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Abstract

This paper deals with the construction of the Algebraic Trigonometric Pythagorean
Hodograph (ATPH) cubic Hermite interpolant and analyzes the existence and character-
izations of solutions according to the tangents at both ends and a global shape parameter
denoted α. Since this degree of freedom can be used for adjustments, we study how the
curve evolves with respect to α. As an example of the use of this parameter, a simple
fitting method is proposed to determine the unique ATPH curve passing through a given
point in addition to the Hermite constraints.

Keywords: Pythagorean hodograph · Trigonometric functions · Algebraic trigonometric ·
Trigonometric polynomials · Circle arc · Hermite interpolation

Mathematics Subject Classifications (2020): 41A05 · 42A15 · 51N05 · 65D05 · 65D07 ·
65D10 · 65D17 · 68U07

1 Introduction

The most commonly used schemes in CAD and CAGD for the representation of curves and
surfaces are specified by polynomial and rational parameterizations, such as Bézier curves,
B-splines or NURBS. Even though these models offer many advantages, they have important
drawbacks that Mainar et al. detailed in [6]. For example, on the one hand, calculations
related to polynomial parameterization are quite simple but only make it possible to represent
a restricted range of curves, excluding conics. On the other hand, rational parameterization
allows us to obtain conics and trigonometric curves, but comes at the expense of additional
weights for each control point or a less user-friendly process for differentiation. To avoid these
inconveniences, it could be interesting to investigate other curve spaces.

In order to generalize the Bernstein bases (while preserving their most important properties)
for other function spaces, Carnicer and Peña have introduced in [2] the concept of B-basis.
Mainar et al. have provided in [6] criteria for finding a B-basis in a general case. The curves
they defined display all the positive properties of the Bézier scheme from variation diminishing
to tangency to the control polygon at the endpoints. The reader can refer to their work for
further details.
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Figure 1: G1 Hermite interpolation data.

The authors in [6] gave a particular solution for the mixed Algebraic Trigonometric curve
(AT curve thereafter) space Pm(K) = span{1, t, {cos(kt), sin(kt)}mk=1} for m = 1 and m = 2
(where K can be either R or C). They defined in this paper a B-basis {Zk(t)}3k=0 of the cycloidal
curve space P1(K), described on [0, α] with α ∈ ]0, 2π[ a global shape parameter. A Wolfram
demonstration of these bases and curves is available in [3].

The underlying benefits of the previously cited mixed AT space Pm(K) has then been com-
bined with the Pythagorean Hodograph (PH) feature in [9]. Indeed, PH curves, introduced by
Farouki and Sakkalis in [5] for the Bézier curves, enable to compute explicitly the arc length,
the curvature, or the offset curves. A new class of curves, denoted ATPH, was partially inves-
tigated in [9] for m = 2. In [4], the authors gave a straightforward and exhaustive description
of these curves through their complex expression, and proposed an in-depth study of spaces
P1(K) and P2(K).

In particular, ATPH curves have degrees of freedom which could be used in different areas
such as interpolation problems. In this paper, we will investigate ATPH in P1(R) to find the
geometric Hermite interpolant.

In Section 2, we start with the study of the construction of cubic ATPH Hermite inter-
polants. Then, we analyze in Section 3 the conditions needed for the existence of such solutions.
As we will see throughout this paper, the ATPH solutions depend on the α parameter which
can be used for solving other problems. Consequently in Section 4, we look at the influence
of α on the curve shape by working on the control polygon. Finally, in Section 5 we focus on
an example showing how to find the ATPH cubic Hermite interpolant that passes through one
given additional point.

2 A cubic ATPH for the Hermite problem

The Hermite problem we are going to deal with consists of interpolating two points and two
tangent directions by a cubic ATPH curve. Therefore, we consider two distinct points P0 and
P3 and two oriented angles, θ0 ∈ [−π, 0] and θ3 ∈ [0, 2π[. The choice of these intervals allows
us to study all possible cases without any loss of generality.

