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Abstract— In this work an analytical model for the energy 
harvesting of an acoustic spherical sensor has been developed in 
the context to make it autonomous. Our spherical sensor is 
composed of two half-spheres of Plexiglas and a piezoelectric ring 
of PZ26 that can be used as exciter or sensor. For the analytical 
model, the piezoelectric ring was modeled using two primary 
modes of vibration: thickness and radial. For each mode, the ring 
is described by an equivalent electromechanical model which 
connects the mechanical part (forces and velocities) to the 
electrical part (voltage and current). The proposed paper 
theoretical model enables building a global electromechanical 
circuit in order to simulate the total harvested voltage response. 

Keywords—energy harvesting; piezoelectric ring; spherical 
sensor; vibration modes 

I. INTRODUCTION 

In recent years, much research has been done on the issue 
of energy autonomy and in particularly on the supply of 
sensors. The energy harvesting is a theme devoted to the use of 
the ambient energy (vibration, light, and temperature) present 
in the environment for powering electronic devices (Sensors, 
mobile equipment), in a way to extend their operating life and 
make them completely autonomous. 

Ambient energy sources are numerous, and from this, 
ambient mechanical vibrations are very studied and starting to 
be used. In a general way, vibratory energy recovery are based 
on resonant mechanical systems (spring-mass-damper) tuned to 
the frequency of the source [1]. Several physical phenomena 
are used for extraction of mechanical energy and its conversion 
into electrical energy, the piezoelectricity [2], the electrostatic 
[3] and the electromagnetism [4] can be used as an example of 
the conversion phenomena. In the context of our work, we 
focused particularly on piezoelectricity. 

A device for recovering energy from ambient vibrations 
consists essentially of four necessary units: The first unit is a 
purely mechanical device its role is to capture and optimized 
mechanical vibrations, The second is an electromechanical 
device whose purpose is to transform the recovered mechanical 
energy into electrical energy, The third unit is an electrical 
device or more precisely an electrical circuit capable of 
converting the non-exploitable electric energy into exploitable 
electrical energy, and the last unit is a device for storing the 
energy before being applied to the sensor to make it electrically 

autonomous. To improve the power density of the generators 
and their bandwidth, it is necessary to optimize the four 
conversion units.  

II. SENSOR DESCRIPTION

In this work a spherical device as an acoustic sensor has 
been developed. This sensor is composed of a closed spherical 
shell, assembled from two half-spheres made of Plexiglas. Its 
outer radius is 11 mm and the inner radius is 10 mm. An active 
element (piezoelectric ring) is sandwiched between the two 
half spheres [5]. The electronic embarking the sensor 
application is placed in the hollow portion of the sphere. It 
ensures the excitation of the piezoelectric ring, the control of 
the transceiver, the processing and data storage (fig. 1). 
Fig. 1. The hollow portion with the embedded electronics.  

The hollow portion contains a programmable chip (SoC) 
which ensures the control of the resonator. It includes a central 
processing unit (CPU), a digital oscillator (DCO), a task 
scheduler (IT), an encoded ultrasonic generator (PWMG), a 
power management unit (PMU), an output amplifier (OB), and 
a battery (BAT).   

III. MODELIZATION OF THE PIEZOELECTRIC RING

The harvesting of vibrational energy by piezoelectric 
transduction has a great interest. Recently, many researchers 
[6, 7], have worked on the development of systems based on 
different conversion techniques. In the case of our sensor, the 
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conversion of the vibrational energy into electric energy is 
achieved by means of a piezoelectric ring undergoing 
deformations exerted by a sphere excited by external 
vibrations. For this purpose, the paper models the piezoelectric 
ring according to its two main modes of vibration: thickness 
and radial. 

A. Thickness mode  
Consider an elementary slice of the ring, thickness dz and 

section A. The displacements u and the forces F are along the 
longitudinal axis (axis z) as indicated in the figure 2 [8]: 
Fig. 2. Elementary slice of the ring in the thickness oscillation 

The fundamental principle of dynamics applied to this 
elementary volume gives [8]:  

ρ. A. dz	 ������ 	= 	
��
��	 dz			 			(1)	

The constitutive equations of a passive solid material are: 

T	 = 	 c��. S						T	 = 	F/A			S	 = 	 ∂u/ ∂x			 		(2)	

The combination of these equations gives:  

ρ. ������ = 	 c��. �
��
��� 		(3)	

With ρ is the density of the PZ26 and  c�� is its Young's 
modulus.   

