
HAL Id: hal-03534139
https://uphf.hal.science/hal-03534139v1

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Pop-In Identification in Nanoindentation Curves with
Deep Learning Algorithms

Stephania Kossman, Maxence Bigerelle

To cite this version:
Stephania Kossman, Maxence Bigerelle. Pop-In Identification in Nanoindentation Curves with Deep
Learning Algorithms. Materials, 2021, 14 (22), pp.7027. �10.3390/ma14227027�. �hal-03534139�

https://uphf.hal.science/hal-03534139v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

materials

Article

Pop-In Identification in Nanoindentation Curves with Deep
Learning Algorithms

Stephania Kossman * and Maxence Bigerelle

����������
�������

Citation: Kossman, S.; Bigerelle, M.

Pop-In Identification in

Nanoindentation Curves with Deep

Learning Algorithms. Materials 2021,

14, 7027. https://doi.org/10.3390/

ma14227027

Academic Editor: Giovanni Maizza

Received: 4 October 2021

Accepted: 17 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines, LAMIH,
Université Polytechnique Hauts-de-France, UMR CNRS 8201, 59300 Valenciennes, France;
maxence.bigerelle@uphf.fr
* Correspondence: stephaniakossman@gmail.com

Abstract: High–speed nanoindentation rapidly generates large datasets, opening the door for ad-
vanced data analysis methods such as the resources available in artificial intelligence. The present
study addresses the problem of differentiating load–displacement curves presenting pop-in, slope
changes, or instabilities from curves exhibiting a typical loading path in large nanoindentation
datasets. Classification of the curves was achieved with a deep learning model, specifically, a convo-
lutional neural network (CNN) model implemented in Python using TensorFlow and Keras libraries.
Load–displacement curves (with pop-in and without pop-in) from various materials were input to
train and validate the model. The curves were converted into square matrices (50× 50) and then used
as inputs for the CNN model. The model successfully differentiated between pop-in and non-pop-in
curves with approximately 93% accuracy in the training and validation datasets, indicating that the
risk of overfitting the model was negligible. These results confirmed that artificial intelligence and
computer vision models represent a powerful tool for analyzing nanoindentation data.

Keywords: nanoindentation; pop-in; artificial intelligence; deep learning; computer vision

1. Introduction

For decades, instrumented indentation testing, particularly nanoindentation, has been
a powerful and practically compulsory technique for the mechanical characterization of ma-
terials at nano- and micro-metric scales. Novel approaches to this technique have emerged,
such as high–speed indentation. This new method has become very popular in recent
years as an advanced tool for the mechanical characterization of complex microstructures
and multi-phase materials. The main advantage of this technique is that it can perform
hundreds of imprints in a few minutes (or even a few seconds), thus creating mappings of
the mechanical properties [1]. It also decreases thermal drift effects [1]. The large datasets
obtained using this method can utilize advanced statistical methods and artificial intelli-
gence algorithms [2–4]. High–speed indentation is suitable for all materials [5,6], although
specifically, for multi-phase materials [7].

When we analyze large nanoindentation datasets (hundreds to thousands of curves),
we will not probably focus on detailed analysis of each load–displacement (P–h) curve.
Therefore, the mechanical properties could be miscalculated, particularly if the curves
exhibit pop-in events (i.e., abrupt displacement bursts at a constant load in force–control
tests, or force drops in displacement–control tests). Pop-in incidents are related to numer-
ous causes, such as cracking, coating delamination or chipping [8–10], incipient plasticity,
dislocation nucleation, dislocation density [11,12], dislocation avalanches [13], grain bound-
aries [12,14], shear bands [15], surface roughness [12,16], and phase transformation [17].

Pop-in events (in load–control tests) increase the maximum displacement and the
unloading curve’s shape, possibly affecting accurate estimations of the hardness and elastic
modulus. Nevertheless, in-depth studies of pop-in events provide information about the

Materials 2021, 14, 7027. https://doi.org/10.3390/ma14227027 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-6188-9526
https://doi.org/10.3390/ma14227027
https://doi.org/10.3390/ma14227027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14227027
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14227027?type=check_update&version=2

Materials 2021, 14, 7027 2 of 11

mechanical behavior of materials; for example, in brittle materials and coatings, fracture
toughness can be assessed [8,9].

On the one hand, many authors have addressed the problem of pop-in identification,
using different existing methodologies to detect and quantify pop-in events. For example,
Malzbender and de With [18] used the plots of P/h2 vs. h2 to detect slope changes and the
derivative dP/dh2 vs. h2 to identify local minimums. Juliano et al. [19] also implemented a
method based on the derivative dP/dh at a given hx. Sato et al. [20] set a threshold value
above which the displacement burst is considered a pop-in for a given acceptable load
change (ideally, about zero). Similarly, Bolin et al. [21] studied pop-in event probability by
setting a threshold on the displacement differences equal to the machine noise threshold.
Data smoothing can be necessary before differentiation, as addressed by the authors
in [18,22]. Recently, Mercier [23] developed a toolbox for pop-in detection based on some
of the above methodologies and a function for peak detection. These methods are mainly
used in load–control tests.

On the other hand, pop-in identification is not necessarily a straightforward process.
A simple illustration is a discrimination between electrical and mechanical noise from a
pop-in event [20], which is also affected by the sensors resolution and data acquisition
rate, e.g., sliding pop-in [8]. The latest nanoindentation instruments have high–resolution
sensors, enabling rapid data acquisition rates and time constants. In this kind of instrument,
typical pop-in displacement bursts might be overlooked [24]. Therefore, the described
methodologies for pop-in detection may be impractical. Phani and Oliver [24] recently
demonstrated that the response of pop-in events occurs at the microsecond (µs) scale,
measurable with state-of-the-art instruments. In contrast, most reported data on pop-
in behavior have been obtained on instruments with a time constant in the order of
milliseconds, losing important information about pop-in events. A strong dependence
between the pop-in length and the actuator mass has also been found.

