
HAL Id: hal-03556981
https://uphf.hal.science/hal-03556981v2

Submitted on 24 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hermite interpolation by planar cubic-like ATPH
Thierry Bay, Isabelle Cattiaux-Huillard, Laura Saini

To cite this version:
Thierry Bay, Isabelle Cattiaux-Huillard, Laura Saini. Hermite interpolation by planar cubic-like
ATPH. Advances in Computational Mathematics, 2022, 48, �10.1007/s10444-022-09978-8�. �hal-
03556981v2�

https://uphf.hal.science/hal-03556981v2
https://hal.archives-ouvertes.fr


Hermite interpolation by planar cubic-like ATPH

Thierry Bay1, Isabelle Cattiaux-Huillard1, and Laura Saini2
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Abstract

This paper deals with the construction of the Algebraic Trigonometric Pythagorean
Hodograph (ATPH) cubic-like Hermite interpolant. A characterization of solutions ac-
cording to the tangents at both ends and a global free shape parameter α is performed.
Since this degree of freedom can be used for adjustments, we study how the curve evolves
with respect to α. Several examples illustrating the construction process and a simple
fitting method to determine the unique ATPH curve passing through a given point are
proposed.

Keywords: Pythagorean hodograph · Trigonometric functions · Algebraic trigonometric ·
Trigonometric polynomials · Circle arc · Hermite interpolation
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1 Introduction

The most commonly used schemes in CAD and CAGD for the representation of curves and
surfaces are specified by polynomial and rational parameterizations, such as Bézier curves,
B-splines or NURBS. Even though these models offer many advantages, they have important
drawbacks detailed in [14]. For example, on the one hand, polynomial Bézier curves are quite
simple to define, compute and manipulate, but exclude important curve families as conics,
cycloidal curves, etc. On the other hand, rational parameterization allows to obtain conics and
trigonometric curves, but comes at the expense of additional weights for each control point
and a heavy process for differentiation. Therefore, looking for an alternative representation
is necessary. Moreover, obtaining both straight line segments and circle arcs in the same
model is an undeniable advantage in environments associated with Computer Numerical Control
Machines and for the conversion of trajectories into G-code. For this purpose, it could be
interesting to investigate other curve spaces.

Responding to this problem, Carnicer and Peña [4] introduced the concept of B-basis to
generalize the Bernstein bases for other function spaces, while Mainar et al. [14] provided
criteria to find one in a general case. The underlying curves display all the positive properties
of the Bézier scheme from variation diminishing property to tangency to the control polygon at
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the endpoints. These authors gave a particular solution for the mixed Algebraic Trigonometric
(AT) curve space Pm = span{1, t, {cos(kt), sin(kt)}mk=1} for m = 1 and m = 2. In these bases,
the curves are described on [0, α] unlike the Bézier curves which are drawn on [0, 1]. The real
α ∈ ]0, 2π[ can then be used as a shape parameter. An interactive illustration of the B-basis,
the curves of P1 and the influence of α on the shape of the curve is available in [5].

The Pythagorean Hodograph (PH) polynomial curves, characterized by a polynomial para-
metric speed, was introduced in [11]. Combining this feature with the mixed AT space Pm,
a partial investigation of quintic-like Algebraic Trigonometric Pythagorean Hodograph curves
(ATPH) is put forward for m = 2 in [18]. Generalizing from this concept, we gave in [6] a
straightforward and exhaustive description of these curves through their complex expression
and proposed an in-depth study of spaces P1 and P2. In our paper, we focus on these P1 ATPH
curves, so-called cubic-like ATPH, to solve the Hermite interpolation problem while taking into
account the shape parameter of the B-basis.

Indeed, the existence of polynomial PH solutions of different forms of the Hermite problem
was deeply investigated. A cubic solution for the G1 planar case was proposed with one arc
in [15, 3], bi-arc in [2] and as spline in [13, 23]. Spatial cubic interpolation was studied in [1].
Quintic PH interpolation was also the subject of many works concerning the planar (see [10,
16]) and the spatial case (see [21, 8, 9]). About the ATPH feature, only quintic solutions
were considered for planar curves in [18] and for spatial curves in [17, 20]. But, according
to our knowledge, cubic-like ATPH have never been applied to address the first-order Hermite
interpolation problem. This article is then devoted to the study of such planar ATPH cubic-like
curves, solutions of the G1 Hermite interpolation problem. A focus is done on detailing the
conditions of their existence and some of their properties.