In the coordinate system (P0, i, j) where i =
P3 −P0

∥P3 −P0∥
and j = rotπ

2
(i), we define two unit

tangent vectors t0 = (cos θ0, sin θ0) and t3 = (cos θ3, sin θ3) (cf. Figure 1).
Let rα(t) be the parameterization of the solution for a given value of α belonging to ]0, 2π[
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and P = (P0,P1,P2,P3) its control polygon relative to the B-basis. We need to verify:

rα(0) = P0, rα(α) = P3,

drα
dt

(0) = λ0t0,
drα
dt

(α) = λ3t3,

where λ0 and λ3 are strictly positive real numbers. Note that if t0 and t3 are both collinear with
P3 − P0, the solution of Hermite’s problem is trivially a line segment and is of little interest.
Therefore, we will exclude this case in the rest of the article, and we will denote by H the
domain [−π, 0]× [0, 2π[ for (θ0, θ3) without couples (−π, 0), (−π, π), (0, 0) and (0, π).

According to [4], a cubic ATPH curve is characterized by the complex relation:

(∆p1)
2 = Kα∆p0∆p2 with Kα =

4

(α− sinα)2

(
2 sin

α

2
− α cos

α

2

)2

, (1)

where pi is the complex form of the control point Pi for i = 0, 1, 2, 3. From these expressions
we get:

l21 = Kαl0l2 and θ1 = θ2, (2)

where θ1 = ∠(P0 − P1,P2 − P1), θ2 = ∠(P1 − P2,P3 − P2) and, in polar form, ∆pk =
pk+1 − pk = lke

iβk for k = 0, 1, 2 (cf. Figure 2).
In the sequel, the Kα value appears many times. It is therefore necessary to detail its

elementary properties that can be established by some straightforward calculations.

Proposition 1. The term Kα is an increasing and continuous function of α. It belongs to the
range ]1, 4] when α is in the interval ]0, 2π] and Kα tends to 1 as α approaches 0. Moreover√

Kα =
2

α− sinα

(
2 sin

α

2
− α cos

α

2

)
.

From the data described above, we have θ1 = π−β0+β1 and θ2 = π−β1+β2. Besides, the
Hermite conditions G1 imply β0 = θ0 and β2 = θ3. From (2), we therefore deduce −β0 + β1 =
−β1 + β2, hence β1 =

1
2
(β0 + β2) to within π. So

β1 =
1

2
(θ0 + θ3) or β1 =

1

2
(θ0 + θ3) + π. (3)

To begin with, let us consider the first possibility. We will see afterwards how to take into
account the second one.

By Chasles’ relation, we obtain:

∆p0 +∆p1 +∆p2 = p3 − p0,

l0e
iβ0 + l1e

iβ1 + l2e
iβ2 = p3 − p0,

l0e
iθ0 +

√
Kαl0l2 e

i
θ0+θ3

2 + l2e
iθ3 = p3 − p0, (4)

so, if we set L =

√
l2
l0
:

(3) ⇔ eiθ0 + L
√
Kα e

i
θ0+θ3

2 + L2eiθ3 =
p3 − p0

l0
, (5)

ℑm(5) ⇔ sin θ0 + L
√
Kα sin

(
θ0 + θ3

2

)
+ L2 sin θ3 = 0, (6)

ℜe(5) ⇔ cos θ0 + L
√
Kα cos

(
θ0 + θ3

2

)
+ L2 cos θ3 =

∥P3 −P0∥
l0

. (7)
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Figure 2: Cubic ATPH polygon data.

