 59 212.89 63 59.20 59 19 6.78 0.34 0
pmed7 80 150 59 25.78 59 59.00 59 20 0 0 0
pmed7 20 200 73 507.34 84 79.85 70 1 15.07 9.38 -4.11
pmed7 30 200 68 659.96 84 71.95 67 1 23.53 5.81 -1.47
pmed7 50 200 63 594.09 71 65.85 58 1 12.70 4.52 -7.94
pmed7 80 200 52 584.48 63 55.55 48 1 21.15 6.83 -7.69
pmed8 20 150 74 527.45 84 78.35 74 3 13.51 5.88 0
pmed8 30 150 61 521.21 70 65.45 61 1 14.75 7.30 0
pmed8 50 150 58 301.59 61 58.20 58 18 5.17 0.34 0
pmed8 80 150 58 22.25 58 58.00 58 20 0 0 0
pmed8 20 200 84 556.46 93 89.00 84 2 10.71 5.95 0
pmed8 30 200 77 343.06 88 84.90 77 1 14.29 10.26 0
pmed8 50 200 68 754.32 84 72.10 68 4 23.53 6.03 0
pmed8 80 200 68 216.30 68 68.00 68 20 0 0 0
AVG 467.82 6.38 12.41 4.08 -2.46

Given the initially poor results for larger 
examples, we decided to increase the time 
limit and then again executed the algorithm 
20 times for each test instance. By increasing 
the execution time limit tmax to 5n seconds, 
significantly better results were obtained, 
presented in Table 3. It is noticeable that the 
average time to find the best solution has 
increased to 467.82s, which is not acceptable. 
For example, the average execution time of 
a hybrid algorithm, scaled to the processor 
we used, is 141.65s. Thus, execution time 
optimization is required for the algorithm to 
be used on larger instances of the problem. On 

the other hand, the proposed algorithm, with a 
compromise of longer execution time, returns 
significantly better results than the hybrid 
algorithm. In as many as 11 out of 24 cases, 
the algorithm found better solutions than 
the hybrid algorithm (negative gap in the last 
column), while the hybrid algorithm returned 
a better result for only one test instance.

Encouraged by the previous results, we decided 
to run the algorithm 20 times and over the 
complete OR-Library test set for kmax = p and 
tmax = 5n seconds. The results of the executions 
are presented in the following table.
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Table 4
The Results of the Algorithm applied to Complete OR-Library Test Set

P N Time
(sec)

Worst
Value

AVG
Value

Best
Value

#Best Gap
Worst vs. Best

(%)