The remainder of this paper is organized as follows. Section 2 recalls some basic facts
concerning the mixed AT space and properties of ATPH curves. In Section 3, we start with
the study of the construction of cubic-like ATPH Hermite interpolants. Then, we analyze in
Section 4 the conditions required for the existence of such solutions. Consequently, in Section
5, we look at the influence of the free parameter α on the curve by working on the control
polygon. In Section 6, we focus on a use of the shape parameter α to find the ATPH cubic-like
Hermite interpolant that passes through one given additional point, which are illustrated in
Section 7 by several examples.

2 Preliminaries

In [14], the authors proposed B-bases for several AT curve spaces. In particular, they described
the normalized P1 B-basis (Z0, Z1, Z2, Z3), depending on α belonging to the interval ]0, 2π[ and
for t ∈ [0, α] as:

Z3(t) =
t− sin t

Sα

, Z0(t) = Z3(α− t),

Z2(t) =Mα

(
1− cos t

Cα

− Z3(t)

)
, Z1(t) = Z2(α− t),

(1)

where Sα = α − sinα, Cα = 1 − cosα, Rα = 2 sinα − α − α cosα and Mα =
Cα sinα

Rα

if

α ̸= π, Mπ = 1 otherwise. This formulation is short and elegant but not suitable to perform a
change of basis between the canonical basis and the B-basis. So, in [6], we proposed a detailed
expression of the matricial form.
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Figure 1: Cubic-like ATPH polygon data.

In this basis, a curve parameterizationRα(t) of P1 is described by four control points P0, P1,
P2 and P3. This representation admits a complex interpretation, which is especially efficient
to characterize PH curves, as proved by Farouki in [7] for the polynomial case. We extended
this result to the ATPH curves in [6]. Denoting by rα(t), p0, p1, p2 and p3 the complex forms
of Rα(t) and its control points1, its complex expression is

rα(t) =
3∑

k=0

pkZk(t). (2)

A cubic-like ATPH curve is characterized by the complex relation:

(∆p1)
2 = Kα∆p0∆p2 with Kα =

4

(α− sinα)2

(
2 sin

α

2
− α cos

α

2

)2

, (3)

where ∆pk = pk+1 − pk. This condition can be geometrically rewritten by:

l21 = Kαl0l2 and θ1 = θ2, (4)

where θ1 = ∠(P0 − P1,P2 − P1), θ2 = ∠(P1 − P2,P3 − P2) and, in polar form, ∆pk = lke
iβk

for k = 0, 1, 2 (cf. Figure 1).
Afterwards, the Kα value appears many times. It is therefore necessary to detail its ele-

mentary properties that can be established by some straightforward calculations.

Proposition 1. The term Kα is an increasing and continuous function of α. It belongs to the
range ]1, 4[ when α is in the interval ]0, 2π[ and Kα tends to 1 as α approaches 0. Moreover√

Kα =
2

α− sinα

(
2 sin

α

2
− α cos

α

2

)
.

The values α = 0 and α = 2π are excluded from our study. On one hand, when α approaches
0, the cubic-like AT curve becomes the cubic polynomial Bézier curve of the same control
polygon as shown by Zhang in [22]. This is consistent with the formula (3) and (4), since when
Kα = 1, these expressions are identical to the homologous relations given by Farouki in [7].

On the other hand, the second and third functions Z1(t) and Z2(t) of the B-basis vanish
as α = 2π. Therefore the curve parameterized by rα(t), with t ∈ [0, α], tends to the segment
[P0P3], which obviously constitutes an improper solution.

1In the following, notations in bold upper case will refer to points, and those in bold lower case to their
complex form.
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Figure 2: G1 Hermite interpolation data.

3 Cubic-like ATPH solutions for the Hermite problem

The Hermite problem we are going to deal with consists of interpolating two points and two
tangent directions by a cubic-like ATPH curve. Therefore, we consider two distinct points P0

and P3 and two oriented angles, θ0 ∈ [−π, 0] and θ3 ∈ [0, 2π[. The choice of these intervals
allows us to study all possible cases without any loss of generality.

In the coordinate system (P0, i, j) where i =
P3 −P0

∥P3 −P0∥
and j = rotπ

2
(i), we define two unit

tangent vectors t0 = (cos θ0, sin θ0) and t3 = (cos θ3, sin θ3) (cf. Figure 2). We need to verify:

Rα(0) = P0, Rα(α) = P3,

dRα

dt
(0) = λ0t0,

dRα

dt
(α) = λ3t3,

where λ0 and λ3 are strictly positive real numbers. Note that if t0 and t3 are both colinear with
P3 − P0, the solution of Hermite’s problem is trivially a line segment and is of little interest.
Therefore, we will exclude this case in the rest of the article, and we will denote by H the
domain [−π, 0]× [0, 2π[ for (θ0, θ3) without couples (−π, 0), (−π, π), (0, 0) and (0, π).

