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A model to predict modal radiation by finite-sized
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1 CEA LIST, point courrier 120, bâtiment 565, 91191 Gif-Sur-Yvette Cedex, France
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Abstract. Elastic guided wave (GW) propagation is involved in various non-destructive
testing (NDT) techniques of plate-like structures. The present paper aims at describing an
efficient model to predict the GW field radiated by various sources attached at a distance
of the straight boundary of an isotropic plate, a configuration often encountered in typical
examinations. Since the interpretation of GW propagation and scattering in plates is made
easier by the use of modal description, the model is derived in the classical theoretical framework
of modal solutions. Direct radiation by a uniform source of finite size in an isotropic plate can
be efficiently modelled by deriving Fraunhofer-like approximation. A rigorous treatment is
proposed based upon i) the stationary phase method to describe the field after reflection at
a plate edge, ii) on the computation of modal reflection coefficients for an arbitrary incidence
relative to the edge and iii) on the Fraunhofer approximation to account for the finite size of
the source. The stationary phase method allows us to easily express the amplitude of reflected
modes, that is to say, the way waves spread, including reflections involving mode conversions.
The computation of modal reflection coefficients for plane GW at oblique incidence was recently
treated in the literature and our work for this very problem simply consisted in adapting it to
the SAFE calculation we use to compute modal solutions.
The overall computation of the direct and reflected contributions is numerically very efficient.
Once the total field is computed at a given frequency, the time-dependent field is obtained by
simple Fourier synthesis.

1. Introduction
Nondestructive testing (NDT) of plate-like structures using elastic guided waves (GW) is the
context of our work. Thanks to the ability of GW to propagate at long distances, one can
perform fast inspections of large structures without the need for moving a transmitter and a
receiver. When GW are generated by transducers of finite size, diffraction effects occur. Plate-
like structures under examination are also of finite size so that GW generated in the plate can
be reflected onto its edges. Since GW propagate as a series of differing modes, reflection of one
GW at an edge can lead to mode-conversion phenomena.

Simulation is most helpful to help managing the complexity of GW propagation and scattering.
To be realistic, transducer diffraction effects must be accounted for to accurately predict the
wave-field radiated into the plate. The present work aims at proposing a model for predicting
the field radiated by a finite-sized transducer into a plate of finite size, by considering as an
elementary solution both the direct field radiated and the field after reflection at one straight
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edge of the plate. In the literature, some models [1] which can be compared to Fraunhofer-
like approximations have been developed for elastic guided waves in the case of isotropic and
homogeneous plates, leading to fast computation of typical diffraction effects. In the Section
3.1, we present briefly the principle of Fraunhofer-like approximation. Thanks to the stationary
phase method, an equivalent expression is obtained for the reflected field, which accounts for
possible mode-conversion in the reflection process. The reflection at an edge of a plane GW are
the subject of a few publications [2, 3] that we will use to calculate the reflection coefficients.

Finally simulation results are shown to illustrate the capabilities of our model.

2. General expression of the displacement field
We consider a semi-infinite plate as shown in Fig. 1, of thickness 2d, which upper plane is at
z = d and lower plane at z = −d. The plate is assumed to be made of an isotropic material.
The plate edge is straight and belongs to the plane defined by the equation x = 0.

x 

z 

y 

𝑥 = 0 

𝑧 = −𝑑 

𝑧 = 𝑑 

Figure 1. System geometry.

The total field u radiated by the source is expressed in what follows as the sum of the direct
field ud and the reflected field ur.

2.1. Direct field
The direct field radiated by a finite-sized source can be expressed in the form of a spatial
convolution integral of a Green’s function gd(x, y, z) with a source term q(x, y):

ud(x, y, z,q) =
∫∫
S

gd(x− x′, y − y′, z)q(x′, y′)dx′dy′. (1)

The expression of this Green’s function can be found in the literature [4]. By introducing its
expression into equation (1) the direct field in an isotropic plate can be expressed as a sum over
the propagative modes,

ud(x, y, z,q) =
∑
m

∫∫
S

[
|km|
2π

iω

4Pm
Vm(ϕ

′, z)Vm(ϕ
′, d)∗Tq(x′, y′)

√
2π

|km|

×ei
π
4
sgn(−km)eikm

√
(x−x′)2+(y−y′)2

(√
(x− x′)2 + (y − y′)2

)−1/2]
dx′dy′.