When the degree of equation (6) is 2, i.e. for θ3 ̸= 0 and θ3 ̸= π, the discriminant is

∆ = Kα sin
2

(
θ0 + θ3

2

)
− 4 sin θ0 sin θ3, (8)

and the solutions, when they exist, are

Lε =
1

2 sin θ3

(
−
√
Kα sin

(
θ0 + θ3

2

)
+ ε
√
∆

)
, (9)

where ε ∈ {−1,+1}. For the sake of clarity, we will denote them respectively L− and L+.
When the real number

Gε = cos θ0 + Lε

√
Kα cos

(
θ0 + θ3

2

)
+ L2

ε cos θ3, (10)

is positive, we deduce from (7) the value of l0 and then l2. With the previous expressions of
β0, β1 and β2, we can determine ∆pi, for i = 0, 1, 2 and therefore the control polygon of the
solution rα.

When θ3 = 0 or θ3 = π, equation (6) is of degree 1 and requires a specific study which is
done in Section 3.4.

Remark 1. The values α = 0 and α = 2π are excluded from the study. On one hand, the
second and third functions Z1(t) and Z2(t) of the B-basis become null as α approaches 2π.
Therefore rα tends to the segment [P0P3], which obviously constitutes an improper solution (it
will however be useful in the last part of this article). On the other hand, when α approaches
0, the cubic AT curve becomes the cubic polynomial Bézier curve of the same control polygon
as shown by Zhang in [11]. This is consistent with the results of this part, since when the
parameter Kα tends to 1, the expressions (8), (9) and (10) are identical to the formula given
by Walton and Meek in [7] and by Byrtus and Bastl in [1] for the polynomial case.

3 Existence of solutions

The solutions described in the previous part do not always exist. We now have to clarify their
conditions of existence, i.e. the domains on which the values of ∆, Gε, Lε, defined by the
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Figure 3: Domain D+ for α =
π

6
, α =

7π

6
and α =

11π

6
.

expressions (8), (9), (10) are positive. As said previously, the cases θ3 = 0 and θ3 = π are
different from the general one and will be treated separately.

3.1 Sign of the discriminant

Let us denote by D+ the domain ofH where ∆ ≥ 0, whose boundary is defined by the functions:

f1(θ0) = 2π − arccos
K2

α cos θ0 − 4(8−Kα)
√
4−Kα sin

2 θ0
K2

α + 16(4−Kα) sin
2 θ0

,

f2(θ0) = 2π − arccos
K2

α cos θ0 + 4(8−Kα)
√
4−Kα sin

2 θ0
K2

α + 16(4−Kα) sin
2 θ0

.

Since Kα ∈ ]1, 4[, these two functions are well defined for any value of α ∈ ]0, 2π[. Of
course, the shape of this domain depends on this last parameter (see Figure 3). The function
f1 describes the lower border of the domain, and f2 the upper border (see Figure 4). So the
domain D+ is described by

D+ = {(θ0, θ3) ∈ H | θ3 ≤ f1(θ0) or f2(θ0) ≤ θ3}.

We can remark that for θ3 < π, we have ∆ > 0, hence the condition is always verified.

3.2 Sign of l0

Once Lε is determined using (9), l0 is obtained from the relation (7). Therefore, l0 and the real
number Gε have the same sign which has to be positive. Moreover, the case Gε = 0 should
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Figure 4: Edges of D+, Γ+ and Γ− domains for α =
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be excluded, otherwise the length l0 would be infinite. Here we will study the sign of Gε, as
defined in (10), using the expression (9) for Lε.

Denoting Γ+ and Γ− the subdomains ofH where G+ > 0 and G− > 0 respectively, a solution
exists if and only if (θ0, θ3) belongs to Γ = Γ+ ∪ Γ−. The relations (9) and (10) allow us to
establish, after some long calculations, that

Γ+ = {(θ0, θ3) ∈ H | θ3 ≥ π − θ0 and (f2(θ0) < θ3 < ψ1(θ0) or θ3 < f1(θ0))}
∪ {(θ0, θ3) ∈ H | θ3 < π − θ0 and (θ3 < ψ1(θ0)},