From the data described above, we have θ1 = π−β0+β1 and θ2 = π−β1+β2. Besides, the
G1 Hermite conditions imply β0 = θ0 and β2 = θ3. From (4), we therefore deduce −β0 + β1 =
−β1 + β2, hence β1 =

1
2
(β0 + β2) to within π. So

β1 =
1

2
(θ0 + θ3) or β1 =

1

2
(θ0 + θ3) + π. (5)

To begin with, let us consider the first possibility. Afterwards, we will see how to take into
account the second one. It is clear that:

∆p0 +∆p1 +∆p2 = p3 − p0,

l0e
iβ0 + l1e

iβ1 + l2e
iβ2 = p3 − p0,

l0e
iθ0 +

√
Kαl0l2 e

i
θ0+θ3

2 + l2e
iθ3 = p3 − p0, (6)

so, if we set L =

√
l2
l0
,

(3) ⇔ eiθ0 + L
√
Kα e

i
θ0+θ3

2 + L2eiθ3 =
p3 − p0

l0
, (7)

ℑm(7) ⇔ sin θ0 + L
√
Kα sin

(
θ0 + θ3

2

)
+ L2 sin θ3 = 0, (8)

ℜe(7) ⇔ cos θ0 + L
√
Kα cos

(
θ0 + θ3

2

)
+ L2 cos θ3 =

∥P3 −P0∥
l0

. (9)
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Figure 3: Solutions for α = 0 (polynomial case), α = 3π
4
and α = 3π

2
.

When the degree of equation (8) is 2 with respect to L, i.e. for θ3 ̸= 0 and θ3 ̸= π, the
discriminant is

∆ = Kα sin
2

(
θ0 + θ3

2

)
− 4 sin θ0 sin θ3, (10)

and the solutions, when they exist, are

Lε =
1

2 sin θ3

(
−
√
Kα sin

(
θ0 + θ3

2

)
+ ε
√
∆

)
, (11)

where ε ∈ {−1,+1}. For the sake of clarity, we will denote them respectively L− and L+.
When the real number

Gε = cos θ0 + Lε

√
Kα cos

(
θ0 + θ3

2

)
+ L2

ε cos θ3 (12)

is positive, we deduce from (9) the value of l0 and then l2. With the previous expressions of
β0, β1 and β2, we can determine ∆pi, for i = 0, 1, 2 and therefore the control polygon of the
solution rα.

When θ3 = 0 or θ3 = π, equation (8) is of degree 1 with respect to L and requires a specific
study which is done in Section 4.4.

From these results, we can easily notice that the ATPH provides an infinite number of
solutions - depending on α - for a given initial data set. In Part 2, we put forward that the
polynomial cubic PH curve can be seen as a particular case of cubic-like ATPH, obtained for
α = 0 and Kα = 1. This is consistent with our results, since when Kα = 1, the expressions (10),
(11) and (12) are identical to the formulas given by Walton and Meek in [15] and by Byrtus
and Bastl in [3] for the polynomial case. The Figure 3 shows two ATPH solutions and their
polynomial equivalent.
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Figure 4: Domain D+ for α = 0 (polynomial case), α =
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11π
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4 Existence of solutions

The solutions described in the previous part do not always exist. We now have to clarify their
conditions of existence, i.e. the domains on which the values of ∆, Gε, Lε, defined by the
expressions (10), (11), (12) are positive. As said previously, the cases θ3 = 0 and θ3 = π are
different from the general one and will be treated separately.

4.1 Sign of the discriminant

Let us denote by D+ the domain ofH where ∆ ≥ 0, whose boundary is defined by the functions:

f1(θ0) = 2π − arccos
K2

α cos θ0 − 4(8−Kα)
√
4−Kα sin

2 θ0
K2

α + 16(4−Kα) sin
2 θ0

,

f2(θ0) = 2π − arccos
K2

α cos θ0 + 4(8−Kα)
√
4−Kα sin

2 θ0
K2

α + 16(4−Kα) sin
2 θ0

.

Since Kα ∈ ]1, 4[, these two functions are well defined for any value of α ∈ ]0, 2π[. Of
course, the shape of this domain depends on this last parameter (see Figure 4). The function
f1 describes the lower border of the domain, and f2 the upper border (see Figure 5). So the
domain D+ is described by

D+ = {(θ0, θ3) ∈ H | θ3 ≤ f1(θ0) or f2(θ0) ≤ θ3}.