(2)

In this expression, km is the wave number of the mode m,
ϕ′ is such that tanϕ′ = y−y′

x−x′ ,
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Pm is the average flow power of the mode m,
and

Vm(ϕ
′, z) = A−1(ϕ′)W(m)(z),

is the displacement field distribution W(m) for the mth mode in the direction of propagation ϕ′,
where A is a rotation matrix allowing us to express the field in the plate coordinates,

A =

 cosϕ′ sinϕ′ 0
− sinϕ′ cosϕ′ 0

0 0 1

 .

The modal contributions are computed by means of the Semi Analytic Finite Element (SAFE)
method [5].

2.2. Reflected field
In this section, the Green’s function gr for the reflected field is considered.

ur(x, y, z,q) =
∫∫
S

gr(x− x′, y − y′, z)q(x′, y′)dx′dy′. (3)

As already done when considering the direct field, the reflected field ur is written as a sum over
the different modal paths,

ur(x, y, z,q) =
∑
m

∑
n

∫∫
S

grm,n(x− x′, y − y′, z)q(x′, y′)dx′dy′, (4)

where the subscript m denotes the mode considered for incident paths and n denotes the mode
considered for reflected paths.

𝛾𝑚 

𝛾𝑛 

𝑅𝑛 

𝑅𝑚 

Figure 2. Notations.

Now, as point sources radiate a wavefield where waves spread with a cylindrical symmetry,
wave amplitude decreases asymptotically as r−1/2 while their phase linearly depends on the
distance from the source point. At this stage, to deal with the reflection upon the straight edge,
it is interesting to decompose such a wavefield as a continuous spectrum of plane waves expressed
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in relation to the edge position. To do this, we use Equation (28a) from Stamnes and Eide [6]
and Equation (5.3a) from Stamnes [7], and after some algebra, we can obtain that√

1

kR
eikR =

√
i

2π

∫ ∞
−∞

eikR

kx
dky =

1

2π

∫ ∞
−∞

√
2iπ

kx
eikRdky. (5)

So, a spectral elementary component of the wavefield from a point source has the following value√
2iπ
kx

. The Green’s function expressing the reflected field along one of the paths m,n may be
written as,

grm,n =
1

2π

∫
Grm,n

√
2iπ

kmx
ei(kmx(xm,n−x

′)+knx(x−xm,n)+kyy)dky, (6)

where Grm,n is an amplitude term which will be determined later.

grm,n =

√
i

2π

∫
Grm,n

ei(kmx(xm,n−x
′)+knx(x−xm,n)+kyy)

kmx
dky. (7)

The Green’s function grm,n is now calculated thanks to the stationary phase method by
expanding at second order the phase function about the direction of stationary-phase. For this,
the second order derivative of the phase function must be calculated. The phase term has the
following form,

f(ky) = kmx
(
xm,n − x′

)
+ knx (x− xm,n) + kyy. (8)

The second order Taylor’s expansion about the path of stationary phase is

f(ky) = f(kys) +
∂f

∂ky

∣∣∣∣
kys

(ky − kys) +
1

2

∂2f

∂k2y

∣∣∣∣
kys

(ky − kys)2 , (9)

In this expression, the first order derivative vanishes as the expansion is related to the path of
the stationary phase. The second order derivative is the following,

∂2f

∂k2y

∣∣∣∣
kys

= −(xm,n − x′)
kmx

1

cos2 γm
− (x− xm,n)

knx

1

cos2 γn

= − 1

km

1

cos2 γm

(
Rm +Rn

km
kn

cos2 γm
cos2 γn

)
,

(10)

where, if (xm,n, ym,n) denotes the point of the plate edge where reflection arise,
Rm is the distance of this point to the source point.
Likewise, Rn is the distance between the calculation point and the point where reflection arises.
γm and γn are the phase directions before and after reflection, respectively. We can now

replace the phase with its development,∫ ∞
−∞

ei(kmx(xm,n−x
′)+knx(x−xm,n)+kyy)

kmx
dky

=
ei(kmRm+knRn)

kmx

∫ ∞
−∞

e
−i 1

2

(
1
km

1
cos2 γm

(
Rm+Rn

km
kn

cos2 γm
cos2 γn

))
(ky−kys)2

dky

(11)