Hardness and elastic modulus calculations by nanoindentation require load–displacement
curves free of pop-in events. This work introduces the use of a deep learning model (convo-
lutional neural network (CNN)) to classify load–displacement curves. The classification is
based on the presence of pop-in, sub-pop-in, instability step, and slope change events from
those that present a typical loading path in load-control tests. This study aims to provide
the first methodology for P–h curve classification in large nanoindentation datasets. The
possibility of identifying anomalies in the curves could provide additional information
about the mechanical behavior of materials.

The implementation of artificial intelligence (machine learning, neural networks, deep
learning, etc.) to analyze nanoindentation data has emerged in the past few years. This
area has studied different subjects, such as the characterization of heterogeneous materi-
als to differentiate between constituent phases [25–27]; the identification of stress–strain
curves [28,29]; and the study of acoustic emission events induced by nanoindentation [30].
However, for decades, the combination of nanoindentation and artificial intelligence has
been used to identify viscoelastic parameters [31] and Poisson’s ratio [32,33] using neu-
ral networks. Numerous interesting approaches have resulted from the combination of
both fields, given more powerful resources for understanding the mechanical behavior
of materials.

2. Methods
2.1. Nanoindentation Testing

The nanoindentation datasets used to perform this investigation were obtained using
a TriboIndenter TI-980 (Hysitron®, Bruker, Minneapolis, MN, USA) [34]. All the tests were
carried out with a Berkovich diamond tip at controlled room temperature (~20 ◦C). The
tests were performed in accelerated indentation mode (XPM) under load control.

Materials 2021, 14, 7027 3 of 11

The dataset included different materials, such as ceramic coatings, aluminum alloys,
fused quartz, and silicon. The maximum applied load and displacement were below 3 mN
and 1 µm, respectively; the loading rates ranged between 500 and 1250 µN/s. The dataset
was composed of 744 load–displacement (P–h) curves. The curves were individually plotted
and visually classified between curves presenting pop-ins and slope changes (342 curves)
from those presenting a regular loading path (402 curves). The mechanical properties of the
studied materials varied between 1 and 10 GPa for hardness and between 65 and 170 GPa
for elastic modulus.

2.2. Data Preparation

The load–displacement curves data files had 500 or 1200 data rows for each column
(displacement (h) in nm and load (P) in µN). Each load–displacement curve dataset (loading-
hold-unloading) was converted (reshaped) into a matrix of dimensions equal to 50 × 50
(rows × columns), schematically represented in Figure 1. The dimensions were selected
as a function of the maximum number of data points (2400) in the load–displacement
curves (1200 rows × 2 columns). The rest of the matrix was filled through a zero-padding
technique to build matrices of the same size.

Materials 2021, 14, 7027 3 of 12

The dataset included different materials, such as ceramic coatings, aluminum alloys,
fused quartz, and silicon. The maximum applied load and displacement were below 3 mN
and 1 µm, respectively; the loading rates ranged between 500 and 1250 µN/s. The dataset
was composed of 744 load–displacement (P–h) curves. The curves were individually plot-
ted and visually classified between curves presenting pop-ins and slope changes (342
curves) from those presenting a regular loading path (402 curves). The mechanical prop-
erties of the studied materials varied between 1 and 10 GPa for hardness and between 65
and 170 GPa for elastic modulus.

2.2. Data Preparation
The load–displacement curves data files had 500 or 1200 data rows for each column

(displacement (h) in nm and load (P) in µN). Each load–displacement curve dataset (load-
ing-hold-unloading) was converted (reshaped) into a matrix of dimensions equal to 50 ×
50 (rows × columns), schematically represented in Figure 1. The dimensions were selected
as a function of the maximum number of data points (2400) in the load–displacement
curves (1200 rows × 2 columns). The rest of the matrix was filled through a zero-padding
technique to build matrices of the same size.

Figure 1. Example of a matrix constructed from the load–displacement curve dataset, here assum-
ing a dataset with 50 rows and 2 columns (h, P) arranged in a matrix of float 10 × 10.

All the matrices were organized in a dataset X (independent variable). Then, the da-
taset was scaling, its minimum value was subtracted, and then it was divided by the dif-
ference between the maximum and minimum values of dataset X (this operation is known
as MinMaxScaler in the scikit-learn library). The objective of scaling the data was to reduce
the asymmetry of the multiple dimensions of data (h, P), helping with the training process
of the CNN model, explained in the next section.

We set a Boolean variable Y (1 or 0) for each matrix, where 1 and 0 represented the
existence or absence of pop-in (or slope change) events in the load–displacement curves,
respectively; a total of 342 matrices were assigned a value of 1 (pop-in), and 402 were
assigned a value of 0 (no pop-in).

Cross-Validation of the Data
The dataset was split into a 70/30 ratio, of which 70% (520 matrices) was used to train

the model, as described in the next section, and 30% (224 matrices) was used to perform
the validation test. The split of the data consisted of a random picking of the numbers
without replacement.

2.3. Convolutional Neural Networks (CNN) Model
CNNs are deep neural networks specialized in image recognition, and imitate how

the visual cortex of the brain processes and recognizes images [35]. The load–displacement
data were transformed into matrices to apply this type of algorithm to classify the load–

Figure 1. Example of a matrix constructed from the load–displacement curve dataset, here assuming
a dataset with 50 rows and 2 columns (h, P) arranged in a matrix of float 10 × 10.

All the matrices were organized in a dataset X (independent variable). Then, the
dataset was scaling, its minimum value was subtracted, and then it was divided by the
difference between the maximum and minimum values of dataset X (this operation is
known as MinMaxScaler in the scikit-learn library). The objective of scaling the data was to
reduce the asymmetry of the multiple dimensions of data (h, P), helping with the training
process of the CNN model, explained in the next section.

We set a Boolean variable Y (1 or 0) for each matrix, where 1 and 0 represented the
existence or absence of pop-in (or slope change) events in the load–displacement curves,
respectively; a total of 342 matrices were assigned a value of 1 (pop-in), and 402 were
assigned a value of 0 (no pop-in).