Gap
AVG vs. Best

(%)
pmed1 5 100 0.50 172 166.30 166 19 3.61 0.18
pmed2 10 100 100.46 147 136.05 135 16 8.89 0.78
pmed3 10 100 87.24 164 153.80 151 15 8.61 1.85
pmed4 20 100 177.84 125 119.35 118 5 5.93 1.14
pmed5 33 100 38.63 85 85.00 85 20 0 0
pmed6 5 200 146.09 111 107.90 107 14 3.74 0.84
pmed7 10 200 390.52 91 86.00 84 2 8.33 2.38
pmed8 20 200 332.01 92 86.85 84 6 9.52 3.39
pmed9 40 200 261.44 75 74.60 71 2 5.63 5.07
pmed10 67 200 9.74 70 70.00 70 20 0 0
pmed11 5 300 168.67 72 70.10 70 19 2.86 0.14
pmed12 10 300 544.26 79 72.75 72 16 9.72 1.04
pmed13 30 300 658.49 65 60.95 52 1 25.00 17.21
pmed14 60 300 515.14 61 60.60 60 8 1.67 1.00
pmed15 100 300 811.39 48 44.95 44 13 9.09 2.16
pmed16 5 400 106.52 57 55.10 55 19 3.64 0.18
pmed17 10 400 791.43 53 49.70 47 4 12.77 5.74
pmed18 40 400 1101.69 55 52.40 50 6 10.00 4.80
pmed19 80 400 1113.12 46 43.50 40 1 15.00 8.75
pmed20 133 400 1079.11 48 43.30 40 4 20.00 8.25
pmed21 5 500 377.36 50 48.80 48 5 4.17 1.67
pmed22 10 500 849.43 58 55.05 52 6 11.54 5.87
pmed23 50 500 1371.95 47 44.40 42 2 11.90 5.71
pmed24 100 500 1196.55 45 38.40 35 1 28.57 9.71
pmed25 167 500 242.45 44 44.00 44 20 0 0
pmed26 5 600 905.53 49 47.95 47 7 4.26 2.02
pmed27 10 600 946.39 43 41.20 40 9 7.50 3.00
pmed28 60 600 20.40 57 57.00 57 20 0 0
pmed29 120 600 1461.31 42 37.25 36 9 16.67 3.47
pmed30 200 600 108.86 40 40.00 40 20 0 0
pmed31 5 700 1057.44 40 36.95 35 7 14.29 5.57
pmed32 10 700 15.29 72 72.00 72 20 0 0
pmed33 70 700 1611.42 37 34.85 33 2 12.12 5.61
pmed34 140 700 72.14 41 41.00 41 20 0 0
pmed35 5 800 927.56 38 36.85 36 4 5.56 2.36
pmed36 10 800 223.52 42 42.00 42 20 0 0
pmed37 80 800 1634.93 38 34.90 33 6 15.15 5.76
pmed38 5 900 1102.41 41 40.20 40 16 2.50 0.50
pmed39 10 900 32.70 74 74.00 74 20 0 0
pmed40 90 900 1394.52 35 32.10 29 1 20.69 10.69
AVG 599.66 10.62 7.97 3.17
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There have been no results in the literature 
for the p-next center problem over a complete 
OR-Library test set, so Table 4 gives only 
the results for our algorithm. The worst 
and average solutions were compared to 
the best solution for each test instance. The 
solution gap in relation to the best solution 
was calculated as . Same as in the 
case of application over larger instances from 
the work of Lopez-Sanchez et al. (2018), it 
is noticeable that there is a deviation of the 
worst and average values (7.97% and 3.17% 
respectively) in relation to the best solutions, 
which indicates that it is necessary to further 
stabilize the algorithm. The best solution is 
obtained for 10.62 out of 20 executions on 
average. The average time to find the best 
solution is also large, 599.66s.

4. Conclusion

The paper discusses the p-next center 
problem, which is a generalization of the 
well-known and highly studied p-center 
problem. The Variable Neighborhood Search 
algorithm was designed and implemented 
as a metaheuristic approach to solving the 
p-next center problem. The solution to the
problem is the identification of p centers in
order to minimize the maximum distance
among n users to the nearest center plus the
distance to its nearest center. It provides as 
close as possible, not just reference, but also 
a backup center, capable of serving the user 
after disabling the reference center.

The proposed VNS algorithm was tested 
on instances from the l iterature up to 
200 nodes and the obtained experimental 
results were compared with the results of 
the hybrid GR ASP-VNS algorithm from 
the work of Lopez-Sanchez et al. (2018). The 
algorithm successfully reproduced optimal 
solutions over the test instances of smaller 

dimensions, while significantly larger CPU 
time is required to solve larger instances 
of the problem. The proposed algorithm 
in all but one case identified the same or 
better solutions compared to the hybrid 
algorithm, which qualifies it as the most 
accurate algorithm for solving the p-next 
center problem. 

The examples on which we compared the 
results are in the domain of small problems, 
so the plan is to check the results of the 
algorithm applied to larger problems for 
which it is certain that solutions cannot be 
obtained by exact methods. Taking into 
account the obtained results, in order to do 
so, it is necessary to optimize the execution 
time. The algorithm is designed in such a 
way, that it is easy to extend it to take into 
account more centers in case the backup 
center is disabled. The problem is certainly 
realistic and it would be interesting to try 
to minimize the maximum distance to the 
second, third or all other backup centers.
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