We recognize in this expression a Gaussian integral,∫ ∞
−∞

e
−i 1

2

(
1
km

1
cos2 γm

(
Rm+Rn

km
kn

cos2 γm
cos2 γn

))
(ky−kys)2

dky

= e
−iπ

4
sgn

(
1
km

(
Rm+Rn

km
kn

cos2 γm
cos2 γn

))√√√√√ 2π|km|2 cos2 γm∣∣∣∣Rmkm +Rnkn

(
km
kn

cos γm
cos γn

)2∣∣∣∣
(12)
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So we have,∫ ∞
−∞

ei(kmx(xm,n−x
′)+knx(x−xm,n)+kyy)

kmx
dky

= ei(kmRm+knRn)e
−iπ

4
sgn

(
1
km

(
Rm+Rn

km
kn

cos2 γm
cos2 γn

))√√√√√ 2π∣∣∣∣Rmkm +Rnkn

(
km
kn

cos γm
cos γn

)2∣∣∣∣
(13)

grm,n =

√
i

2π
ei(kmRm+knRn)e

−iπ
4
sgn

(
1
km

(
Rm+Rn

km
kn

cos2 γm
cos2 γn

))

×Grm,n

√√√√√ 2π∣∣∣∣Rmkm +Rnkn

(
km
kn

cos γm
cos γn

)2∣∣∣∣ .
(14)

Just before the reflection, the displacement field due to the m mode is given by,

udm(xp, yp) =
[
|km|
2π

iω

4Pm
Vm(ϕm, z)Vm(ϕm, d)

∗Tq(x′, y′)

×

√
2π

|kmRm|
ei
π
4
sgn(−km)eikmRm

]
,

(15)

so that just after the reflection, the displacement field can be written as

urm,n(xp, yp) = rm,n
|km|
2π

iω

4Pm
Vn(ϕn, z)Vm(ϕm, d)

∗Tq(x′, y′)

×

√
2π

|kmRm|
ei
π
4
sgn(−km)eikmRm .

(16)

where, ϕm is the angle between the point where reflection arises and the source point relative
to the edge normal. Likewise, ϕn is the angle between the calculation point and the reflection
point.

Our goal is now to calculate Gm,n. The reflected wave n has the following form,

ur(x, y) =
∑
m

∑
n

am,nVn(z). (17)

Just before the reflection, for one path, the displacement field due to the incident mode m is
given by,

udm(xp, yp) =
[
|km|
2π

iω

4Pm
Vm(ϕm, z)Vm(ϕm, d)

∗Tq(x′, y′)

×

√
2π

|kmRm|
ei
π
4
sgn(−km)eikmRm

]
,

(18)

so just after the reflection, the displacement field can be expressed as

urm,n(xp, yp) =
[
rm,n
|km|
2π

iω

4Pm
Vn(ϕn, z)Vm(ϕm, d)

∗Tq(x′, y′)

×

√
2π

|kmRm|
ei
π
4
sgn(−km)eikmRm

]
,

(19)
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where rm,n denotes the reflection coefficient related to the path m,n which will be calculated in
section 4. At this stage, we have

Grm,n =

√
2π

i
rm,n
|km|
2π

iω

4Pm
Vn(ϕn, z)Vm(ϕm, d)

∗T . (20)

Finally, the displacement field after reflection can be expressed by:

ur =
∑
m

∑
n

[
rm,n
|km|
2π

iω

4Pm
Vn(ϕn, z)Vm(ϕm, d)

∗Tq(x′, y′)

×eifm,n(γm)e
iπ
4
sgn

(
∂2fm,n

∂γ2
|γm

)√√√√ 2π

|Rmkm +
(
km
kn

cos(γ)
cos(γn)

)2
Rnkn|

 . (21)

In the next section, we will explain how efficiently taking into account efficiently the finite
size of the source and how determining paths between it and the calculation points.

3. Finite-sized sources
3.1. Fraunhofer-like approximation
In the isotropic case and for the direct field, the integral over the source surface can be accurately
and efficiently evaluated thanks to Fraunhofer approximation. This approximation is based on a
first order approximation of the phase term and a zero-th order approximation of the amplitude.
Let (xc, yc),denote the coordinates of the source centre. The direct displacement field given by
Eq. 2 under Fraunhofer approximation writes

ud(x, y, z,q) =
(√

(x− xc)2 + (y − yc)2
)−1/2∑

m

iω

4Pm

√
|km|
2π

Vm(ϕc, z)Vm(ϕc, d)
∗T

× ei
π
4
sgn(−km)eikm

√
(x−xc)2+(y−yc)2

∫∫
S

[
e
−ikm xx′+yy′√

(x−xc)2+(y−yc)2 q(x′, y′)

]
dx′dy′.

(22)

The surface integral is easily calculated for standard geometries of source (rectangular or
circular) generating in-plane or out-of-plane uniform stresses.