We can remark that for θ3 < π, we have ∆ > 0, hence the condition is always verified.
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4.2 Sign of l0

Once Lε is determined using (11), l0 is obtained from the relation (9). Therefore, l0 and the
real number Gε have the same sign which has to be positive. Moreover, the case Gε = 0 should
be excluded, otherwise the length l0 would be infinite. Here we will study the sign of Gε, as
defined in (12), using the expression (11) for Lε.

Denoting Γ+ and Γ− the subdomains ofH where G+ > 0 and G− > 0 respectively, a solution
exists if and only if (θ0, θ3) belongs to Γ = Γ+ ∪ Γ−. The relations (11) and (12) allow us to
establish that

4Gε sin
2 θ3 = A+B, (13)

where:

A = 2 sin

(
θ3 − θ0

2

)(
4 sin θ3 cos

(
θ3 − θ0

2

)
−Kα sin

(
θ0 + θ3

2

))
,

B = 2ε
√
Kα sin

(
θ3 − θ0

2

)√
∆.

Then, we have Gε = 0 if and only if sin

(
θ3 − θ0

2

)
= 0 or A′ −B′ = 0, with:

A′ = 4 sin θ3 cos

(
θ3 − θ0

2

)
−Kα sin

(
θ0 + θ3

2

)
,

B′ = ε
√
Kα

√
∆.

Evidently, the former equation has for solution θ3 = θ0 + 2π in H, which leads to ∆ < 0.
From the latter one, we obtain:

A′2 −B′2 = 4(2 + 2 cos(θ3 − θ0)−Kα) sin
2 θ3. (14)

The sign of this expression changes for θ3 = ψk(θ0) or θ3 = ψk(θ0) where:

ψk(θ0) = θ0 + arccos

(
Kα

2
− 1

)
+ 2kπ, (15)

ψk(θ0) = θ0 − arccos

(
Kα

2
− 1

)
+ 2kπ. (16)

Since Kα ∈ ]1, 4[ according to Proposition 1, these functions are well defined. Only the lines
corresponding to ψ0(θ0), ψ1(θ0) and ψ1(θ0) are in the domain H (cf. Figure 5) and are involved
in the description of Γ+ and Γ− (cf. Figures 6 and 7). These domains are formally described
by:

Γ+ = {(θ0, θ3) ∈ H | θ3 ≥ π − θ0 and (f2(θ0) < θ3 < ψ1(θ0) or θ3 < f1(θ0))}
∪ {(θ0, θ3) ∈ H | θ3 < π − θ0 and (θ3 < ψ1(θ0)},

Γ− = {(θ0, θ3) ∈ H | θ3 ≥ π − θ0 and (f2(θ0) < θ3 or ψ1(θ0) < θ3 < f1(θ0))}
∪ {(θ0, θ3) ∈ H | θ3 < π − θ0 and (θ3 < ψ0(θ0) or ψ1(θ0) < θ3)}.

This result is a generalization of [3] focusing on the polynomial curves, which corresponds
to the case Kα = 1 for α = 0 in our study. The ATPH feature provides therefore a wider
domain of solutions through the variations induced by the α parameter.
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Remark 1. If ∆ ≥ 0 and Gε < 0, the curve exists with l0 < 0 and therefore l2 < 0. A length
being positive, the notion of algebraic measure would then be more appropriate to cover this
case. As seen in Figure 8, this means geometrically that the orientations of vectors P1 − P0

and t0 are opposite, as the orientations of P3−P2 and t3 are. If the constraints of the Hermite
problem concern only the direction of the tangents and not their orientation, these solutions are
convenient. The only condition that θ0 and θ3 must then verify is ∆ ≥ 0, ie (θ0, θ3) ∈ D+.

4.3 Sign of roots

As Lε =
√
l2/l0, its value is positive. However, equation (8) can have negative roots. We will

show that they are also solutions of the Hermite problem.
Relation (5) gives two expressions for β1. The second one leads to slightly different expres-

sions of equations (8) and (9):

sin θ0 − L
√
Kα sin

(
θ0 + θ3

2

)
+ L2 sin θ3 = 0, (17)

cos θ0 − L
√
Kα cos

(
θ0 + θ3

2

)
+ L2 cos θ3 =

∥P3 −P0∥
l0

. (18)

Expression (18) being the value of Gε, we notice that Lε is a solution of (8) if and only if
−Lε is a solution of (17). Therefore, the solution −Lε of (17) is identical to the expression
given by (9) for Lε. So the value of l0 is the same in both cases.