Γ− = {(θ0, θ3) ∈ H | θ3 ≥ π − θ0 and (f2(θ0) < θ3 or ψ1(θ0) < θ3 < f1(θ0))}
∪ {(θ0, θ3) ∈ H | θ3 < π − θ0 and (θ3 < ψ0(θ0) or ψ1(θ0) < θ3)},

with

ψk(θ0) = θ0 + arccos

(
Kα

2
− 1

)
+ 2kπ, (11)

ψk(θ0) = θ0 − arccos

(
Kα

2
− 1

)
+ 2kπ. (12)

Since Kα ∈ ]1, 4] according to Proposition 1, these functions are well defined. Only the lines
corresponding to ψ0(θ0), ψ1(θ0) and ψ1(θ0) are in the domain H (cf. Figure 4) and are involved
in the description of Γ+ and Γ− (cf. Figures 5 and 6).

This result is a generalization of [1] focusing on the polynomial curves, which corresponds
to the case Kα = 1 for α = 0 in our study. The ATPH feature provides therefore a wider
domain of solutions through the variations induced by the α parameter.

Remark 2. If ∆ ≥ 0 and Gε < 0, the curve exists with l0 < 0 and therefore l2 < 0. A length
being positive, the notion of algebraic measure would then be more appropriate to cover this case.
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As seen in Figure 7, this means geometrically that the orientations of
−−−→
P0P1 and t0 are opposite,

as the orientations of
−−−→
P2P3 and t3 are. If the constraints of the Hermite problem concern only

the direction of the tangents and not their orientation, these solutions are convenient. The only
condition that θ0 and θ3 must then verify is ∆ ≥ 0, ie (θ0, θ3) ∈ D+.

3.3 Sign of roots

As Lε =
√
l2/l0, its value is positive. However, equation (6) can have negative roots. We will

show that they are also solutions of the Hermite problem.
Relation (3) gives two expressions for β1. The second one leads to slightly different expres-

sions of equations (6) and (7):

sin θ0 − L
√
Kα sin

(
θ0 + θ3

2

)
+ L2 sin θ3 = 0, (13)

cos θ0 − L
√
Kα cos

(
θ0 + θ3

2

)
+ L2 cos θ3 =

∥P3 −P0∥
l0

. (14)

We notice that Lε is a solution of (6) if and only if −Lε is a solution of (13). Therefore, the
expression (14) with the solution −Lε of (13) is identical to the expression given by (7) for Lε.
So the value of l0 is the same in both cases.

Proposition 2. When Lε < 0, we always have l0 =
∥P3 −P0∥

Gε

and l2 = L2
εl0. In this case,

β1 = π +
θ0 + θ3

2
and the polygon (P0,P1,P2,P3) is then crossed (see Figure 8).

A crossed polygon often gives a looped curve, which is often unsuitable in CAGD. As a
consequence, it is important to determine the sign of Lε when Gε > 0 and ∆ ≥ 0. Some
considerations about the roots of equation (6) lead to the following result.

Proposition 3. When the roots of equation (6) exist and verify Gε > 0, we have L+ > 0 for
all the values of θ0 and θ3, and L− > 0 if and only if θ3 > π. The polygon is then crossed if
and only if ε = −1 and θ3 < π.
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Figure 8: Example of a double solution with L+ > 0 and L− < 0.

3.4 Particular case: θ3 = 0 and θ3 = π

As said in Section 2, equation (6) is of degree 1 when θ3 = 0 or θ3 = π.

If θ3 = 0, its solution is then L = L0 =
−2√
Kα

cos
θ0
2

which is always negative. So β1 =

π+
θ0 + θ3

2
(according to Proposition 2) and its polygon is Z-shaped. DenotingG0 the equivalent

of Gε for L0, we obtain from (14) G0 = 1 +
2

Kα

+ 2

(
1 +

1

Kα

)
cos θ0 which is positive if and

only if θ0 > arccos

(
Kα + 2

2(Kα + 1)

)
− π.