For example, considering rectangular and disk transducers generating uniform normal stress
over their surface, the direct fields radiated into the plate by these sources are readily given by

ud(x, y, z,q) =
(√

(x− xc)2 + (y − yc)2
)−1/2∑

m

iω

4Pm

√
|km|
2π

Vm(ϕc, z)Vm(ϕc, d)
∗T

× ei
π
4
sgn(−km)eikm

√
(x−xc)2+(y−yc)2Fm(x− xc, y − yc)q(xc, yc).

(23)

Fm is a modal function which stands for the result of the surface integral. For a rectangular-
shaped transducer of aperture Lx × Ly it is given by,

Fmrect(ϕc) = LxLy sinc

(
km

Lx
2

cosϕc

)
sinc

(
km

Ly
2

sinϕc

)
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and for a disk-shaped transducer of radius a, by,

Fmdisk = πa2
2J1(kma)

kma
.

As we can see, these expressions are only dependent on the angle ϕc between the source centre and
the calculation point (at least in the case of a rectangular source). Since such an approximation
is already valid before the reflection, it can be all the more used in the case of reflected paths
taking into account the direction between the point where reflection arises and the centre of the
source.

3.2. Paths between the source and the calculation points
The centre of the source is, as in the previous section (xc, yc). The coordinates of the calculation
point are denoted by (x, y). We will search the coordinate of the reflection point (0, yp) for a
couple m,n of modes.

𝜑𝑚 

𝜑𝑛 
𝒌𝑛 

𝒌𝑚 

Figure 3. Reflection at an edge.

In an isotropic plate, the phase direction is the same as the energy direction. Denoting the
incident angle by ϕm and the angle of reflection by ϕn, as shown on the figure 3, the Snell-
Decartes’ law gives us,

km sin(ϕm) = kn sin(ϕn), (24)

km
yp − yc√

(yp − yc)2 + x2c
= kn

y − yp√
(y − yp)2 + x2

, (25)

After some algebra, we obtain the following polynomial to solve:

a4y
4
p + a3y

3
p + a2y

2
p + a1yp + a0 = 0, (26)

with

a4 =
(
k2m − k2n

)
a3 = −2(k2m − k2n)(yc + y)

a2 = (y2c + 4ycy + y2)(k2m − k2n) + x2k2m − x2ck2n
a1 = −2

(
(ycy

2 + y2cy)(k
2
m − k2n) + x2yck

2
m − x2cyk2n

)
a0 = (ycy)

2 (k2m − k2n) + (xyckm)
2 − (xcykn)

2 .

(27)
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This polynomial has four roots. If a reflection point exists, it is the real solution where the
value of yp is between those of y and yc. Now if we have a reflection point for a couple m,n
of modes, we know the path for these between the source centre and the calculation point. For
each of these paths, we must now calculate the reflection coefficients.

4. Reflection coefficients
To calculate the reflection coefficients, we use the method proposed by Santhanam and Demirli
[2]. In this method, stress free boundary conditions are assumed at the plate edge. For an
incident mode m and all the reflected modes n, we can write the following system:

σ
(m)
11 +

∑∞
n=1 rm,nσ

(n)
11 = 0

σ
(m)
12 +

∑∞
n=1 rm,nσ

(n)
12 = 0

σ
(m)
13 +

∑∞
n=1 rm,nσ

(n)
13 = 0

. (28)

In this system, all the stress tensors σ(i) are written in the plate coordinate system. The SAFE
method allows us to compute them in the propagation system. Therefore, in order to express
them in the plate coordinate system, a transformation matrix must be introduced, as presented
by Gunawan and Hirose [3]. The change of coordinate system is written as follows,

σ = QσpQ
t, (29)

where Q denotes the transformation matrix, σp denotes the stress expressed in the coordinate
system attached to the wave propagation considered, and σ denotes the stress expressed in the
plate coordinate system. The transformation matrix is readily given by:

Q =

 C S 0
−S C 0
0 0 1

 . (30)

We can see on the figure 3 that the incident mode makes an angle ϕm with respect to the plate
frame. For this mode,

Cm = cosϕm
Sm = − sinϕm

(31)

Now, the transformation matrices for the different reflected modes are similarly obtained by
introducing the following notations:

ξ = km sinϕm (32)

µ = ±
√
k2n − ξ2 (33)

Cn = − µ

kn
(34)

Sn = − ξ

kn
(35)

Choose the sign in the Eq. (33) is made according to [3]. It must be noticed that for
propagative modes, Cn an Sn are real valued. In these cases, Q is nothing but a rotation matrix
and solving Eq. (26) leads to the obtaining of a reflection point.

