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Abstract. Birds and insects demonstrate impressive aerial 

capacities in terms of hovering, backward flight or sudden 

acceleration and their diversity brings multiple solutions to 

design micro- and nano-air vehicles (MAV’s and NAV’s). To 

allow a remotely flight control of such vehicles, many scientific 

and technological challenges have to be solved.  First, it is 

necessary to mimic the flapping of an insect or bird in order to 

produce sufficient lift forces. Second, the conception and the 

design of the vehicle must integrate not only the design of the 

structure but also implement the electronic control 

functionalities. 

Within this context, this work presents a dynamic Bond 

Graph model of a flapping wing MAV. The objective is to use this 

model in order to better understand the flapping flight 

performed in nature. The Newton-Euler formalism with body 

fixed coordinates is chosen to model the dynamics of the MAV 

which features a body and two wings along which the 

aerodynamics efforts are integrated. Moreover, the graphical 

nature and explicit power flow path inherent in the Bond Graph 

facilitates model construction and troubleshooting. Open-Loop 

simulations are performed using commercial existing software 

and compared successfully with experimental data published on 

the RoboFly.  
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I.  Introduction  

Unmanned Aerial Vehicles (UAV’s) enjoy the latest 

technology and seem ready to conquer the civilian and defence 

markets. In particular, a great interest is focused on micro-air 

vehicles (MAV’s) and nano-air vehicles (NAV’s) which 

expand the applications of more traditional UAV’s due to their 

high manoeuvrability, portability and aeromechanical 

propulsion efficiency. The development of miniaturized 

structures, propulsion and navigation systems, aerodynamics, 

flight controllers, actuators and sensors are just a few of the 

current research topics in the field of MAV and NAV as 

shown in the last edition of the International Competition of 

Micro Aerial Vehicle and Flight competition (IMAV 2013) 

[1]. Among those topics, flapping MAVs are subject to a 

growing interest. They are inspired by insects and birds and 

fly by generating lift through oscillation or flapping of wings 

[2].  

The first active flapping MAV reviewed was the Terrestrial 

Entomopter: it was constructed of the Reciprocating Chemical 

Muscle (RCM) actuator and stereolithographic wings. Flight 

control was achieved through the actuation of the x-wing 

design of the system. The University of Delft [3] proposed a 

MAV called the DelFly micro which was able to fly in 

outdoor and indoor for several minutes. This MAV only 

weighed 3 grams and had a size of 10cm from wing tip to 

wing tip. This makes it the smallest flying ornithopter carrying 

a camera in the world. From its side, Defence Advanced 

Research Projects Agency (DARPA) contributed to create a 

prototype "hummingbird-like" aircraft for a “NAV” program 

[4]. The result was called the Nano Hummingbird which can 

fly at 18km/h and move in three axes of motion. The artificial 

hummingbird manoeuvres using its flapping wings for 

propulsion and attitude control. It includes the systems 

required for flight: batteries, motors, and communications 

systems as well as the video camera payload.  

By scaling down prototypes around a wingspan of 3-5 cm, 

NAV‘s are scarce [5] and only the tiny fly by Wood et al. [6] 

is currently capable of flying under tethered power supply. 

Novel fabrication methods, design strategies as well as 

actuation concepts are here mandatory and micro-electro-

mechanical systems (MEMS) technologies offer a very 

attractive solution by providing reliable, accurate and efficient 

microstructures such as required by a flapping-wing NAVs. 

To our knowledge, IEMN is the only ones to propose an entire 

MEMS structure called OVMI [7-8] able to produce large 

displacement and lift through the use of an electromagnetic 

actuator.   

The modelling and control of insect-like flapping wing MAV 

and NAV is widely studied and continuing to expand. Many of 

the research present in the literature focus on the standard 

aircraft six degrees of freedom equations found in many flight 
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dynamics textbooks, e.g., the treatment by Etkin and Reid [9]. 

For example, Doman et al. [10-11] present modelling and 

control of a flapping wing MAV based on the RoboFly 

presented in [12]. The aerodynamic model used in the 

simulations is developed in [13] and based on the work of 

Sane and Dickinson in [14]. The standard aircraft equations of 

motion are justified here by assuming that either acceleration 

or the gyroscopic effects of the wings are small, compared to 

the body effects, or that the effects averaged over one flapping 

cycle are identically zero. An alternative approach is to use a 

combination of analysis and experimentation. For example, 

Perez et al [15] propose a two-stage methodology for tackling 

the problem: in the first stage, substantial a priori information 

about the system is gathered through system identification; in 

the second stage, the information collected through the static 

flapping experiments is employed to design the controller used 

in vertical flight. The design of the proposed controller relies 

on the idea of treating an exciting signal as a subsystem of the 

NAV.  