If θ3 = π, the solution of equation (6) is L = Lπ =
−2√
Kα

sin
θ0
2

which is positive. With the

same convention, Gπ =
1

Kα

(2 cos θ0 − 2 +Kα) is positive if and only if θ0 > − arccos

(
1− Kα

2

)
.

4 Evolution of l0 and l2 with respect to α

The shape of the control polygon determines the curve and may sometimes involve the presence
of inflection points, cusps or loops. These elements are undesirable for most CAD, CAD/CAM,
or computer graphics applications. In an upcoming paper, we will propose a characterization of
the shape of an AT cubic curve according to its control polygon. For now, we will just assume
that the control polygon is convex, which is a sufficient condition to eliminate undesired elements
according to the variation diminishing property. Obviously, this requirement is equivalent to
θ3 < π and ε = 1. The corresponding two cases are illustrated in Figure 9.

The ATPH solution of the Hermite problem depends on α which gives an additional degree
of freedom, the polynomial solution being a particular case obtained for α = 0. This free
parameter can be used to solve various additional problems (velocity, interpolation point, . . . ),
as will be shown in Section 5. It is therefore important to analyze the evolution of the curve with
respect to α. For this purpose, we will study a geometrical version of our problem throughout

9
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Figure 9: Shape of the control polygon when the lines D0 and D3 instersect.

the different configurations of the control polygon.
Considering two points A and B, we denote by AB the algebraic measure from A to B. Let

D0 (resp. D3) be the line passing through P0 (resp. P3) with t0 (resp. t3) as the orientation
vector. Firstly, we suppose the existence of the intersection point of D0 and D3, denoted by C.

According to the initial constraints of the Hermite problem, the points P1 and P2 must be

chosen such that
−−−→
P0P1 and t0 have the same orientation, and

−−−→
P3P2 and t3 are opposite vectors.

The measures l0 and l2 are here defined algebraically, with l0 = P0P1 and l2 = P2P3, however
these two values remain positive. Moreover, as θ1 = θ2 according to (2), the triangle CP1P2 is
isosceles with apex C. We therefore define the measures a = CP0 and b = CP3. These two
values are constant with respect to α. As CP1 = −CP2, we have l0 + a = l2 − b.

Moreover, the angles of CP0P3 being fixed with respect to α, there exists a constant value
c such that l1 = ±c(l0 + a). From relation (2), we deduce a new expression of Kα as a function

of l0, denoted K̃α and written as

K̃α(l0) =
c2(l0 + a)2

l0(l0 + a+ b)
.

In the considered domain, the function K̃α is an increasing and continuous bijection with
respect to l0. The proof, more tedious than difficult, needs to distinguish the cases a < 0 and
b > 0 for θ3 < θ0 + π (case a in Figure 9), and a > 0 and b < 0 for θ3 > θ0 + π (case b in
Figure 9). Moreover, the Kα form described in (1) is an increasing and continuous function of

α (see Proposition 1). So l0 = K̃−1
α (Kα) is continuous and decreasing with respect to α. The

property is also true for l2, since l2 = l0 + a+ b, the value a+ b being constant relative to Kα.

Proposition 4. When ε = 1, θ3 < π and D0 and D3 intersect, the lengths l0 and l2 continuously
decrease as α increases.

When D0 and D3 are parallel, we have θ3 = θ0 + π, as illustrated by Figure 10. Indeed,
for θ3 = θ0 + 2π, ∆ is always negative and the interpolation problem has no solution. Let P′

0

10
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Figure 10: Shape of the control polygon when the lines D0 and D3 are parallel.

denote the projection of P3 onto D0, along the line (P1P2) and we suppose that P0P1 > P2P3

(the other case being symmetrical, as before). Let a and c be the distances P′
0P0 and P′

0P3

respectively. Here again, these two values are independent of the choice of α. As θ1 = θ2, the
quadrilateral P′

0P1P2P3 is then a rectangle and we have l2 = l0 − a and l1 = c. So according
to equation (2), c2 = Kαl0(l0 − a). Hence, we define

K̃α(l0) =
c2

l0(l0 − a)
.