Cross-Validation of the Data

The dataset was split into a 70/30 ratio, of which 70% (520 matrices) was used to train
the model, as described in the next section, and 30% (224 matrices) was used to perform
the validation test. The split of the data consisted of a random picking of the numbers
without replacement.

Materials 2021, 14, 7027 4 of 11

2.3. Convolutional Neural Networks (CNN) Model

CNNs are deep neural networks specialized in image recognition, and imitate how
the visual cortex of the brain processes and recognizes images [35]. The load–displacement
data were transformed into matrices to apply this type of algorithm to classify the load–
displacement curves. An overall workflow of how CNNs work is schematized in Figure 2.

Materials 2021, 14, 7027 4 of 12

displacement curves. An overall workflow of how CNNs work is schematized in Figure
2.

Figure 2. The overall workflow of a CNN.

As illustrated in Figure 2, the general training procedure of a CNN model is decom-
posed into the iterative and successive application of two main steps, forward and back-
ward propagation, summarized in the following phases:
1. In the forward propagation: a function, F, is dependent on the input variable X (e.g.,

images), a given number of linear operators W (filters or image kernels), and multiple
bias terms (b) are applied to estimate a prediction output 𝑌 .

2. In backpropagation:
a. The loss function, L, is used to calculate the difference between the generated

output 𝑌 and the expected output 𝑌 (given by the data);
b. Then, the gradient, 𝐺, (partial derivatives of L with respect to W and b) of the

loss function is calculated to update the values of the filters and bias terms
(𝑊ᇱ,𝑏ᇱ).

3. The updated values of the filters and bias terms are introduced in step i, repeating
the forward and backward propagation of a defined number of iterations (epochs)
until approaching the minimum of the loss function.
In summary, the main objective of the training process is to find out the best values

for W and b [35].
In this study, a CNN model was built using the open-source libraries TensorFlow 2.0

and Keras. The CNN was composed of three convolutional layers. We applied the recti-
fied linear activation function (ReLu), followed by a pooling layer for each layer. Then, a
full connection step was set, composed of three dense, fully connected layers and two
dropout layers in between to avoid overfitting. The functions applied to these layers were
ReLu and Sigmoid.

The selected loss function corresponded to the calculation of the binary cross-entropy
[36], which is suitable for the binary classification problem (pop-in or not pop-in). For the
descendent gradient optimization of the CNN, the optimizer “Adam” was implemented
[36].

The model iterations were set to an early stopping criterion, which consisted of stop-
ping the model’s training process if, after 20 epochs, there was no improvement in the
validation loss.

The schematic representation of the CNN architecture is given in Figure 3. The de-
tailed code was implemented in the open-source programming language Python 3.7.

Figure 2. The overall workflow of a CNN.

As illustrated in Figure 2, the general training procedure of a CNN model is de-
composed into the iterative and successive application of two main steps, forward and
backward propagation, summarized in the following phases:

1. In the forward propagation: a function, F, is dependent on the input variable X (e.g.,
images), a given number of linear operators W (filters or image kernels), and multiple
bias terms (b) are applied to estimate a prediction output Ŷ.

2. In backpropagation:

a. The loss function, L, is used to calculate the difference between the generated
output Ŷ and the expected output Y (given by the data);

b. Then, the gradient, G, (partial derivatives of L with respect to W and b) of the
loss function is calculated to update the values of the filters and bias terms
(W ′, b′).

3. The updated values of the filters and bias terms are introduced in step i, repeating the
forward and backward propagation of a defined number of iterations (epochs) until
approaching the minimum of the loss function.

In summary, the main objective of the training process is to find out the best values
for W and b [35].

In this study, a CNN model was built using the open-source libraries TensorFlow 2.0
and Keras. The CNN was composed of three convolutional layers. We applied the rectified
linear activation function (ReLu), followed by a pooling layer for each layer. Then, a full
connection step was set, composed of three dense, fully connected layers and two dropout
layers in between to avoid overfitting. The functions applied to these layers were ReLu
and Sigmoid.

The selected loss function corresponded to the calculation of the binary cross-entropy [36],
which is suitable for the binary classification problem (pop-in or not pop-in). For the de-
scendent gradient optimization of the CNN, the optimizer “Adam” was implemented [36].

The model iterations were set to an early stopping criterion, which consisted of
stopping the model’s training process if, after 20 epochs, there was no improvement in the
validation loss.

The schematic representation of the CNN architecture is given in Figure 3. The detailed
code was implemented in the open-source programming language Python 3.7.

Materials 2021, 14, 7027 5 of 11Materials 2021, 14, 7027 5 of 12

Figure 3. The architecture of the CNN model implemented to classify curves with pop-in and without pop-in events.

3. Results and Discussion
3.1. Convolutional Neural Network (CNN) Model

Figure 4 shows six examples of P–h curves, which correspond to different materials
exhibiting various pop-in events, such as sub-pop-ins (small pop-ins at shallow penetra-
tion depths), sliding pop-ins, and slope changes.

Figure 4. Load–displacement curves (load–control tests) showing pop-in events and the range of hardness (H) values. (a)
sub-pop-ins in Al alloys; (b) slope changes and sliding pop-ins in Al alloys; (c) slope changes and pop-ins in ceramic
coatings. In each plot, each curve represents a different material that exhibits similar pop-in event features.

Figure 5 presents the schematic workflow of CNN implementation for two curves,
presenting a typical loading path and pop-in and their corresponding escalated matrix
generated from the load–displacement data.

Figure 3. The architecture of the CNN model implemented to classify curves with pop-in and without pop-in events.

3. Results and Discussion
3.1. Convolutional Neural Network (CNN) Model

Figure 4 shows six examples of P–h curves, which correspond to different materials
exhibiting various pop-in events, such as sub-pop-ins (small pop-ins at shallow penetration
depths), sliding pop-ins, and slope changes.