Since the controlled flight of our NAV [8] requires optimizing 

the actuation in terms of power consumption, this paper 

introduces Bond Graph modelling to the field of flapping 

UAV’s. Indeed, we chose to use language software adapted to 

mechatronic systems and energetic study. Our long-term goal 

is to build a full system description model, including the 

power actuation-transmission system [16] and the dynamic 

behaviour of the OVMI. As a first step, we focus in this paper 

on the Bond graph dynamics modelling of a MAV similar to 

the RoboFly in order to validate our modelling approach. 

II. Flapping Wing MAV

A. Global  dynamics equations 

E

Fig. 1. Flapping wing MAV schematic with reference frames.  

To derive the equation system of the flapping wing MAV, we 

assume that the wings are rigid and that the MAV structure is 

symmetric. Figure 1 shows the coordinate system for the two 

models. The earth frame is denoted: E (E; xE, yE, zE) and the 

body frame is denoted B (B; x, y, z). The right (left) wing 

frame is denoted WR(WR; xR, yR, zR) (WL(WL; xL, yL, zL)), WR 

and WL being the articulation points of the right and left wings 

respectively. Another important frame is the aerodynamic 

frame AL,i (AR,i), which corresponds to the right (left) 

aerodynamic frame of the i
th

 wing element with origin the 

aerodynamic centre of pressure.  

Assuming that the mass and inertial of the wings as well as the 

aerodynamic forces on the body are negligible, the equations 

of motion of the flapping wing MAV developed in the 

Newton-Euler formalism can be expressed as:  

BEBBext VΩVF mm ⊗+=
•

(1)

EBEBEBext ΩΩΩM bb II ⊗+=
•

(2)

with m, Ib being the body mass and inertia tensor about its 

respective centre of mass, whereas VB and ΩEB are the 

translational velocity with respect to the earth frame and the 

angular velocity of the body with respect to the earth frame 

expressed in the body frame respectively. Moreover, Fext and 

Mext stand for the sum of external forces and moments applied 

at the centre of mass, namely: gravitational and aerodynamic 

efforts.  

gFF aeroext m+= (3)

aeroext MM = (4)

To express the dynamic resultant Faero and moment Maero of 

the aerodynamic forces, the local aerodynamic forces and 

moments must be converted from the aerodynamic frame to 

the earth frame.  
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where FaeroR and FaeroL denote the aerodynamic forces within 
the earth frame, whereas DR,i, DL,i and LR,i, LL,i represent the 

drag and lift components on the ith chord-length element of the 

right and left wings respectively. Here REB (resp. RBW) is the 

rotation matrix between the earth frame and the body frame 

(resp. between the body frame and the wing frame) whereas 
RWAi corresponds to the rotation matrix between the wing 

frame and the aerodynamic frame of the ith wing element.  
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Here RWB  is the rotation matrix between the wing frame and 

the body frame whereas (xW, yW, zW) and (xA,i, yA,i, 0) 
correspond to the coordinates of the articulation wing point 

and the aerodynamic pressure center of the ith wing element. 

Note that the indices R and L for lift and right wings 

respectively are deliberately removed in the following to 

simplify the expressions. 

B. Aerodynamic forces 

As shown on figure 1, the model of aerodynamic forces is 

based upon a local bi-dimensional approach: each wing is 

decomposed into a given number of parallel, chord-length 

elements, and the aerodynamic characteristics such as velocity 

V and angle of attack α are locally calculated for each element 
using aerodynamic 2D models.  

For a given ith wing element, the expression of the local 

aerodynamic velocity Vi is given by [17]:  
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Where Ai is the aerodynamic centre of the ith element and ΩBW 

the rotation vector between the wing and the body defined 

with the derivatives of the kinematic angles ξ, λ, µ, ν. More 

precisely, ξ is the angle of the stroke plane, λ the flapping 

angle, µ the deviation angle from the stroke plane and ν the 
pitch angle of the wing around its longitudinal axis. They 

correspond to the four possible rotations of the wing with 

respect to the body. 

Then the local aerodynamic angle of attack αi can be 

expressed as a function of the components of Vi within  

( ) )1j(j 2

,, −=−−∠= zixii VVα (8) 

Both components Di, Li of the aerodynamic forces can be 

represented within the aerodynamic frame of the ith element as:  
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with the following aerodynamic coefficient functions 

respectively for the stationary, rotational, mass lift and drag:   
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       (10) 

Where Si, c, and lx represent the surface, the chord and 

distance between the leading edge and the axis of rotation. 

kCxo, kCx1, kCz1, are constants based on measurements. 

The elementary aerodynamic forces are then summed up and 
integrated within the earth frame, in order to obtain the 

translational and rotational velocities of the global MAV. 

