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Numerical simulation of the transient aerodynamic

phenomena induced by passing manoeuvres

David Uystepruysta, Sinǐsa Krajnovića

aDivision of Fluid Dynamics, Department of Applied Mechanics, Chalmers University of

Technology, SE-41296 Gothenburg, Sweden.

Abstract

Several three-dimensional Unsteady Reynolds-Averaged Navier-Stokes (URANS)

simulations of the passing generic vehicles (Ahmed bodies) are presented.

The relative motion of vehicles was obtained using a combination of de-

forming and sliding computational grids. Two different vehicle bodies were

studied having an angle of the rear end slanted surface of 30◦ and 0◦. Several

different relative velocities and transversal distances between vehicles were

studied. Aerodynamic influence of the passage on both the overtaken and the

overtaking vehicles was studied. The results of the simulations were found

to agree well with the existing experimental data.

Keywords: Passing manœuvres, Overtaking vehicles, Unsteady

aerodynamics, Navier-Stokes equations, turbulence model, Deforming mesh,

Sliding mesh

1. Introduction

Two vehicles moving in close proximity mutually influence their aero-

dynamic fields. This influence occurs like additional forces acting on both

vehicles, especially side forces and yawing moments. Forces intensities de-
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pend essentially on the relative velocity, the transversal spacing and the size

ratio between both vehicles. The prompt evolutions around the yaw axis

constrain trajectory corrections to be performed by the driver and can yield

critical safety situations, in particular in adverse weather conditions, such as

crosswinds.

Since 1970’s, overtaking and crossing effects of two vehicles have been in-

vestigated experimentally. Early studies coincide with the first oil crisis, i.e.

1973 for Heffrey [1] and Howell [2]. Indeed, this crisis involved a need to

reduce the oil consumption, especially by the reduction of vehicle weight.

Being lighter, vehicles became more sensitive to the unsteady aerodynamic

effects.

In addition to works of Heffrey and Howell, several experimental studies have

been carried out. These studies are interested by different aspects. Studies

of Legouis et al [3], Telionis et al [4] or Yamamoto et al [5] are particularly

dedicated to the car-truck overtaking process showing the importance of the

size ratio.

More recently, Noger and his collaborators performed several dynamic studies

in order to analyze effects of the relative velocity, the transverse passing and

the crosswind when two vehicles overtake: Noger and Széchényi [6] and Noger

et al [7]. Both studies were carried out with a 7/10 scaled Ahmed bodies, see

Ahmed et al [8]. The bodies of the first study are hatchback shapes (slant of

30◦), while the bodies of the second one are squareback shapes. Noger and

Van Grevenynghe [9] proposed a study of car-truck overtaking on one test

case. Gilliéron and Noger [10] analyzed the transient phenomena occurring

during various phenomena such as the overtaking, the crossing or the tunnel
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exit.

Some recent two-dimensional (2D) numerical studies can be found. Clark

and Filippone [11] performed the overtaking process of two sharp edges bod-

ies. The work aimed to give thorough analysis of the overtaking process.

Effects of the relative velocity and the transversal spacing were studied. Au-

thors focused on 2D overtaking as a preliminary means of investigating an

appropriate simulation strategy for the complex three-dimensional (3D) flow.

Corin et al [12] used rounded edges bodies. The dynamic effect of the passing

manoeuvre was highlighted by comparisons with quasi-steady calculations.

It was shown that crosswinds yield significant dynamic effects. The authors

of [11, 12] agreed that their 2D approaches were first step towards 3D cal-

culations. In particular, the Venturi effect, occurring when vehicles getting

closer, was strongly overestimated.

Gilliéron [13] performed a 3D numerical simulation of two Ahmed bodies

overtaking. Calculations were achieved using a Reynolds Averaged Navier-

Stokes numerical method with a k − ǫ turbulence model. The effects of the

transversal spacing and the crosswind were studied. However, this study was

limited to a steady approach.

In summary, no dynamic 3D numerical method is available yet. The develop-

ment of a 3D methodology seems, therefore, important to improve the knowl-

edges and to plan further studies. This paper presents a three-dimensional

simulation of passing processes based on the ζ − f turbulence model and a

deforming/sliding mesh method. The main work aims to accurately predict

the aerodynamic forces and moment and to give a thorough analysis of the

passing process. The paper starts with a description in chapter 2 of the
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Figure 1: 7/10 scale Ahmed bluff body, dimensions in mm.

experimental set-up that is used in the present numerical study. In chapter

3, the dimensionless coefficients, allowing to quantify the phenomena and to

make the validation, are then presented. This is followed by the numerical

methodology, including the turbulence model, the numerical method and de-

tails, and the deforming/sliding mesh method, in chapter 4. Results of the

simulations are presented in chapter 5.