Materials 2021, 14, x FOR PEER REVIEW 5 of 12

Figure 3. The architecture of the CNN model implemented to classify curves with pop-in and without pop-in events.

3. Results and Discussion
3.1. Convolutional Neural Network (CNN) Model

Figure 4 shows six examples of P–h curves, which correspond to different materials
exhibiting various pop-in events, such as sub-pop-ins (small pop-ins at shallow penetra-
tion depths), sliding pop-ins, and slope changes.

Figure 4. Load–displacement curves (load–control tests) showing pop-in events and the range of hardness (H) values. (a)
sub-pop-ins in Al alloys; (b) slope changes and sliding pop-ins in Al alloys; (c) slope changes and pop-ins in ceramic
coatings. In each plot, each curve represents a different material that exhibits similar pop-in event features.

Figure 5 presents the schematic workflow of CNN implementation for two curves,
presenting a typical loading path and pop-in and their corresponding escalated matrix
generated from the load–displacement data.

Figure 4. Load–displacement curves (load–control tests) showing pop-in events and the range of hardness (H) values.
(a) sub-pop-ins in Al alloys; (b) slope changes and sliding pop-ins in Al alloys; (c) slope changes and pop-ins in ceramic
coatings. In each plot, each curve represents a different material that exhibits similar pop-in event features.

Figure 5 presents the schematic workflow of CNN implementation for two curves,
presenting a typical loading path and pop-in and their corresponding escalated matrix
generated from the load–displacement data.

The CNN model was fully trained after 158 epochs (the early stopping criterion
stopped the training), as illustrated by the evolution of the values of the loss function and
the accuracy (Figure 6).

The fully trained CNN model achieved 93% accuracy and a 0.16 binary cross-entropy
value on the training dataset (i.e., the lower this value, the better the model). For the
validation dataset, a 91% accuracy and 0.17 binary cross-entropy value were achieved.
Comparing these performance parameters between the training and validation datasets
confirmed that the risk of overfitting was negligible. It is worth mentioning that the
model’s training process was executed at least three times, leading to similar accuracy
values between 91% and 93%. The average training time of the model was 83 s, running on
a GPU (NVIDIA Tesla K80 GPU) available for free and provided by Google Colaboratory.

Materials 2021, 14, 7027 6 of 11Materials 2021, 14, 7027 6 of 12

Figure 5. CNN implementation workflow: load–displacement curves (a. typical loading path, b. pop-in) are converted
into matrices (“images” in grayscale) which are the inputs to pass to the CNN model, which give an output equal to 0 for
no pop-in and 1 for pop-in events. The numerical matrices are just for illustration and do not represent the model’s 50 ×
50 matrices used as input.

The CNN model was fully trained after 158 epochs (the early stopping criterion
stopped the training), as illustrated by the evolution of the values of the loss function and
the accuracy (Figure 6).

Figure 6. Evolution of the accuracy and loss function during the training and validation of the
CNN model as a function of the number of epochs.

Figure 5. CNN implementation workflow: load–displacement curves (a. typical loading path, b. pop-in) are converted
into matrices (“images” in grayscale) which are the inputs to pass to the CNN model, which give an output equal to
0 for no pop-in and 1 for pop-in events. The numerical matrices are just for illustration and do not represent the model’s
50 × 50 matrices used as input.

Materials 2021, 14, 7027 6 of 12

Figure 5. CNN implementation workflow: load–displacement curves (a. typical loading path, b. pop-in) are converted
into matrices (“images” in grayscale) which are the inputs to pass to the CNN model, which give an output equal to 0 for
no pop-in and 1 for pop-in events. The numerical matrices are just for illustration and do not represent the model’s 50 ×
50 matrices used as input.

The CNN model was fully trained after 158 epochs (the early stopping criterion
stopped the training), as illustrated by the evolution of the values of the loss function and
the accuracy (Figure 6).

Figure 6. Evolution of the accuracy and loss function during the training and validation of the
CNN model as a function of the number of epochs.

Figure 6. Evolution of the accuracy and loss function during the training and validation of the CNN model as a function of
the number of epochs.

Materials 2021, 14, 7027 7 of 11

Table 1 shows the summary (precision, recall, and F-1 score) of the model’s perfor-
mance in the validation dataset.

Table 1. Summary of the performance of the CNN model in the validation dataset.

Classes Precision Recall F1-Score No. of Matrices

0 (no pop-in) 0.92 0.92 0.92 119
1 (pop-in) 0.90 0.90 0.90 105

Precision = TP/(TP + FP); Recall = TP/(TP + FN); F1-score = 2 × Precision × Recall/(Precision + Recall); TP: true
positive; FP: false positive; FN: false negative [37].

The recall, precision, and F1-score values demonstrated that the model was well
balanced, given a similar performance when classifying between pop-in matrices and no
pop-in matrices. Nevertheless, the model showed slightly better performance (2%) for
the classification of curves without pop-in events, as illustrated in the confusion matrix
(Figure 7). This trend was expected because typical nanoindentation load–displacement
curves are easier to identify. All the curves presented in Figure 4 were successfully classified
as pop-in, i.e., curves presenting sub-sequent sub-pop-ins (Figure 4a) were easier to identify
with the model.

Materials 2021, 14, 7027 7 of 12

The fully trained CNN model achieved 93% accuracy and a 0.16 binary cross-entropy
value on the training dataset (i.e., the lower this value, the better the model). For the vali-
dation dataset, a 91% accuracy and 0.17 binary cross-entropy value were achieved. Com-
paring these performance parameters between the training and validation datasets con-
firmed that the risk of overfitting was negligible. It is worth mentioning that the model’s
training process was executed at least three times, leading to similar accuracy values be-
tween 91% and 93%. The average training time of the model was 83 s, running on a GPU
(NVIDIA Tesla K80 GPU) available for free and provided by Google Colaboratory.

Table 1 shows the summary (precision, recall, and F-1 score) of the model’s perfor-
mance in the validation dataset.