15th Anglo-French Physical Acoustics Conference (AFPAC 2016)                                                   IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 797 (2017) 012005          doi:10.1088/1742-6596/797/1/012005

8



Figure 4. Energy reflection coefficient for A0 incident and for (from left to right) A0, A1, SH1
reflected.

Figure 5. Energy reflection coefficient for S0
incident and for (from left to right) S0, SH0
reflected.

Figure 6. Energy reflection coefficient for SH0
incident and for (from left to right) S0, SH0
reflected.

Once all the stress tensors are written in the same coordinate system, we can calculate the
rm,n coefficients appearing in Eq. (28), by truncating the infinite sum over a finite number N
of modes. All the propagative modes must be accounted for, together with a finite number of
inhomogeneous and evanescent modes.

Energy reflection coefficients Rm,n can also be computed likewise by means of,

Rm,n =
Pn
Pm

(rm,nr
∗
m,n), (36)

where P denotes the mean energy flux of the considered mode along the plate.
Figures 4, 5 and 6 present the energy reflection coefficients for the three first propagative

modes as functions of the incident angle and of the frequency-thickness product. The plate
considered in this simulation is made of aluminium and is 3 mm thick. Dispersion curves of
propagative modes are plotted on Fig. 7.

Below the first cut-off frequency, the A0 mode is the only one propagative mode to present an
antisymmetric shape. That is why an incident A0 mode is totally reflected as another A0 mode.
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Figure 7. Dispersion curves of a 3-mm-thick
aluminium plate.

Both the S0 and the SH0 modes have a symmetric shape. Therefore, when a S0 or a SH0 mode
interacts with the free edge of the plate, mode conversion occurs.

5. Results in time domain
Throughout the theoretical derivations of field models described in previous sections, a single
frequency excitation was assumed. In what follows, time-dependent wavefields are presented
which are obtained by standard Fourier synthesis.

Figure 8. Normalized normal
modal displacement along an axis
from a distance of λmax of the edge
of the source centered at (0, 0).

At first, we will compare the normal displacement due to each mode at the frequency of 400
kHz. As presented on Fig. 8, the A0 mode and the S0 mode are predominant while the SH0
mode is negligible.

In this simulation, we consider a 5-mm-diameter circular transducer centered at (−100, 0)
which generates a normal uniform stresses excited by a toneburst of sine wave of 400 kHz centre
frequency weighted by a Hanning window. We present on figure 9 the propagation of the waves
with a reflection at four different times.

The first instant t = 18µs (a) was chosen before any reflection phenomenon occurs; calculation
points reached by some acoustic energy are insonified only by direct contributions from the source.
The second instant t = 31µs (b) was chosen at the beginning of the reflection process, when only
the fastest mode reached the plate edge; interferences of direct and reflected contributions are
visible close to the edge. The third instant t = 54µs (c) was chosen just after the slowest
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Figure 9. Four snapshots of the normal displacement associated to guided wave propagation in
a plate with account of edge reflection (a) at 18µs, (b) at 31µs, (c) at 54µs, and (d) at 72µs.

contributions finished to reflect on the edge; at some calculation points, interferences with direct
contributions are still visible. The last instant t = 72µs (d) was chosen when all the points of
the computation zone are only insonified by waves reflected on the plate edge; there is no more
interference.

The S0 mode is the fastest mode. So, it is the first to be reflected. Moreover, as expected we
distinguish only the contribution of two modes.

6. Conclusion
An efficient model has been proposed to compute the elastic guided wave field radiated by finite-
sized sources in a semi-infinite isotropic plate. The model gives the field at a point of the plate as
the superposition of direct contributions from the source with contributions involving reflections
onto the free edge of the semi-infinite plate. Modes are computed by means of the SAFE
method but classical formulas for Lamb waves and transverse horizontal guided waves could be
easily introduced. The calculation of reflected contributions is based upon the stationary phase
method, stationary phase paths being easily determined by solving a simple polynomial equation.
Fraunhofer-like approximation is used for efficiently evaluate the surface integral over transducer
surface. This approximation was already known to combine efficiency and accuracy for the field
radiated into an infinite plate [8]; this is all the more true for longer wavepaths involving edge
reflection.

The recent article of Feng et al. [9] develops the mode-matching method for computing the
scattering of obliquely incident guided waves by a straight feature. This method can be used
straightforwardly in our model to deal with more complex boundary conditions at plate edges.
Likewise, the integration along energy directions developed for predicting transducer diffraction
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effects in anisotropic plates [8], could be adopted to generalize the present model to anisotropic
cases.
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