2. The set-up

2.1. Geometries

The body used in this study is identical to this in the experimental work

[7] and is 7/10 Ahmed bodies shown in figure 1. This body has a hatchback

type rear end with an angle of 30◦. The last chapter of the paper presents

the overtaking of two squareback shape bodies, same as in [6], i.e. with no

slanted surface.

As it is shown, both bodies consist on rounded front end and sharped rear

end. The main vehicle sizes are: the length L = 730.8 mm, the width

W = 272.3 mm, the height H = 201.6 mm and the ground clearance of

55 mm. Supports are 15 mm diameter cylindrical and the length of the slant
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Figure 2: Notations for the vehicle positioning and aerodynamic coefficient direction.

surface is 155.4 mm. The Reynolds number based on height of the vehicle is

ReH = 390.000, for a velocity of 30 m.s−1.

2.2. Overtaking process

The figure 2 shows the sketch of the overtaking, with distances and the

forces direction. The overtaking consist, as in the experimental work, on

the stationnary body located in the middle of the wind tunnel length and a

moving body located 5L backward the stationnary one at the beginning, and

5L forward at the end of the calculation. An inlet condition is set with the

normal velocity V∞ corresponding to the velocity of the stationnary body.

The moving body is set in motion with the relative velocity Vr. Except

for the following chapters on the relative velocity effect, on the transverse

spacing effect and on the overtaking vehicle; the velocity ratio k and the

transversal spacing Y are fixed at the values k = 0.248 (V∞ = 30.32 m.s−1

and Vr = 10 m.s−1) and Y = 0.25W .
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3. Dimensionless coefficient

As in the experimental works of Noger et al, a dimensionless parameter

k is defined as the ratio of the relative velocity Vr to a steady velocity V :

k =
Vr

V
. (1)

The steady velocity is the velocity of the moving body, e.g. for the overtaking

simulations, the steady velocity is V = V∞ + Vr.

During an overtaking, the strongly affected aerodynamic coefficients are the

drag force coefficient Cd, the side force coefficient Cy and the yawing moment

coefficient Cn given by:


























Fd =
1

2
ρSV 2Cd,

Fy =
1

2
ρSV 2Cy,

N =
1

2
ρESV 2Cn,

(2)

where Fd, Fy and N are respectively the drag force, the side force and the

yawing moment obtained by integrating the pressure distribution around the

model. In equation (2), ρ is the air density, S the body frontal area and E

the wheelbase. Note that V is the previous steady velocity.

4. Numerical methodology

4.1. Governing equations and turbulence model

The flow around vehicles is unsteady, three-dimensional, incompressible

(the Mach number is M ≃ 0.1), viscous and turbulent. In order to simulate

it, the three-dimensional equations of Navier-Stokes have to be resolved with
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turbulence modeling. The Reynolds Averaged Navier Stokes equations are

given as follows:















∂Ui

∂xi
= 0,

∂Ui

∂t
+ Uj

∂Ui

∂xj

= −1

ρ

∂P

∂xi

+
1

ρ

∂

∂xj

(τij − ρuiuj) ,
(3)

where Ui is the mean-velocity vector, ρ is the fluid density, P the mean-

pressure, τij denotes the mean viscous stress tensor:

τij = 2µSij. (4)

In the equation (4), µ is the dynamic viscosity and the mean strain rate

tensor Sij is given by:

Sij =
1

2

(

∂Ui

∂xj
+

∂Uj

∂xi

)

.

The last term of equation (3) is the unknown Reynolds stress tensor resulting

on the fluctuating part of the Reynolds average which must be modeled.