Assuming the harmonic vibrations and using the complex 
notation a way of separating the variables u(z, t) = U(z)e���, 
the equation 3 becomes:  

���
��� 	+	ω�. ���� . U	 = 	0			 			(4)    

The solutions of this equation are given by: 

U(z) 	= 	α. e���� 	+ 	β. e���			 		(5)	

Where �	 = 	�.� �
���

 is the wave vector in m-1, α and β are 

two constants. 

The ring has a thickness L, the values of the coefficients α 
and β depends to the boundary conditions on the faces of the 
ring and supposing t = 0:  

u� (0, 0) 	= 	 v� 	= 	jω	(α	 + 	β)									 		(6)	    

u� (L, 0) 	= 		 v� 	= 	jω	(α. e���� 	+ 	β. e���)			 		(7)		

This gives: 

α	 = 	 ���		�����������	(��) 	 and  β	 = 	 ��	�	������������	(��)

The forces at the ring ends z = 0 and z = L are calculated 
by:  

F(0) 	= 		 F� 	= 	Z	[	(��	�	��)����	(��) 	+ 	j	tan	(��� )	v�			 			(8) 

F(L) 	= 	F� = 	Z	[	(��	�	��)����	(��) 	+ 	j	tan	(��� )	v�]			 			(9)		

Where Z is the acoustic impedance of the ring; it is 
expressed as a function of c�� and the density ρ by: 

Z	 = 	F/u� 	= 	A.�c��. ρ			 		(10)	

If take into account the piezoelectricity of the ring, the 
expression of the constraint has to be modified according to the 
constitutive equations of the piezoelectric material: 

T	 = 	C�. S	–	h��. D			 			(11)	

With C� = c�� + ��
����
	 and h�� = �

����
.

So the two forces are calculated replacing T by T + h.D, 
which give the following system:  

F� 	− 	h��DA	 = 	Z	[	(��	�	��)����	(��) 		+ 	j	tan	(��� )	v�		(12)			

F� 	−	h��DA	 = 	Z	[	(��	�	��)����	(��) 		+ 	j	tan	(��� )	v�		(13)		

Note that the term h��DA represents a force denoted F due 
to the piezoelectric contribution. Now this electromechanical 
model can be transposed in an electromechanical equivalent 
circuit as shown the following figure:  
Fig. 3. Electromechanical circuit of the piezoelectric ring in the thickness 

mode 
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Here, 	Z� = Z� = jZ. tan(��� ) , 	Z� = −j �
���	(��)  and 	C� =

���� �
� 		the blocked capacity of the ring. 

1) Analytical response in voltage

The electromechanical equivalent circuit is formed of two 
parts connected by a transformer of ratio 	h��C� , a pure 
mechanical part designated by the mechanical forces F� and F� 
and the displacement velocities v� and	v� , an electric part to 
the output of the transformer designated by the generated 
electric voltage and current V and I. 

This circuit allows us to write: 

F� +	Z�	(v� 	+	v�) 	= 	 F��	–	Z�v� 	= 	 F��	–	Z�v� 		(14)   

For a symmetric velocity field compared to the 
piezoelectric ring plane, we can suppose that		v� = 	 v�. 

This gives: 

F�� 	= 		 F� 	+	(2Z� 	+ 	Z�)	v�																													(15)	

The voltage and current at the output of the transformer are 
given by: 

V′� 	= 	 F�/h��. C� 		(16)	

	I’	 = 	h��. C�(v� 	+	v�) 	= 	2h��C�v�			 		(17)	

I’’	 = 	I’	– 	I	 = 	jC�ωV�	and	I	 = 	V�/Z��� 		(18)	

From where:  

V�	(1	 +	 �
����.����

) 	= 	 �’
����

	= 	 ������ 	v�			 		(19)		

The equivalent impedance of the electrical part is given by: 

Z���� 	= 		 ������
	+	 ����

��	����.����	
		(20)                                                     

We have V′� 	= 	 Z����. I’ which give the relation between the
force F and velocity v� which is of the following form:  

F� = 	2h��� C��Z����. v� 		(21)	   

The equation 15 gives: 

F�� 	= 	 (2h��� C��. Z���� 	+ 	2Z� 	+ 	Z�)	v� 			(22)		

Therefore the equation 18 becomes of the form: 

V�	�1	 +	 �
����.����

� = 	 ������ 	 �
(����� ���.�����	�	���	�	��)