Table 1. Summary of the performance of the CNN model in the validation dataset.

Classes Precision Recall F1-Score No. of Matrices
0 (no pop-in) 0.92 0.92 0.92 119

1 (pop-in) 0.90 0.90 0.90 105
Precision = TP/(TP + FP); Recall = TP/(TP + FN); F1-score = 2 × Precision × Recall/(Precision + Re-
call); TP: true positive; FP: false positive; FN: false negative [37].

The recall, precision, and F1-score values demonstrated that the model was well bal-
anced, given a similar performance when classifying between pop-in matrices and no
pop-in matrices. Nevertheless, the model showed slightly better performance (2%) for the
classification of curves without pop-in events, as illustrated in the confusion matrix (Fig-
ure 7). This trend was expected because typical nanoindentation load–displacement
curves are easier to identify. All the curves presented in Figure 4 were successfully classi-
fied as pop-in, i.e., curves presenting sub-sequent sub-pop-ins (Figure 4a) were easier to
identify with the model.

Figure 7. Confusion matrix obtained from the validation dataset tested in the CNN model.

3.2. Robustness Evaluation of the CNN Architecture and Model
We evaluated the robustness of both the CNN architecture and model, to differenti-

ate between curves presenting pop-in and those without pop-in events with two ap-
proaches, as described below.

3.2.1. Influence of the Unloading Curve on the Accuracy of the CNN Model
The CNN architecture presented in Figure 3 was trained and validated using a da-

taset corresponding to the loading segment of the load–displacement curves.

Figure 7. Confusion matrix obtained from the validation dataset tested in the CNN model.

3.2. Robustness Evaluation of the CNN Architecture and Model

We evaluated the robustness of both the CNN architecture and model, to differentiate
between curves presenting pop-in and those without pop-in events with two approaches,
as described below.

3.2.1. Influence of the Unloading Curve on the Accuracy of the CNN Model

The CNN architecture presented in Figure 3 was trained and validated using a dataset
corresponding to the loading segment of the load–displacement curves.

The resulting model had an accuracy of 92% in the validation dataset, similar to
the results presented in Section 3.1., where the model was evaluated using all the load–
displacement curves. The summary of the performance of the model in the validation
dataset is presented in Table 2. These results corroborate that the implemented CNN
architecture correctly identified the features corresponding to pop-in events as relevant
information to differentiate the load–displacement curves, and that the unloading curves
did not have a major effect.

Materials 2021, 14, 7027 8 of 11

Table 2. Summary of the performance of the CNN model in the validation dataset only using the
loading curves.

Classes Precision Recall F1-Score No. of Matrices

0 (no pop-in) 0.94 0.90 0.92 119
1 (pop-in) 0.89 0.93 0.91 105

3.2.2. Artificial Pop-ins

In order to test the performance of our model to detect subsequent sub-pop-ins, we
generated a new dataset with artificial pop-ins. These artificial pop-ins represented gaps in
the displacement data of the loading curves; they were generated in the dataset without
pop-ins. Figure 8 shows an example of the P–h curve with artificial pop-ins.

Materials 2021, 14, 7027 8 of 12

The resulting model had an accuracy of 92% in the validation dataset, similar to the
results presented in Section 3.1., where the model was evaluated using all the load–dis-
placement curves. The summary of the performance of the model in the validation dataset
is presented in Table 2. These results corroborate that the implemented CNN architecture
correctly identified the features corresponding to pop-in events as relevant information to
differentiate the load–displacement curves, and that the unloading curves did not have a
major effect.

Table 2. Summary of the performance of the CNN model in the validation dataset only using the
loading curves.

Classes Precision Recall F1-Score No. of Matrices
0 (no pop-in) 0.94 0.90 0.92 119

1 (pop-in) 0.89 0.93 0.91 105

3.2.2. Artificial Pop-ins
In order to test the performance of our model to detect subsequent sub-pop-ins, we

generated a new dataset with artificial pop-ins. These artificial pop-ins represented gaps
in the displacement data of the loading curves; they were generated in the dataset without
pop-ins. Figure 8 shows an example of the P–h curve with artificial pop-ins.

Figure 8. Load–displacement curves showing artificial pop-ins generated at two different times for
the same curve.

The pop-in lengths were randomly assigned from 2 to 10 nm, and located up to 50%
of the maximum displacement. The probability of a pop-in occurring was set to 0.5. This
procedure was repeated 10 times for each curve.

This new dataset with artificial pop-ins was tested in our model, obtaining an accu-
racy of approximately 70%. In this case, these data were not used to train the CNN; only
to test the model.

Next, we introduced a dataset with artificial pop-in events as part of the dataset with
real pop-ins to train and validate the model, following the same procedure as described
in Sections 2.2 and 2.3. The accuracy of the model was 93%. The performance of the model
in the validation dataset is presented in Table 3.

Table 3. Summary of the performance of the CNN model in the validation dataset, including the
artificial pop-in dataset in the dataset with pop-ins.

Classes Precision Recall F1-Score No. of Matrices
0 (no pop-in) 0.93 0.87 0.90 116

1 (pop-in) 0.94 0.96 0.95 228

Figure 8. Load–displacement curves showing artificial pop-ins generated at two different times for
the same curve.

The pop-in lengths were randomly assigned from 2 to 10 nm, and located up to 50%
of the maximum displacement. The probability of a pop-in occurring was set to 0.5. This
procedure was repeated 10 times for each curve.

This new dataset with artificial pop-ins was tested in our model, obtaining an accuracy
of approximately 70%. In this case, these data were not used to train the CNN; only to test
the model.

Next, we introduced a dataset with artificial pop-in events as part of the dataset with
real pop-ins to train and validate the model, following the same procedure as described in
Sections 2.2 and 2.3. The accuracy of the model was 93%. The performance of the model in
the validation dataset is presented in Table 3.

Table 3. Summary of the performance of the CNN model in the validation dataset, including the
artificial pop-in dataset in the dataset with pop-ins.