The vehicle overtaking process is a transient physical phenomenon, with a

physical time of several seconds and a body displacement, which requires an

important computational effort. Accurate numerical methods, as LES for

example, remain too ambitious for the nowadays computer capability and

turbulence modelling is preferred [11, 12, 13]. The ζ − f model developed

by Hanjalić et al [14] seems to be a good compromise between two equations

models and second order models. This model is based on the v2 − f model

of Durbin [15] which is able to predict the near-wall turbulence anisotropy

by expressing the turbulent viscosity as a function of the turbulent kinetic

energy k and its dissipation ε, and a turbulent velocity scale v2 instead of k.
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However, the v2−f model is numerically unstable for too small y+. To resolve

this problem, Hanjalić et al [14] proposed to solve a transport equation for

the velocity scale ratio ζ = v2/k instead of v2.

First, the Reynolds stress tensor is expressed with the Boussinesq’s analogy:

−ρuiuj = 2ρνtSij −
2

3
ρkδij ,

where νt is the turbulent viscosity, δij is the Kronecker delta. In the ζ − f

model, the eddy-viscosity is defined as:

νt = Cµζkτ,

where τ is the time scale given as:

τ = max

[

min

(

k

ε
,

a√
6Cµ |S| ζ

)

, Cτ

(ν

ε

)1/2
]

.

The velocity scale ratio ζ is obtained from the following equation:

Dζ

Dt
= f − ζ

k
Pk +

∂

∂xk

[(

ν +
νt

σζ

)

∂ζ

∂xk

]

.

The equations of the turbulent kinetic energy and its dissipation are:

Dk

Dt
= (Pk − ε) +

∂

∂xj

[(

ν +
νt

σk

)

∂k

∂xj

]

Dε

Dt
=

Cε1Pk − Cε2ε

τ
+

∂

∂xj

[(

ν +
νt

σε

)

∂ε

∂xj

]

.

In above equations, the production is given by:

Pk = −uiuj
∂Ui

∂xj
.

The elliptic relaxation function f is formulated by using the pressure-strain

mode of Speziale et al [16]:

L2∇2f − f =
1

τ

(

c1 + C ′

2

Pk

ǫ

) (

ζ − 2

3

)

−
(

C4

3
− C5

) Pk

k
.
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Cµ Cε1 Cε2 c1 C ′

2 σk σε σζ Cτ CL Cη

0.22 1.4(1 + 0.012/ζ) 1.9 0.4 0.65 1 1.3 1.2 6.0 0.36 85

Table 1: Coefficients in the ζ − f turbulence model

The length scale L is:

L = CL max

[

min

(

k3/2

ε
,

k1/2

√
6Cµ |S| ζ

)

, Cη

(

ν3

ε

)1/4
]

.

Coefficients in above equations are given in table 1.

4.2. Numerical method and boundary conditions

The couple of equations (3) was solved using a commercial solver, AVL FIRE.

This software is based on a cell-centered finite volume method. The momen-

tum equations were discretized using a second-order upwind scheme. An

implicit second-order scheme was used for the temporal discretization. The

SIMPLE algorithm was used to couple the velocity and pressure fields. A

collocated grid arrangement was employed.

The numerical domain is shown in figure 3. The experimental wind tunnel

section is 5 m × 3 m and is cut in the numerical simulation. The width,

and the height, of the numerical domain represent respectively more than 11

times, and 5.5 times, the width of the vehicle. The length is set to 18 m for

the good progress of the deforming/sliding mesh strategy.

The uniform free stream velocity V∞ was set at the inlet boundary, in front

of vehicles. A static pressure was applied at the outlet. No-slip wall bound-

ary conditions were used on the bodies and on the floor. Finally, slip wall

boundary conditions were applied on the lateral and on the roof surfaces.
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Figure 3: Computational domain (dimensions in m).

4.3. Numerical details

The structured grids were made with the commercial grid generator Ansys

ICEM-CFD and consist of only hexahedral elements. The figure 4 shows

a side view of volume and surface meshes, for both bluff bodies. A grid

topology was constructed using several O-grids in order to concentrate most

of the computational cells close to the surface of the vehicles.

(a) slanted Ahmed body (b) 0◦ rear end Ahmed body

Figure 4: Surface and volume mesh of bluff bodies.

For the same resolution, the number of elements of the slanted body mesh is
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coarse middle fine

20 < ∆s+ < 960 20 < ∆s+ < 580 20 < ∆s+ < 500

20 < ∆l+ < 840 20 < ∆l+ < 560 20 < ∆l+ < 450

Table 2: Resolution in the streamwise and normal streamwise directions.

slightly more important due to a fine mesh necessity at the slant region.