Proposition 2. When Lε < 0, we still have l0 =
∥P3 −P0∥

Gε

and l2 = L2
εl0. In this case,

β1 = π +
θ0 + θ3

2
and the polygon (P0,P1,P2,P3) is then crossed (see Figure 9).
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Figure 9: Example of a double solution with L+ > 0 and L− < 0.

A crossed polygon often gives a looped curve, which is rarely suitable in CAGD. As a
consequence, it is important to determine the sign of Lε when Gε > 0 and ∆ ≥ 0. Some
considerations about the roots of equation (8) lead to the following result.

Proposition 3. When the roots of equation (8) exist and verify Gε > 0, we have L+ > 0 for
all the values of θ0 and θ3, and L− > 0 if and only if θ3 > π. The polygon is then crossed if
and only if ε = −1 and θ3 < π.

4.4 Particular case: θ3 = 0 and θ3 = π

As said in Section 3, equation (8) is of degree 1 when θ3 = 0 or θ3 = π.

If θ3 = 0, its solution is then L = L0 =
−2√
Kα

cos
θ0
2

which is always negative. So β1 =

π+
θ0 + θ3

2
(according to Proposition 2) and its polygon is Z-shaped. DenotingG0 the equivalent
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Figure 10: Shape of the control polygon when the lines D0 and D3 instersect.

of Gε for L0, we obtain from (18) G0 = 1 +
2

Kα

+ 2

(
1 +

1

Kα

)
cos θ0 which is positive if and

only if θ0 > arccos

(
Kα + 2

2(Kα + 1)

)
− π.

If θ3 = π, the solution of equation (8) is L = Lπ =
−2√
Kα

sin
θ0
2

which is positive. With the

same convention, Gπ =
1

Kα

(2 cos θ0 − 2 +Kα) is positive if and only if θ0 > − arccos

(
1− Kα

2

)
.

5 Evolution of the solution polygon with respect to α

The shape of the control polygon determines the curve and may sometimes involve the presence
of inflection points, cusps or loops. As said previously, these elements are undesirable for most
CAD, CAD/CAM, or computer graphics applications. A sufficient condition to eliminate unde-
sired elements according to the variation diminishing property is to consider convex polygons.
We then focus the rest of this paper on this case. Obviously, this requirement is equivalent to
θ3 < π and ε = 1. The corresponding two cases are illustrated in Figure 10.

The ATPH solution of the Hermite problem depends on α which gives an additional degree
of freedom, the polynomial solution being a particular case obtained for α = 0. This free
parameter can be used to solve various additional problems (velocity, interpolation point, . . . ),
as will be shown in Section 6. It is therefore important to analyze the evolution of the curve
with respect to α. For this purpose, we will study a geometrical version of our problem through
the different configurations of the control polygon.

Considering two points A and B, we denote by AB the algebraic measure from A to B.
Let D0 (resp. D3) be the line passing through P0 (resp. P3) with t0 (resp. t3) as orientation
vector. Firstly, we suppose the existence of an intersection point of D0 and D3, denoted by C.

According to the initial constraints of the Hermite problem, the points P1 and P2 must be
chosen such that P1 −P0 and t0 have the same orientation, and P2 −P3 and t3 are opposite
vectors. The measures l0 and l2 are here defined algebraically with l0 = P0P1 and l2 = P2P3,
which is consistent with the fact that these two values remain positive. Moreover, as θ1 = θ2
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Figure 11: Shape of the control polygon when the lines D0 and D3 are parallel.

according to (4), the triangle CP1P2 is isosceles with apex C. We therefore define the measures
a = CP0 and b = CP3. These two values are constant with respect to α. As CP1 = −CP2,
we have l0 + a = l2 − b.

Moreover, the angles of CP0P3 being fixed with respect to α, there exists a constant value
c such that l1 = ±c(l0 + a). From relation (4), we deduce a new expression of Kα as a function

of l0, denoted by K̃α and written as

K̃α(l0) =
c2(l0 + a)2

l0(l0 + a+ b)
.

The derivative of this function with respect to l0 is:

dK̃α

dl0
= − c2(l0 + a)

l20(l0 + a+ b)2
(l0(a− b) + a(a+ b)) .

To study the sign of this expression, we make the assumption |a| > |b|. As defined in
Section 2, the B-basis (Z0, Z1, Z2, Z3) has the same property of symmetry as the Bernstein
basis. So the case |a| < |b| arises from the former one by considering the symmetrical problem
with θ′0 = −θ3 and θ′3 = −θ0. The geometric constraints lead then to two distinct situations,
as illustrated by Figure 10.