Since l0 > a, this function is obviously continuous and decreasing when l0 ∈ R+. So, as for the
intersecting case, we can establish the following result:

Proposition 5. When ε = 1, θ3 < π and D0 and D3 are parallel, the lengths l0 and l2
continuously decrease as α increases.

Remark 3. For ε = 1 and θ3 < π, the study points out that l0 and l2 also decrease as α
increases. Though, for ε = −1 and θ3 < π, it can be proved that l0 and l2 are increasing
functions with respect to α.

5 Optimization process and numerical examples

As an example of a concrete use of the free parameter α in the Hermite interpolation described
in this paper, we propose here an optimization process to determine its value required to satisfy
an additional interpolation constraint. After determining the interval to which the α parameter
should belong to get a solution, we infer the domain P where the extra interpolation point has
to be to ensure the existence of a solution. The fitting process is developed and illustrated via
some examples.

5.1 The domain P
According to Section 3, the required conditions for the existence of a solution are ∆ > 0 and
Gε > 0. These constraints modify the initial interval ]0, 2π[ of α. For ε = 1 and θ3 < π, we

11
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P1

P2

Figure 11: Domain P for θ0 = −2π
3
, θ3 =

3π
5
and αmin = 0.

can determine αmin and αmax, depending on θ0 and θ3, such that the Hermite problem has a
solution if and only if α ∈ ]αmin, αmax[.

On the studied domain, it can be easily proved that ∆ > 0. Therefore, the existence of a
solution depends on the sign of G+. Indeed, according to Proposition 3, we have L+ > 0 if
G+ > 0 without any condition on α. Moreover, the domain Γ+ is bounded by the condition

θ3 < ψ1(θ0). If θ3 < θ0 +
4π

3
this inequality is always true and αmin = 0 (as Kα ∈ ]1, 4] from

Proposition 1). Otherwise, it is equivalent to Kα > 2 + 2 cos(θ3 − θ0) and αmin is the value for
which

Kα = 2 + 2 cos(θ3 − θ0). (15)

This equation being transcendental, no closed-form solution exists and a numerical approxi-
mation is therefore necessary. As there is no upper bound for Γ+, we have evidently αmax = 2π.
The corresponding solution curve is then degenerated to the segment [P0P3].

Properties 4 and 5 show that the lengths l0 and l2 continuously decrease as α increases.
According to the variation diminishing property, the convex curve rα moves continuously from
rαmin

to rαmax . The continuous curve rα then describes the area delimited by rαmin
and [P0P3],

which is then the domain P we are looking for. So, for any point D in P , there exists α∗ ∈
]αmin, αmax[ and tD ∈ [0, α∗] such that rα∗(tD) = D. Figure 11 illustrates the domain P for
θ0 = −2π

3
and θ3 =

3π
5
for which αmin = 0.

Remark 4. When θ3 > θ0 +
4π

3
and αmin is a solution of (15), we have G+ = 0 implying that

the length l0 =
∥P3 −P0∥

G+

is theoretically infinite. Practically, even though the used value is

an approximation, l0 still increases dramatically with the accuracy of αmin. Even if it can be
seen as an advantage since it involves a very large P domain, it can lead to serious numerical
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Figure 12: Orthogonal projection.

instabilities when verifying the belonging of D to P and determining α∗. It is rather preferable
to choose a value slightly greater than the solution of (15) for αmin.