Accuracy was established by making the original case simulation (k = 0.248

and Y = 0.25W ) on three different computational grids. The numbers of

elements are: 4 millions for the coarse mesh, 6 millions for the middle mesh

and 8 millions for the fine mesh. For a velocity of 30 m.s−1, the wall normal

resolution, n+, is such that n+ < 2, n+ < 4 and n+ < 6 for the fine mesh, the

middle mesh and the coarse mesh respectively. Note that the cell next to the

wall should reach n+ as a maximum less than 3 with the ζ − f model. The

resolution in the streamwise direction ∆s+, and the resolution in directions

normal to streamwise ∆l+ are reported in table 2 for the three computational

meshes. The time step was 5 × 10−4 s giving a CFL number around 0.9 for

the highest velocity.

4.4. Deforming and sliding mesh

The rectilinear displacement of a body is generally achieved by a sliding mesh

method. Indeed, this method is less time consumming than other methods

like overlapping meshes method for example. However, a sliding method de-

mands a specific treatment of the boundaries, like moving downstream and

upstream boundaries or periodic boundary conditions. The technique con-

sisting on the combination of a sliding and a deforming methods, and already

used by Krajnović et al [17], allows to obtain the efficiency of the sliding
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method while it is keeping the initial domain and the initial boundaries.

The resulting computational grids are illustrated in figure 5 for three different

times of the simulation.

(a) start

r1 r2 r3 r4

(b) middle

(c) end

Figure 5: Deformation of the computational grid for the overtaking process.

The overall domain is composed by two subdomains: the bottom one, con-

taining the stationnary body, remains fixed all along the simulation; and the
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top one, containing the moving body, is created by a mirror of the bottom

mesh and is subdivided in three zones, see the figure 5(b).

The part of the mesh between r2 and r3 is slided during the simulation.

The two remaining parts, between r1 and r2 and between r3 and r4, are

deformed. These deformations are compressions or stretching depending on

the direction of the translation of the middle part. The slided displacement

of the middle part avoids any problems of critical cell sizes and avoids any

numerical disturbances resulting from the mesh deformation.

These transformations are applied on the nodes. Let denotes by x the ab-

scissa of any node of the sliding mesh, at the time t the position of x is:























x = x + δ
x − r1

r2 − r1

, if x ∈ [r1, r2[ ,

x = x + δ, if x ∈ [r2, r3] ,

x = x + δ
r4 − x

r4 − r3

, if x ∈ ]r3, r4] ,

where δ = ∆ + Vrt, and ∆ is the initial displacement to place the overtaking

vehicle 5L backward. Afterwards, the volume of cells, the area of faces and

the centers are updated. Finally a common interfacing is performed between

the two meshes.

5. Results

5.1. Mesh resolution

The side force and the yawing moment coefficients obtained on the three

meshes, discussed in the section 4.3, are shown in figure 6 and compared to

the experimental data.
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Figure 6: Mesh resolution analysis. Side force (left) and yawing moment (right) coeffi-

cients.

As it can be seen, the coarse mesh involves a systematical overestimation of

amplitudes, especially on the side force, while the middle and the fine mesh

yield quasi similar results: relatively close to the experimental data. For this

reason, the middle mesh resolution is considered to be sufficient, as the fine

mesh does not bring significant improvements. It can be noted that there

are some differences between experimental data and numerical results. These

differences are discussed in the next section.

5.2. Coefficients behavior explanation

The figure 7 shows the numerical results obtained for the drag force, the

side force and the yawing moment coefficients. On these three graphs, the

5 vertical dashed lines, labelled by b©, c©, d©, e© and f©, correspond to the

critical moments for which the changes are substantial and which require

explanations.

The evolution of the pressure on the inner side of the overtaken vehicle can

bring a first explanation. The pressure distributions are shown in figure 8
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Figure 7: Curves behaviors explanation. Drag force (top left), side force (top right) and

yawing moment (bottom) coefficients.

for the five moments corresponding to the vertical lines of figure 7 and for

the position X = 2L which shows the steady state pressure, i.e. without the

influence of the overtaking vehicle. Similarly, figure 9 presents the instanta-

neous streamlines of the velocity field projected onto the plane z = 0.1558 m,

the half of the total height of the vehicle, for the six previous positions.
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(a) X/L = 2 (b) X/L = 1 b©