In the first case, we have 0 ≤ θ3 < θ0 + π, with a < 0 and b > 0. Since l0 < |a|, l0 + a < 0.
Moreover, l0 + a = l2 − b with l2 > 0, so l0 + a + b > 0. Finally, l0 > −(a + b) > 0 and
a − b < a < 0 lead to l0(a − b) + a(a + b) < 0. The derivative is therefore negative. Similarly
in the second case, when θ0 + π < θ3 ≤ π, we have a > 0, b < 0 and l0 + a > 0. As a > −b, we
have a+ b > 0 and a− b > 0, so l0(a− b) + a(a+ b) > 0. The derivative is negative again.

In the considered domain, the function K̃α is a decreasing and continuous bijection with
respect to l0. Moreover, the Kα form described in (3) is an increasing and continuous function

of α (see Proposition 1). So l0 = K̃−1
α (Kα) is continuous and decreasing with respect to α. The

property is also true for l2, since l2 = l0+ a+ b, the value a+ b being constant relatively to Kα.

Proposition 4. When ε = 1, θ3 < π and D0 and D3 intersect, the lengths l0 and l2 continuously
decrease as α increases.

When D0 and D3 are parallel, we have θ3 = θ0 + π, as illustrated by Figure 11. Indeed,
for θ3 = θ0 + 2π, ∆ is always negative and the interpolation problem has no solution. Let P′

0

denote the projection of P3 onto D0, along the line (P1P2) and we suppose that P0P1 > P2P3
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(the other case being symmetrical, as before). Let a and c be the distances P′
0P0 and P′

0P3

respectively. Here again, these two values are independent of the choice of α. As θ1 = θ2, the
quadrilateral P′

0P1P2P3 is then a rectangle and we have l2 = l0 − a and l1 = c. So according
to equation (4), c2 = Kαl0(l0 − a). Hence, we define

K̃α(l0) =
c2

l0(l0 − a)
.

Since l0 > a, this function is obviously continuous and decreasing when l0 ∈ R+. So, as for the
intersecting case, we can establish the following result:

Proposition 5. When ε = 1, θ3 < π and D0 and D3 are parallel, the lengths l0 and l2
continuously decrease as α increases.

Remark 2. For ε = 1 and θ3 < π, the study points out that l0 and l2 also decrease as α
increases. Though, for ε = −1 and θ3 < π, it can be proved that l0 and l2 are increasing
functions with respect to α.

6 Fitting method and unique interpolant

As a concrete example of use of the free parameter α in the Hermite interpolation, we propose
an optimization process to determine its required value to satisfy an additional interpolation
constraint. After determining the interval to which the α parameter should belong to get a
solution, we infer the domain P where the extra interpolation point D has to be to ensure the
existence of a solution. The fitting process is developed and illustrated via some examples.

6.1 The domain P
According to Section 4, the required conditions for the existence of a solution are ∆ > 0 and
Gε > 0. These constraints modify the initial interval ]0, 2π[ of α. For ε = 1 and θ3 < π, we
can determine αmin and αmax, depending on θ0 and θ3, such that the Hermite problem has a
solution if and only if α ∈ ]αmin, αmax[.

On the studied domain, it can be easily proved that ∆ > 0. Therefore, the existence of a
solution depends on the sign of G+. Indeed, according to Proposition 3, we have L+ > 0 if
G+ > 0 without any condition on α. Moreover, the domain Γ+ is bounded by the condition

θ3 < ψ1(θ0). If θ3 < θ0 +
4π

3
this inequality is always true and αmin = 0 (as Kα ∈ ]1, 4[ from

Proposition 1). Otherwise, it is equivalent to Kα > 2 + 2 cos(θ3 − θ0) and αmin is the value for
which

Kα = 2 + 2 cos(θ3 − θ0). (19)

This equation being transcendental, no closed-form solution exists and a numerical approxi-
mation is therefore necessary. As there is no upper bound for Γ+, we have evidently αmax = 2π.
The corresponding solution curve is then degenerated to the segment [P0P3].