5.2 The optimization process

First, the point D must be reachable (otherwise, the optimization process would obviously be
useless). The belonging of D to P can be verified with a ray-tracing method (cf. Shimrat [10]
for more details about the process), which is applied to the polygon defined by [P0P3] and a
discretization of rαmin

.
Satisfying the interpolation constraint consists of minimizing the fitting error defined by

E(α) = ∥D − rα(tD)∥2 where tD ∈ [0, α] is the parameter related to the closest orthogonal
projection of D onto rα, as shown in Figure 12. In other words, its value tD is obtained by
determining the solution of

r′α(t).(D− rα(t)) = 0 (16)

that minimizes the distance between D and rα(t).
Equation (16) being transcendental, a numerical approximation is necessary to get tD for a

given value of α. As described by Piegl and Tiller in [8], an iterative Newton-Raphson-based
approach is used to calculate the error E(α).

A dichotomy-based process is defined to obtain α∗, the value of α for which the minimum
of E(α) is approximated. Each iteration, whose rank is denoted by k, can be summed up in 4
steps:

1. Compute the current parameter denoted αk, middle of the domain [αmin, αmax].

2. Update the control points with the αk parameter.

3. Discretize rαk
.

4. Update αmin (resp. αmax) according to the belonging (resp. non-belonging) of the point
D in the hull of rαk

with the ray-tracing method.

The process is stopped when E(αk) < η, with η a given accuracy. The reader can refer to
Appendix A for further details about the steps listed above.

5.3 Numerical examples

In this part, we propose two numerical examples to illustrate the process developed in Sec-
tion 5.2, namely the construction of a quarter circle followed by a more general fitting case.
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Figure 13: Construction and convergence for the quarter circle.

The construction of a quarter circle, for which the value of α∗ is easy to determine exactly,
allows us to illustrate the convergence of the process to the solution. For this purpose, we choose

P0 = (0, 1), P3 = (−1, 0), θ0 = −
π

4
, θ3 =

π

4
and D =

(
−

√
2
2
,
√
2
2

)
the point to interpolate.

According to Proposition 5 in [4], the ATPH is a circle arc if and only if l0 = l2 and

θ1 = θ2 =
α

2
− π. In other words, we have −θ0 = θ3 =

α

2
where α has to be chosen as the

arc length of the curve (here α =
π

2
) as put forward in Figure 13a. Figure 13b shows the fast

convergence of αmin and αmax to the expected value α∗ =
π
2
.

In the second example, we consider θ0 = −1, θ3 = 0.99 π and D near the borderline of the
domain P . Figure 14 illustrates the iterative fitting process. The eight ATPH in blue (of which
only the first five are indexed for the sake of clarity) are intermediate curves leading to rα∗ in
orange, where α∗ = 3.09. The solution rα∗ is pointed out with its associated control polygon.

6 Conclusion

Here, we have studied the construction process of a Hermite interpolation within the framework
of the cubic ATPH. The domain Γ in which solutions exist has been rigorously described.
Through the presence of the α parameter, the solution of the Hermite problem provided by
ATPH curves is not unique. The analysis carried out between the parameter α and the control
polygon allows us to understand its influence on the curve. This degree of freedom can be
taken into account to solve additional problems. We have proposed an example through a
fitting process.
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Figure 14: Iterative fitting process from intermediate curves in blue to rα∗ in orange.
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A Algorithm of the optimization process

Algorithm 1: Optimization with respect to α

Input: Point D to fit, computational accuracy parameter η
Output: The optimized value of α

1 αmax ← 2π

2 αmin ← 0

3 if θ3 > θ0 +
4
3
π then

4 αmin ← argmin
α
|Kα − 2− 2 cos(θ3 − θ0)|

// argmin stands for argument of the minimum, i.e. the elements of

the domain at which the function value is minimized

5 end

// Loop to reduce iteratively the research interval

6 k ← 0

7 derr ← E

(
αmin + αmax

2

)
8 while derr > η do

9 αk ←
αmin + αmax

2
10 Update the control points relating to rαk

11 Compute hull of rαk

12 if D ∈ hull of rαk
then

13 αmin ← αk

14 else

15 αmax ← αk

16 end

17 derr ← E(αk)

18 k ← k + 1

19 end

20 return αk
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