(c) X/L = 0.5 c© (d) X/L = 0 d©

(e) X/L = −0.5 e© (f) X/L = −1 f©

Figure 8: Pressure distribution on the overtaken vehicle

5.2.1. Before b©

As it can be seen in figure 9(a), the overtaking body has already an effect

on the flow at the aft of the overtaken one at the position X/L=2. This

can be identified on the drag coefficient which is decreasing. The positive

pressure field in front of the overtaking body involves an increase of the
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pressure at the aft of the overtaken body, then a drag reduction. Afterwards,

this positive pressure field occurs on the inner side of the overtaken body

and repels it, figure 8(b). This effect is, in a first time, concentrated on the

rear of the overtaken body. It involves an increase of the side force and a

decrease of the yawing moment (anticlockwise moment). Indeed, this positive

pressure field is only acting on the rear of the overtaken body, then the rear

of overtaken body is repelling. Besides, the overtaking body approach has

an effect at the aft of the overtaken body. As it can be seen in figure 9(b),

the flow separation from the overtaken body’s leading edge is disrupted and

the recirculating flow to the aft outer surface is shifted. Theses influences

yield a further anticlockwise moment.

In b©, the negative pressure in the front side of the overtaking body reduces

the pressure at the aft of the overtaken body. The pressure is reducing all

the more than the narrowing of the space between both bodies involves an

acceleration of the flow, then a pressure decrease. This low-pressure at the

aft of the overtaken body explains the drag pulse recorded.

5.2.2. Between b© and c©

The front of the overtaking body is next to the rear of the overtaken one,

then a Venturi effect appears. This Venturi effect is added to the negative

pressure on the front side of the overtaking vehicle to make a global low-

pressure effect. This yields a decrease of the side force with the reduction of

the pressure involved by the Venturi effect, both vehicles are attracted, and

an increase of the yawing moment. Indeed, this low-pressure effect is on the

rear of the overtaken body, then the rear of this body is pulling into the path

of the overtaking body. As the side force is decreasing, it should be noted
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(a) X/L = 2 (b) X/L = 1 b©

(c) X/L = 0.5 c© (d) X/L = 0 d©

(e) X/L = −0.5 e© (f) X/L = −1 f©

Figure 9: Streamlines of the velocity field projected on the plane z = 0.1558 m.

that the maximum is obtained at the position X/L=1.

The positive pressure in front of the overtaking body repels the front part of

overtaken one, figure 8(c), which increases further the yawing moment. The

combined effects of the low-pressure on the rear half of the overtaken body,

and the positive pressure on the front half of the overtaken body lead to the

maximum value for the yawing moment in c©, figure 8(c).

5.2.3. Between c© and d©

The overtaking body passed the central region of the overtaken one, the

low-pressure effect is now predominating: the side force decreases further and

18



is now negative; the yawing moment also decreases. Indeed, the low-pressure

effect is also acting on the front half of the overtaken body, which means that

the nose of the overtaken body is pulling into the path the overtaking one.

In d©, figure 8(d), both vehicles are side by side, the low-pressure effect is

maximum, which means the side force reaches its minimum value.

5.2.4. Between d© and e©

The low-pressure effect decreases, both vehicles repel each other, then the

side force increases. This low-pressure effect is concentrated on the front of

the overtaken body. Hence the yawing moment is still decreasing and is now

negative. Note that the yawing moment slightly increase just after d©. There

is an interaction between the flow separations occurring at the aft edges of

both bodies, figure 9(d). The drag coefficient reaches its minimum value due

to the low-pressure which is acting on the fore of the overtaken body.

5.2.5. Between e© and f©

The low-pressure effect still decreases: the side force increases and the

yawing moment increases.

5.2.6. After f©

When the overtaking body rear passes the front of the overtaken one,

both vehicles repel each other: the three coefficients increase. As seen, in

figure 10, a positive pressure part, is coming from the rear of the overtaken

body towards the overtaken one. The inner sharp edge at the aft of the over-

taking body is producing a flow separation which repels the overtaken body.

Furthermore, the flow at the aft of the overtaken body, figure 9(f), is similar

to the flow at the position X/L=1. The inner flow separation is disrupted by
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the flow at the aft of the overtaking body and the outer recirculating flow is

shifted. This yield to increase further the yawing moment.

Figure 10: Isosurface of pressure, p=20 Pa. At the position X/L=-1.

Finally, at the position X/L=-2, forces and moment are returned to the

equilibrium state.