Properties 4 and 5 show that the lengths l0 and l2 continuously decrease as α increases.
According to the variation diminishing property, the convex curve rα moves continuously from
rαmin

to rαmax . The continuous curve rα then describes the area delimited by rαmin
and [P0P3],

which is the domain P we are looking for (see Figure 12). So, for any point D in P , there exists
α∗ ∈]αmin, αmax[ and tD ∈ [0, α∗] such that rα∗(tD) = D. This transcendental equation needs
once again an algorithmic solving.
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P0 P3

αmin = 0

αmax = 2π



P1

P2

Figure 12: Domain P for θ0 = −2π
3
, θ3 =

3π
5
and αmin = 0.

Remark 3. When θ3 > θ0 +
4π

3
and αmin is a solution of (19), we have G+ = 0 implying that

the length l0 =
∥P3 −P0∥

G+

is theoretically infinite. Practically, even though the used value is

an approximation, l0 still increases dramatically with the accuracy of αmin. Even if it can be
seen as an advantage since it involves a very large P domain, it can lead to serious numerical
instabilities when verifying the belonging of D to P and determining α∗. It is rather preferable
to choose a value slightly greater than the solution of (19) for αmin.

6.2 The optimization process

The first question that must be answered is whether or not D belongs to P . It is done with a
ray-tracing method [19, 12]. Let us consider the polygon resulting from a discretization of the
curve Rαmin

, that we have closed by joining the points P0 and P3. The algorithm consists in
casting a ray from D and in counting the intersections of this ray with the edges of the polygon.
If the number of intersections between the ray and each edge is even, the point D is outside,
otherwise D is inside.

Once this step has been done, the fitting error defined by E(α) = ∥D −Rα(tD)∥2 is mini-
mized. The value tD ∈ [0, α] is the parameter related to the closest orthogonal projection of D
onto Rα (cf. Figure 13a). In other words, its value is obtained by determining the solution of

R′
α(t).(D−Rα(t)) = 0 (20)

that minimizes the distance between D and Rα(t).
Equation (20) being transcendental, an iterative Newton-Raphson-based approach is done

to get tD and then E(α). A dichotomy-based process is finally applied to minimize E(α) with
respect to α (cf. Figure 13b). The reader can refer to Appendix A for further details about the
algorithm behind the optimization process.
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D

Rα

Rα(tD)

R'α(tD)

(a) Orthogonal projection.

D
P0 P3

P1

P2

1

2

3

4

5

(b) The intermediate curves are in blue and the op-
timal solution Rα∗ is in orange.

Figure 13: Fitting process with an interpolation point D: orthogonal projection on the left and
dichotomic fitting on the right.

7 Qualitative comparisons between PH and ATPH curves

In order to illustrate the contribution of ATPH, several examples comparing cubic-like ATPH
and cubic PH solutions are detailed here. In each case, we interpolate a part of a classic
curve. The control points P0 and P3, as well as the angles θ0 and θ3, are chosen from the
parameterization of the reference curve.

7.1 Circle arcs

Since circle arcs are of major interest to the CAGD, the example of the circle is essential.
In [6], we show that there is a cubic-like ATPH which represents it exactly, whatever the radius
and the considered arc. Of course, this is not the case with PH curves. Not only does the
PH Hermite interpolation only provides an approximation, but a solution also does not always
exist.

Indeed, to interpolate a circle arc, the initial condition is θ3 = −θ0 = 1
2
α where α is the arc

measure. The ATPH Rα fits then exactly the circle arc without optimisation process. Denoting

by R the PH solution, it exists only if θ3 < θ0+
4π

3
(see [3]), i.e if θ3 <

2π

3
or α <

4π

3
. Moreover,

when θ3 approaches
2π

3
, l0 tends to infinity and therefore the error diverges.

Let E(θ3) =
∥∥R (

1
2

)
− S

∥∥ be the error, where S is the apex of the circle arc (see Figure 14a)
defined by

S =
1

2
(P0 +P3)−

∥P3 −P0∥
2

(
1

sin θ3
− 1

tan θ3

)
.j.

According to [15] for θ3 = −θ0, the PH solution of this Hermite problem verifies

l0 = l2 =
∥P3 −P0∥
1 + 2 cos θ3

.
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P0 P3

S

R(1/2)

E

(a) Graphical interpretation of E(θ3)

π

6

π

3

π

2

2π

3

θ3

2

4

6

E(θ3)

(b) Graph of the error function E(θ3)

Figure 14: Error between ATPH circle arc (blue) and its PH approximation (orange).

P0 P3

P1 P2

(a) α = 6π
7

P0 P3

P1 P2

P1 P2

(b) α = 4π
3 − 0.2

Figure 15: Reconstruction of a circle arc by ATPH (blue) and PH curves (orange).

Then, we have

R

(
1

2

)
=

1

2
(P0 +P3)−

3∥P3 −P0∥
4(1 + 2 cos θ3)

sin θ3.j.