F��     (23)

Where the voltage	V�  versus the force	F�� is: 

V� 	= 	 ������.����
(�	�	����.����)(����� ���.�����	�	���	�	��)

F�� 			(24)	

B. Radial mode 
To obtain the equations of motion, the constitutive 

equations of piezoelectricity are written in cylindrical 
coordinates [9].  In this case the variables are the radius r, the 
angle θ and the axial dimension denoted z (fig. 4). In this 
figure, L, a and b are respectively thickness, outer and inner 
radius of the ring, 	F�� , 	F��  and 	v�� , 	v��  are external radial 
forces and vibrational velocities at the outer and inner surfaces 
of the ring.   
Fig. 4. The piezoelectric ring in radial mode 

The electromechanical equivalent circuit of the 
piezoelectric ring in the radial mode is of the following form:  
Fig. 5. Electromechanical circuit of the piezoelectric ring in the radial mode 

Here, C�� 	= 		 ���
� �
� [1	 − 	 �����

���� (���� �	���� )]  is the blocked

capacity of the ring in radial mode and N�� = 	π�αab. ���
���� �	����

the electromechanical coupling factor of the ring, s��� is elastic 
compliance constants measured at constant electric field, d�� is 
piezoelectric strain constant, ε���  is dielectric constant 
measured at constant stress, A	 = 	π(a� − b�) is cross-sectional 
area, α	 = 		ω/v� , v� 	= 	�c��� /ρ are radial wave number and 
sound speed, c��� = 	1/(S��� (1 −	υ��� )) , with 	υ�� 	=
		−S��� /S���  is Poisson ratio.   

In figure 5, F���� 	= 	 (παb/2)	F�� , F���� 	= 	 (παa/2)	F�� , 
v��� 	= 	 (2/παb)v�� , v��� 	= 	 (2/παa)v��  and F� 	= 	N��V , 
with V	 = 	E�L, E� is electric field in the z direction.  

The expressions of the three impedances are given by: 

Z� 	= 	 �
�(��)����

�� [		��(��)��(��)	�	��(��)��(��)��(��)��(��)	�	��(��)��(��)		
+ 	 (�	�	���)�� ] 	−

	j ������� 	 		�
��(��)��(��)	�	��(��)��(��)		

 (25) 
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Z� 	= 	 �
�(��)����

�� [		��(��)��(��)	�	��(��)��(��)��(��)��(��)	�	��(��)��(��)		
− 	 (�	�	���)�� ] 	−

		j ������� 	 		�
��(��)��(��)	�	��(��)��(��)		

     (26)              

Z� 	= 	j	 �������
		�

��(��)��(��)	�	��(��)��(��)		
	=

	j ������� 	 		�
��(��)��(��)	�	��(��)��(��)		

   (27) 

In these equations, J�, Y�, and J�, Y� are Bessel functions of 
order zero and one respectively, Z�� 	= 		ρv�S�, Z�� 	= 	ρv�S�, 
with S� 	= 	2πaL and S� 	= 	2πbL	are outer and inner surfaces 
of the ring respectively.  

The analytical voltage response of this vibration mode 
calculated from the equivalent circuit is expressed as the 
following form:  

V� 	= 	 ����.����	
(�	�	�����.����	)(����� .�����	�	���	�	��)

F′′����� 	(28)	

Here, Z���� 		= 	 Z���	/	(1 + 	jC��ω. Z���)  is the equivalent 
impedance of the electrical part.  

C. Internal load of energy extraction circuit 
The two equivalent electromechanical circuits for the two 

modes of vibration are completed with the internal impedance 
load (Zint) of the processing circuit of the harvested energy. So 
to consider this charge effect, the power transferred has been 
modeled depending on the internal impedance of the energy 
extraction circuit.  

The shape of the power (fig. 6) shows that the power 
reaches a maximum value for			Z��� 	= 	24	KΩ. This optimal 
value of the load will allow a recovery of maximum power of 
the vibrational radial mode.  
Fig. 6. Power modeled depending of the internal impedance

In a same manner, we modeled the power for the 
longitudinal mode of vibration, the impedance of load obtained 
are shown in the following table:  

TABLE I. INTERNAL IMPEDANCES FOR THE TWO VIBRATIONAL MODES 

Mode Longitudinal Radial

����	(KΩ) 28 24

So for the future, we used the internal load impedance of 
the radial vibration mode (24 KΩ) to determine the total 
harvested voltage given by the two modes of vibration because 
the radial mode gives the highest voltage by comparison with 
the longitudinal mode.  