Classes Precision Recall F1-Score No. of Matrices

0 (no pop-in) 0.93 0.87 0.90 116
1 (pop-in) 0.94 0.96 0.95 228

After generating the new model, we tested a new dataset with artificial pop-ins
(different from the one used to train the model because pop-in length, occurrence, and
location were randomly selected: Figure 8). In this scenario, the model classified the
artificial pop-ins with 96% accuracy.

Materials 2021, 14, 7027 9 of 11

These results highlighted apparent differences in the model performance when only
the testing dataset with artificial pop-ins or the artificial pop-ins were included as part of
the dataset to train the CNN (70 vs. 93%). This output indicated that the pop-ins in our
initial experimental data represent complex features beyond displacement bursts. Thus,
the model could detect these complex pop-ins events; additionally, it probably considered
relevant information around the pop-in events.

The robustness analysis corroborated that the selected architecture of the CNN is
suitable to differentiate curves with pop-ins. This classification is crucial for accurate
estimation of the mechanical properties by indentation, especially when dealing with large
datasets (hundreds to thousands of tests).

We want to highlight that the overall accuracy of the model (~93%) could have
been improve by employing a larger dataset and using more materials. In addition,
methodologies related to the treatment of the data, such as noise analysis (reduction or
inclusion) [38,39], resampling and smoothing [40], and padding configurations [41] could
have enhanced the model’s accuracy.

Our study aims to accentuate the importance of combining artificial intelligence and
nanoindentation testing for new applications. Our work contributes that of previous inves-
tigations. These studies addressed different problems, such as the identification of phases
in multi-phase materials and support vector machine classification algorithms [25]; the
solutions to inverse problems through a combination of FEM simulations [28], material
compositions [42] with experimental nanoindentation/hardness results and neural net-
works; and the combination of acoustic emission and nanoindentation data with deep
learning algorithms [30].

The applications for the combination of nanoindentation datasets and artificial intelli-
gence models are countless. A similar approach to the one investigated in this work could
be implemented in reverse engineering and property prediction applications, e.g., abrasion
resistance, fracture toughness, the identification between brittle and ductile materials, etc.

4. Conclusions

In this study, we constructed a binary classifier based on image detection, which
accurately distinguished between the existence or absence of pop-in events in P–h curves
from nanoindentation tests.

The load–displacement data transformation into matrices of the desired size (50 × 50)
represented a suitable input to train the CNN model for the dataset.

The dataset of generated matrices was effectively used to train the created CNN model
to classify the initial curves with pop-in (sub-pop-ins, slope changes, and instabilities) and
without pop-in events. The model achieved 93% accuracy in the classification. Hence, the
proposed CNN model architecture was appropriate for effectively sorting the P–h curves,
corroborating the relevance of applying these methods in nanoindentation data analysis.

Similar variation of the accuracy and loss function values on the training and testing
datasets of the CNN model confirmed that the risk of overfitting was unimportant.

The robustness analysis of the CNN architecture revealed two critical aspects. First,
evaluation of the CNN model using only the loading curves suggested that this CNN
model considered the most relevant information from the loading curves. This information
indicated that the model did not seem to be significantly affected by the information
contained in the unloading curves. Secondly, through the analysis of P–h curves with
artificial pop-ins in the CNN model, we corroborated the model’s performance to detect
pop-in features beyond typical displacement bursts. Both robustness tests corroborated
that the selected CNN architecture was suitable to discriminate load–displacement curves
with or without pop-in events.

5. Suggestions for Future Development

This study opens the possibility for various prospects:

Materials 2021, 14, 7027 10 of 11

• The quantification of pop-in events (location, length, and probability), which requires
an algorithm designed for object detection, a more complex architecture of the neural
network, and a different dataset structure. Similarly, the detailed identification of
the spatial location of tests where pop-in events occur, pop-in quantification, and
their correlation with the mechanical properties by indentation could help better
understand the mechanisms which create the pop-ins;

• Studying the effect of aspects related to data configuration (sampling, noise, size, and
padding) in the implementation and output of the CNN model;

• Applications of similar models to nanoindentation datasets, including load, displace-
ment, and time variables; additionally, datasets obtained by CSM (continuous stiffness
measurement) methods could certainly provide relevant information;

• Applications of similar algorithms to study property prediction, which is an exciting
possibility, to establish relationships between nanoindentation data and mechanical
properties, e.g., abrasion resistance.

Author Contributions: Conceptualization, formal analysis, investigation, methodology and writing—
original draft preparation: S.K. and M.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data and code presented in this study are available on request from
the corresponding author. The data are not publicly available because they are part of ongoing studies.

Acknowledgments: These data were obtained from the Morphomeca platform and are managed by
LAMIH UMR CNRS 8201, National Institute of Applied Science (INSA), Polytechnic University of
Hauts-de-France, France.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hintsala, E.D.; Hangen, U.; Stauffer, D.D. High-Throughput Nanoindentation for Statistical and Spatial Property Determination.

JOM 2018, 70, 494–503. [CrossRef]
2. Chen, Y.; Hintsala, E.; Li, N.; Becker, B.R.; Cheng, J.Y.; Nowakowski, B.; Weaver, J.; Stauffer, D.; Mara, N.A. High-Throughput

Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys.
JOM 2019, 71, 3368–3377. [CrossRef]

3. Vranjes-Wessely, S.; Misch, D.; Kiener, D.; Cordill, M.J.; Frese, N.; Beyer, A.; Horsfield, B.; Wang, C.; Sachsenhofer, R.F. High-speed
nanoindentation mapping of organic matter-rich rocks: A critical evaluation by correlative imaging and machine learning data
analysis. Int. J. Coal Geol. 2021, 247, 103847. [CrossRef]

4. Roa, J.J.; Phani, P.S.; Oliver, W.C.; Llanes, L. Mapping of mechanical properties at microstructural length scale in WC-Co cemented
carbides: Assessment of hardness and elastic modulus by means of high speed massive nanoindentation and statistical analysis.
Int. J. Refract. Hard Met. 2018, 75, 211–217. [CrossRef]