C. Bond Graph modeling 

Figure 2 displays the bond graph schematic for the flapping 

wing MAV. In the actuation block, a mathematical description 
of the rotations angles of the wings are programmed (ξ, λ, µ, 

ν). It feeds the kinematics blocks for the right and left wings 

respectively. This block allows computing the rotation matrix, 

angular and translational velocities. For example, the rotation 

matrix RWB between the wing frame and the body frame, as 

well as the rotation matrix REW between the earth frame and 
the wing frame which are inputs of the aerodynamic velocity 

block. Then the velocity block solves equation 7 whereas the 

aerodynamic forces block computes equation 5, 6 and 8-10.  

Note that only the left side of the model is depicted in figure 2 

as it is a symmetric model. Aerodynamic forces and velocities 

are also side dependant, whereas the dynamic block where the 
Newton-Euler equations are solved is common to both wings 

as all moments and forces (right and left) are taken into 

account. 

Then the Bond graph representation of the Newton Euler 

equations (1)-(2) is shown in Figure 3 where the upper triangle 
relates the energy flow in translational dynamics and the lower 

triangle defines rotational dynamics. The three 1-junctions 

both in the upper and lower triangles provide the nodes for 

external forces and moments respectively.  
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III. Results and Discussion

To validate the bond graph model, open loop simulations have 

been performed. It is worth mentioning that the open loop 

system is unstable, as a consequence, in the model 

development, we have introduced the possibility to lock each 

of the 6 degrees of freedom of the system (3 in translation, 3 
in rotation). The first step is to lock all of them as in this static 

configuration; a comparison with experimental results on 

flapping wing robots is possible [14]. Then, the study of 

motion along one axe is possible, such as elevation / descent 

when the zE translational degree of freedom is unlocked. 

A. Validation of the aerodynamic model 

Aerodynamic velocities and aerodynamic efforts have been 
calculated and compared to measurements available in the 
literature. 
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A mathematical description of flapping wing insects was 

programmed to mimic wing kinematics, namely: flapping and 

pitch angle. In the case of wings insects µ = 0, moreover, the 
case considered here for validation, a flapping robot, requires 

to take ξ = 0. A typical evolution of the derivatives: dλ/dt and 

dν/dt is displayed Figure 4. The periodic laws define the input 
signals for our simulations; the pitch angle is a square like 

function as it has been shown that incidence is quite constant 

during stroke. They have been parameterised in order to be 

able to compare our simulations with the Robotfly 

experimental results [14]. 

Figures 5 and 6 represent the evolution of the local 
aerodynamic horizontal (Vxi) and vertical (Vzi) velocities as a 

function of time, each curve being the result obtained for one 

of the 10 slices the wing has been devised into (i=1 represents 

the slice of the wing the closer to the wing hinge point). It is 

observed that aerodynamic speeds are increasing as a function 

of distance along the wing as expected. This results in the 
evolution of the aerodynamic velocity norm, figure 7. 
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The evolution of lift forces are depicted by figure 8, it 

represents the steady lift force and the rotational lift forces. 

Both forces depend on the local aerodynamic norm. Moreover, 
it can be observed that the rotational lift force evolution 

depends also on the pitch angle derivative. In figure 9 

evolution of the total lift force is plotted. Both qualitative 
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evolution and quantitative value of experimental results are 

well reproduced [14]. 
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B. Dynamic model 

One degree of freedom has then been released: translation 

along zE-axis. This allows us to study the displacement, 

position, velocity, along this axis. In particular we want to 

verify the influence of the forces produced by the flapping of 

the wing on the MAV motion. 
Figure 10 displays the evolution of the velocity w along zE -

axis, it corresponds to a free fall of the MAV: only the weight 

is taken into account. Figure 11 illustrates that, when the 

flapping frequency is no more null, the total lift force produces 

a force that is sufficient to slow down the falling of the MAV.  
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for zero thrust.  
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IV. Conclusion

In this paper we have introduced bond graph modelling to 
the field of flapping wing MAV aerodynamics. This model 
has been validated thanks to experimental published results. 
Bond graph modelling enables an efficient approach of 
complex and coupled dynamics modelling, as illustrated by 
this paper. Flapping wing MAV is a mechatronic system, as 
such, the concern about different energies domains is crucial: 
in our approach, next step is to merge this model with the 
model of power transmission of a flapping wing nano air 
vehicle [16].  

It is well know that the bond graph approach also 
facilitates extension of the model to include control concerns, 
future extensions of the model will be connected with 
regulation laws. Moreover, thanks to the discrete nature of the 
wing model, this model can be improved by taking into 
account in a future development the flexibility of a real wing. 
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