5.3. Comparison of the numerical results with the experimental data

The first difference, and certainly the most substantial, is the numeri-

cal peak of side force around X/L=-1, figure 6, which does not exist in the

experimental data. First, it can be noted that this peak appears on ex-

perimental results for lower k which are, unfortunately, difficult to consider

numerically. This result is inconsistent with the numerical results of Corin

et al [12] for which rounded edges models are used. However, it is consistent

with the numerical results of Clarke and Filippone [11] for which sharp edges

are used. Moreover, Gilliéron [13] obtained the same kind of behavior with

his simulations of 3D slanted Ahmed bodies. This peak are induced by the
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flow separation occurring at the inner sharp edge at the aft of the overtak-

ing body. It should be noted that a RANS turbulence model is not able to

reproduce perfectly the flow around a body, especially behind sharp edges.

Hence, the effects occurred by sharp edges can be exacerbated.

The second effect is the weak increase of yawing moment at X/L=0: when

vehicles are side by side. Actually, such a behavior of the moment curves

start to show up for k = 0.248, on the experimental data, and it is more

substantial for k = 0.141 (see figure 11(b)).

Finally, it can be noted that the numerical simulation underestimates the

value of the first negative peak of yawing moment and overestimates the

second one, see figure 6.

5.4. Relative velocity effects

In the experimental work, 4 relative velocities were studied. Unfortu-

nately, two of them, k = 0.007 and k = 0.076, involve a low relative velocity,

then an important physical time. Hence, it is not possible to make reasonable

computational time calculation.

For the comparison, the case with a velocity ratio of k = 0.141 (Vr = 5 m.s−1)

is performed in addition of the original case k = 0.248. The numerical results

obtained for these two relative velocities are shown in figure 11 as well as the

experimental data.

For both cases, the numerical results are in good agreement with the exper-

imental data. Nevertheless, the overestimation of the first peak of side force

by the numerical simulation is slightly more substantial for k = 0.141 than

for k = 0.248. For k = 0.141, the numerical result of side force is constant

between X/L=0 and X/L=-0.5. However, it is consistent with the experi-
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Figure 11: Relative velocity effects on the overtaken body. Side force (left) and yawing

moment (right) coefficients. (◦ ) experimental, ( ) numerical.

mental data. The comparison between the two previous numerical results,

and a new case, k = 0.331 (Vr = 15 m.s−1), is illustrated in figure 12 with

the addition of the drag force coefficient.

The evolution of the main coefficients when varying the relative velocity

differs in the literature. Noger et al [6, 7] found that the aerodynamic coef-

ficients are independent of the relative velocity. Corin et al [12] found that
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Figure 12: Relative velocity effects on the overtaken body. Drag force (top left), Side force

(top right) and yawing moment (bottom) coefficients. ( ) k = 0.331, ( ) k = 0.248, ( )

k = 0.141.

when the relative velocity increased, the drag coefficient increased and the

side force decreased. Clarke and Filippone [11], and Gilliéron and Noger [10],

shown that an increase in relative velocity yields an increase in the peak co-

efficients. However, the coefficients are normalized with the velocity of the

overtaken vehicle in [10, 11].

In the present study, the coefficients decrease when the relative velocity in-

creases. When the relative velocity increases, the pressure field around the
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overtaking vehicle becomes more substantial: its size is larger and the value

of the dynamic pressure is more important. Therefore, the resulting forces

occurring on the overtaken vehicle become more substantial. But these forces

are normalized with the overtaking vehicle velocity which takes into account

the relative velocity. This can explain the decrease of aerodynamic coeffi-

cients peaks.

5.5. Transverse spacing effects

In order to study the effects of the transverse spacing, the calculation

k = 0.248 is carried out with two additional transverse spacing: Y = 0.5W

and Y = 0.7W . To perform these new calculations, a new mesh is made to

take into account the substantial difference of transversal spacing between

the case Y = 0.25W and the case Y = 0.5W . This new mesh is deformed,

in the transversal direction, for the calculation of the case Y = 0.7W .

The results, for the side force and the yawing moment coefficients, are shown

in figure 13.

Both numerical results are in good agreement with the experimental data.

Nevertheless, the numerical simulation underestimates the minimum value

of the side force.

Figure 14 shows the evolution of the drag force coefficient, the side force co-

efficient and the yawing moment coefficient for the three different spacings.