5. Vignesh, B.; Oliver, W.C.; Kumar, G.S.; Phani, P.S. Critical assessment of high speed nanoindentation mapping technique and data
deconvolution on thermal barrier coatings. Mater. Des. 2019, 181, 108084. [CrossRef]

6. Koumoulos, E.P.; Tofail, S.A.M.; Silien, C.; de Felicis, D.; Moscatelli, R.; Dragatogiannis, D.A.; Bemporad, E.; Sebastiani, M.;
Charitidis, C.A. Metrology and nano-mechanical tests for nano-manufacturing and nano-bio interface: Challenges & future
perspectives. Mater. Des. 2018, 137, 446–462. [CrossRef]

7. Němeček, J.; Lukeš, J.; Němeček, J. High-speed mechanical mapping of blended cement pastes and its comparison with standard
modes of nanoindentation. Mater. Today Commun. 2020, 23, 100806. [CrossRef]

8. Fu, K.; Tang, Y.; Chang, L. Toughness Assessment and Fracture Mechanism of Brittle Thin Films Under Nano-Indentation. In
Fracture Mechanics—Properties, Patterns and Behaviours; Alves, L.M., Ed.; InTech: London, UK, 2016. [CrossRef]

9. Fischer-Cripps, A.C. Nanoindentation, 3rd ed.; Springer: New York, NY, USA, 2011.
10. Field, J.S.; Swain, M.V.; Dukino, R.D. Determination of fracture toughness from the extra penetration produced by indentation-

induced pop-in. J. Mater. Res. 2003, 18, 1412–1419. [CrossRef]
11. Wu, D.; Nieh, T.G. Incipient plasticity and dislocation nucleation in body-centered cubic chromium. Mater. Sci. Eng. A 2014, 609,

110–115. [CrossRef]
12. Pöhl, F. Pop-in behavior and elastic-to-plastic transition of polycrystalline pure iron during sharp nanoindentation. Sci. Rep. 2019,

9, 15350. [CrossRef] [PubMed]
13. Papanikolaou, S.; Cui, Y.; Ghoniem, N. Avalanches and plastic flow in crystal plasticity: An overview. Model. Simul. Mater. Sci.

Eng. 2017, 26, 013001. [CrossRef]

http://doi.org/10.1007/s11837-018-2752-0
http://doi.org/10.1007/s11837-019-03714-2
http://doi.org/10.1016/j.coal.2021.103847
http://doi.org/10.1016/j.ijrmhm.2018.04.019
http://doi.org/10.1016/j.matdes.2019.108084
http://doi.org/10.1016/j.matdes.2017.10.035
http://doi.org/10.1016/j.mtcomm.2019.100806
http://doi.org/10.5772/64117
http://doi.org/10.1557/JMR.2003.0194
http://doi.org/10.1016/j.msea.2014.04.107
http://doi.org/10.1038/s41598-019-51644-5
http://www.ncbi.nlm.nih.gov/pubmed/31653908
http://doi.org/10.1088/1361-651X/aa97ad

Materials 2021, 14, 7027 11 of 11

14. Britton, T.B.; Randman, D.; Wilkinso, A.J. Nanoindentation study of slip transfer phenomenon at grain boundaries. J. Mater. Res.
2009, 24, 607–615. [CrossRef]

15. Schuh, C.A.; Nieh, T.G.; Kawamura, Y. Rate Dependence of Serrated Flow During Nanoindentation of a Bulk Metallic Glass. J.
Mater. Res. 2002, 17, 1651–1654. [CrossRef]

16. Beake, B.D.; Goel, S. Incipient plasticity in tungsten during nanoindentation: Dependence on surface roughness, probe radius
and crystal orientation. Int. J. Refract. Hard Met. 2018, 75, 63–69. [CrossRef]

17. Jiapeng, S.; Cheng, L.; Han, J.; Ma, A.; Fang, L. Nanoindentation Induced Deformation and Pop-in Events in a Silicon Crystal:
Molecular Dynamics Simulation and Experiment. Sci. Rep. 2017, 7, 10282. [CrossRef] [PubMed]

18. Malzbender, J.; de With, G. The use of the indentation loading curve to detect fracture of coatings. Surf. Coat. Technol. 2001, 137,
72–76. [CrossRef]

19. Juliano, T.; Domnich, V.; Buchheit, T.; Gogotsi, Y. Numerical Derivative Analysis of Load-Displacement Curves in Depth-Sensing
Indentation. MRS Online Proc. Libr. 2003, 791, 75. [CrossRef]

20. Sato, Y.; Shinzato, S.; Ohmura, T.; Hatano, T.; Ogata, S. Unique universal scaling in nanoindentation pop-ins. Nat. Commun. 2020,
11, 4177. [CrossRef]

21. Bolin, R.; Yavas, H.; Song, H.; Hemker, K.J.; Papanikolaou, S. Bending Nanoindentation and Plasticity Noise in FCC Single and
Polycrystals. Crystals 2019, 9, 652. [CrossRef]

22. Malzbender, J.; de With, G. The use of the loading curve to assess soft coatings. Surf. Coat. Technol. 2000, 127, 265–272. [CrossRef]
23. Mercier, D. PopIn, 2021. Available online: https://github.com/DavidMercier/PopIn (accessed on 20 September 2021).
24. Phani, P.S.; Oliver, W.C. Critical examination of experimental data on strain bursts (pop-in) during spherical indentation. J. Mater.