The error is

E(θ3) =
1

∥P3 −P0∥

∥∥∥∥R(
1

2

)
− S

∥∥∥∥
=

3 sin θ3
4(1 + 2 cos θ3)

− 1

2

(
1

sin θ3
− 1

tan θ3

)
.

Its behavior is illustrated by Figure 14b, and Figure 15 illustrates the difference between the
PH and ATPH solutions for two values of α.
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P0

P3

P1

P2

P1

P2

Figure 16: Interpolation of a clothoid arc with the PH (orange) and the ATPH curves (blue).

7.2 Clothoid

Let us consider the example of a clothoid, defined by the normalized Fresnel integrals

C1(t) =


x(t) =

∫ t

0

sin
(π
2
u2
)
du,

y(t) =

∫ t

0

cos
(π
2
u2
)
du.

The control points P0 and P3 are chosen such as P0 = C1(−2.2) and P3 = C1(−1.6). The
tangents at these points verify θ0 ≈ −1.91 and θ3 ≈ 1.67. By considering the interpolation
point D = C1(−1.9), the difference between the clothoid and the obtained ATPH solution is
not discernible with the naked eye, unlike the PH one (see Figure 16).

7.3 Lemniscate

Let us consider the lemniscate, defined by the parametric equations

C2(t) =


x(t) = a

√
2

cos t

1 + sin2 t
,

y(t) = a
√
2
sin t cos t

1 + sin2 t
,

with t ∈ [0, 2π], herein for a = 1. We perform two different interpolations. In Figure 17a, we

consider a symmetric arc with P0 = C2

(
7π

6

)
, P3 = C2

(
7π

6

)
, θ3 = −θ3 ≈ 1.39. Figure 17b

shows the fitting of a non-symmetric arc with P0 = C2

(
7π

12

)
, P3 = C2

(
13π

12

)
, θ0 ≈ −1.89

and θ3 ≈ 1.17. Once again, we clearly see that the cubic-like ATPH curve is closer to the
reference curve than the PH one.
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P3

P1

P2

(a) Symmetric case with D = C3(π)

D

P0

P3

P1

P2

(b) Non-symmetric case with D = C3(2.8)

Figure 17: Interpolation of a lemniscate arc with a PH (orange) and an ATPH curves (blue).

7.4 Bernoullian quartic

Let us consider the Bernoullian quartic, defined by the parametric equations

C3(t) =


x(t) =

(a2 − b2) sin t cos t√
a2 sin2 t+ b2 cos2 t

y(t) =
ab√

a2 sin2 t+ b2 cos2 t
,

with t ∈ [0, π], herein for a = 1 and b = 2. We have P0 = C3

(
5π

6

)
, P3 = C3

(
7π

15

)
, then

θ0 ≈ −2.07 and θ3 ≈ 0.91. Figure 18 illustrates three cases putting forward the position of D
on the shape of the interpolating curve. In Figure 18c, the quartic and ATPH curve are nearly
overlapped.

8 Conclusion

In this paper, we have studied the construction process of a Hermite interpolation within the
framework of the cubic-like ATPH. The domain Γ in which solutions exist has been rigorously
described. Through the presence of the α parameter, the solution of the Hermite problem
provided by ATPH curves is not unique. The analysis carried out between the parameter
α and the control polygon allows us to understand its influence on the curve. This degree
of freedom can be taken into account to solve additional problems. We have proposed an
application through a fitting process illustrated by several examples.
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)

D
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Figure 18: Interpolation of a Bernoullian quartic arc with the PH (orange) and the ATPH
curves (blue).
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A Algorithm of the optimization process

Algorithm 1: Optimization with respect to α

Input: Point D to fit, computational accuracy parameter η
Output: The optimized value of α

1 αmax ← 2π

2 αmin ← 0

3 if θ3 > θ0 +
4
3
π then

4 αmin ← argmin
α
|Kα − 2− 2 cos(θ3 − θ0)|

// argmin stands for argument of the minimum, i.e. the elements of

the domain at which the function value is minimized

5 end

// Loop to reduce iteratively the research interval

6 k ← 0

7 derr ← E

(
αmin + αmax

2

)
8 while derr > η do

9 αk ←
αmin + αmax

2
10 Update the control points relating to rαk

11 Compute hull of rαk

12 if D ∈ hull of rαk
then

13 αmin ← αk

14 else

15 αmax ← αk

16 end

17 derr ← E(αk)

18 k ← k + 1

19 end

20 return αk
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