II. ANALYTICAL MODEL OF THE ENERGY HARVESTING

A. Forces field applied to the ring 
When using our sensor in a flowing fluid, the sphere is 

deformed under the action of the stresses produced by the 
fluid; the deformation of the structure creates stresses on the 
piezoelectric ring. Therefore to calculate the force field applied 
to the ring due of the fluid flow, a finite element model was 
built under COMSOL Multiphysics (fig. 7).  
Fig. 7. Mesh of the sensor showing the ring zone 

This model makes it easy to combine three approaches: 
acoustic, mechanical and piezoelectric conversion using three 
modules "Pressure Acoustics", "Solid Mechanics" and 
"Electrostatics". So from this model we determined the sound 
pressure per unit area applied in the plane of the piezoelectric 
ring which varies depending on the frequency. The integration 
of this pressure on the entire ring surface gives the force 
applied on the faces of the piezoelectric ring placed at the 
junction of the two half spheres (fig. 8).    
Fig. 8. Force applied in the ring plane 

This figure shows the shape of the force field applied to the 
ring for the frequency band between 10 and 60 KHz. This force 
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Z� 	= 	 �
�(��)����

�� [		��(��)��(��)	�	��(��)��(��)��(��)��(��)	�	��(��)��(��)		
− 	 (�	�	���)�� ] 	−
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"Electrostatics". So from this model we determined the sound 
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This figure shows the shape of the force field applied to the 
ring for the frequency band between 10 and 60 KHz. This force 

is then applied as data input to the two vibrational models of 
the piezoelectric ring. 

B.  Proposed analytical model 
The objective of our theoretical modeling is to assemble the 

two electromechanical circuits corresponding to the two modes 
of vibration in a way to simulate the total recovered energy 
treated by a specific electronics and stored in a capacitor (fig. 
9). The entire modeling must be subsequently made under 
Spice software which is able to simulate electronic circuits.   
Fig. 9. Theoretical model of the two-mode simulation 

This model has a pure mechanical input designated by the 
mechanical forces exerted on the piezoelectric ring of our 
spherical sensor; these forces are described in IV.A. This 
analytical model given as output the electrical voltage and 
current generated by the two electromechanical diagrams. So to 
determine the total recovered voltage, it is necessary to model 
the two modes of vibration using the same internal load 
impedance, and in this case we have proposed to use the 
impedance of the radial mode (24 KΩ) because this last 
generates the highest voltage. So the total voltage produced by 
our theoretical model is only the sum of the two voltages given 
by the two modes of vibration. 

V����� 		= 	V������������ 	+ 	V������	 			(29)	

A Matlab script has been written to implement the 
analytical equation 29, and calculate the total voltage response 
of our proposed model in the frequency range from 10 kHz up 
to 60 kHz. The obtained results are shown in the following 
figure:   
Fig. 10. Analytical voltage response of our theoretical model 

III. CONCLUSION

In this study, we sought to develop an analytical model for 
the recovery of vibrational energy of a spherical sensor. This 
sensor consists of a piezoelectric ring sandwiched between two 
half-spheres. This model must produce the electromechanical 
conversion potential of such a sensor according to its two main 
modes of vibration. For each mode, an equivalent circuit has 
been established to be integrated with the Spice simulation 
model of the energy processing circuit. A finite element model 
was constructed under COMSOL Multiphysics to determine 
the input force for the two vibrations modes. The experimental 
validation of this approach is currently underway. 
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APPENDIX 

TABLE II. PLEXIGLAS PARAMETERS USED IN THE SIMULATION OF THE 
SPHERICAL SHELL 

Elasticity module E 
(MPa) 

Poisson coefficient � Density � (kg/��) 

3300 0.39 1190

TABLE III. PZ26 PARAMETERS USED IN THE SIMULATION OF THE 
PIEZOELECTRIC RING 

��(F/m) ���� /�� ���� /�� �(kg/��) ���(V/m) ���(C/��) 

8.8 10��� 700 1300 7700 23.7 10� 14.7 

���(C/N) ���� (N/��) ���� (N/��) ���� (��/N) ���� (��/N) ���� (��/N) 

-130 
10���

9.56 10�� 7.7 10�� 11 10��� 13 10��� -4.35 
10��� 
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