The last graph represents the evolution of the coefficient magnitudes as a

function of the logarithm of the transverse spacing.

It can be easily seen that the coefficient amplitudes reduce when the trans-

verse spacing increases. Besides, the effects occurring at X/L=0 and X/L=-1

are lower for the two highest spacings. The last graph shows that the evo-
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Figure 13: Transverse spacing effects on the overtaken body. Side force (left) and yawing

moment (right) coefficients. (◦ ) experimental, ( ) numerical.

lution of magnitudes is a linear function of the logarithm of the transverse

spacing. This result was already shown by Noger et al [7].
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Figure 14: Transverse spacing effects on the overtaken body. Drag force coefficient (top

left), side force coefficient (top right), yawing moment coefficient (bottom left) and coef-

ficients magnitudes. ( ) Y = 0.25W , ( ) Y = 0.5W , ( ) Y = 0.7W .

5.6. Overtaking vehicle

In order to study the effect on the overtaking vehicle, the moving vehicle

is moved backwards, i.e. with a negative relative velocity. By doing this, the

stationnary vehicle represents the overtaking vehicle and the measurements,

in the experimental study, are possible. The comparison between experi-

mental and numerical results are shown in figure 15 for a velocity ratio of

k = 0.196.
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Figure 15: Effects on the overtaking body. Side force (left) and yawing moment (right)

coefficients. (◦ ) experimental, ( ) numerical.

The behavior of the numerical curves are in agreement with the experimental

results. However, the magnitudes of the side force and the yawing moment

are more overestimated than for the overtaken vehicle.

5.7. Squareback bodies

The study of the 0◦ rear end body allows to highlight the capacity of

the numerical methodology to reproduce the phenomena with a different

geometry. For this case, the experimental drag force coefficient is available,

and its results, experimental and numerical, are shown in figure 16 with

the side force and the yawing moment coefficients. In order to highlight

the effects induced by the squareback body, the numerical results obtained

on the hatchback body are also shown. For a further comprehension, the

experimental data of the squareback and the hatchback bodies are the same.
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Figure 16: Effects on the squareback body. Drag force (top left), side force (top right)

and yawing moment (bottom) coefficients. (◦ ) experimental, ( ) numerical results for

the squareback body, ( ) numerical results for the hatchback body.

5.7.1. Experimental/numerical comparison for the squareback bodies

The peaks of coefficients are slightly overestimated by the numerical re-

sults. However, numerical and experimental results are similar. The evolu-

tion of the drag force, for which this is the first comparison with experimental

data, is well reproduced. Note that, in the numerical result, the prompt in-

crease of drag force, at the position X/L=1, is subdivided in two. As for

the increase of yawing moment at X/L=0, discussed previously, this result
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appears on the experimental data for lower relative velocity, see [7].

5.7.2. Numerical comparison for the squareback and the hatchback bodies

It can be noted that for all the positions where flow separations effect

have been remarked, i.e. X/L=1, X/L=0 and X/L=-1, the squareback body

produces higher peaks. These flow separations come from the inner sharp

edge at the aft of the bodies. The size of this sharp edge is 123.2 mm, see

figure 1, for the slanted body while it is 201.6 mm for the squareback body.

The separation flow effects are, then, more substantial.

6. Conclusions

A three-dimensional numerical methodology, with a deforming/sliding

mesh method and the ζ −f turbulence modelling, was successfully employed

to simulate the dynamic passing process between two vehicles. Studies have

highlighted the capacities of the numerical method to well reproduce the

effect of the relative velocity and of the lateral spacing on the aerodynamic

forces and moments. A complete analysis has enabled to explain all the

effects acting on the coefficients.

For the overtaken vehicle, it was shown that an increase of transversal spacing

involves a decrease of aerodynamic coefficients amplitudes. Similarly, the

aerodynamic coefficients peaks decrease when the relative velocity increases.

The initial purpose of the project is to study some critical safety situations

occurring during an overtaking. It was shown that the numerical set-up was

suitable in the case of two identical vehicles overtaking, it remains to study

two of the most substantial critical situations:
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• when the overtaking occurs between vehicles with different sizes like a

truck and a car

• when the vehicles are submitted to gusty winds and gusty crosswinds.

There is no reason to believe that the present numerical methodology fail to

predict the good coefficients in a car-truck passing configuration.As for cross-

winds, the effects are more difficult to reproduce with a RANS turbulence

modelling.
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