Res. 2020, 35, 1028–1036. [CrossRef]
25. Koumoulos, E.; Konstantopoulos, G.; Charitidis, C. Applying Machine Learning to Nanoindentation Data of (Nano-) Enhanced

Composites. Fibers 2020, 8, 3. [CrossRef]
26. Koumoulos, E.P.; Paraskevoudis, K.; Charitidis, C.A. Constituents Phase Reconstruction through Applied Machine Learning in

Nanoindentation Mapping Data of Mortar Surface. J. Compos. Sci. 2019, 3, 63. [CrossRef]
27. Konstantopoulos, G.; Koumoulos, E.P.; Charitidis, C.A. Classification of mechanism of reinforcement in the fiber-matrix interface:

Application of Machine Learning on nanoindentation data. Mater. Des. 2020, 192, 108705. [CrossRef]
28. Lu, L.; Dao, M.; Kumar, P.; Ramamurty, U.; Karniadakis, G.E.; Suresh, S. Extraction of mechanical properties of materials through

deep learning from instrumented indentation. Proc. Natl. Acad. Sci. USA 2020, 117, 7052–7062. [CrossRef]
29. Weng, J.; Lindvall, R.; Zhuang, K.; Ståhl, J.-E.; Ding, H.; Zhou, J. A machine learning based approach for determining the

stress-strain relation of grey cast iron from nanoindentation. Mech. Mater. 2020, 148, 103522. [CrossRef]
30. Daugela, A.; Chang, C.H.; Peterson, D.W. Deep-learning based characterization of nanoindentation induced acoustic events.

Mater. Sci. Eng. A 2021, 800, 140273. [CrossRef]
31. Tyulyukovskiy, E.; Huber, N. Identification of viscoplastic material parameters from spherical indentation data: Part I. Neural

networks. J. Mater. Res. 2006, 21, 664–676. [CrossRef]
32. Huber, N.; Konstantinidis, A.; Tsakmakis, C. Determination of Poisson’s Ratio by Spherical Indentation Using Neural Networks—

Part I: Theory. J. Appl. Mech. 2000, 68, 218–223. [CrossRef]
33. Huber, N.; Tsakmakis, C. Determination of Poisson’s Ratio by Spherical Indentation Using Neural Networks—Part II: Identifica-

tion Method. J. Appl. Mech. 2000, 68, 224–229. [CrossRef]
34. Hysitron TI 980 Nanoindenter, (n.d.). Available online: https://www.bruker.com/en/products-and-solutions/test-and-

measurement/nanomechanical-test-systems/hysitron-ti-980-nanoindenter.html (accessed on 3 October 2021).
35. Kim, P. Convolutional Neural Network. In MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial

Intelligence; Kim, P., Ed.; Apress: Berkeley, CA, USA, 2017; pp. 121–147. [CrossRef]
36. Bernico, M. Deep Learning Quick Reference: Useful Hacks for Training and Optimizing Deep Neural Networks with TensorFlow and Keras;

Packt Publishing Ltd.: Birmingham, UK, 2018.
37. Brownlee, J. Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes, Cost-Sensitive Learning; Machine Learning

Mastery, 2020.
38. Capehart, T.W.; Cheng, Y.-T. Determining constitutive models from conical indentation: Sensitivity analysis. J. Mater. Res. 2003,

18, 827–832. [CrossRef]
39. Papanikolaou, S. Learning local, quenched disorder in plasticity and other crackling noise phenomena. Npj Comput. Mater. 2018,

4, 1–7. [CrossRef]
40. Marteau, J.; Bigerelle, M. Relation between surface hardening and roughness induced by ultrasonic shot peening. Tribol. Int. 2015,

83, 105–113. [CrossRef]
41. Rio, A.L.; Martin, M.; Perera-Lluna, A.; Saidi, R. Effect of sequence padding on the performance of deep learning models in

archaeal protein functional prediction. Sci. Rep. 2020, 10, 14634. [CrossRef]
42. Merayo, D.; Rodríguez-Prieto, A.; Camacho, A.M. Prediction of Mechanical Properties by Artificial Neural Networks to

Characterize the Plastic Behavior of Aluminum Alloys. Materials 2020, 13, 5227. [CrossRef]

http://doi.org/10.1557/jmr.2009.0088
http://doi.org/10.1557/JMR.2002.0243
http://doi.org/10.1016/j.ijrmhm.2018.03.020
http://doi.org/10.1038/s41598-017-11130-2
http://www.ncbi.nlm.nih.gov/pubmed/28860496
http://doi.org/10.1016/S0257-8972(00)01091-4
http://doi.org/10.1557/PROC-791-Q7.5
http://doi.org/10.1038/s41467-020-17918-7
http://doi.org/10.3390/cryst9120652
http://doi.org/10.1016/S0257-8972(00)00640-X
https://github.com/DavidMercier/PopIn
http://doi.org/10.1557/jmr.2019.416
http://doi.org/10.3390/fib8010003
http://doi.org/10.3390/jcs3030063
http://doi.org/10.1016/j.matdes.2020.108705
http://doi.org/10.1073/pnas.1922210117
http://doi.org/10.1016/j.mechmat.2020.103522
http://doi.org/10.1016/j.msea.2020.140273
http://doi.org/10.1557/jmr.2006.0076
http://doi.org/10.1115/1.1354624
http://doi.org/10.1115/1.1355032
https://www.bruker.com/en/products-and-solutions/test-and-measurement/nanomechanical-test-systems/hysitron-ti-980-nanoindenter.html
https://www.bruker.com/en/products-and-solutions/test-and-measurement/nanomechanical-test-systems/hysitron-ti-980-nanoindenter.html
http://doi.org/10.1007/978-1-4842-2845-6_6
http://doi.org/10.1557/JMR.2003.0113
http://doi.org/10.1038/s41524-018-0083-x
http://doi.org/10.1016/j.triboint.2014.11.006
http://doi.org/10.1038/s41598-020-71450-8
http://doi.org/10.3390/ma13225227

	Introduction
	Methods
	Nanoindentation Testing
	Data Preparation
	Convolutional Neural Networks (CNN) Model

	Results and Discussion
	Convolutional Neural Network (CNN) Model
	Robustness Evaluation of the CNN Architecture and Model
	Influence of the Unloading Curve on the Accuracy of the CNN Model
	Artificial Pop-ins

	Conclusions
	Suggestions for Future Development
	References

