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Abstract

This article contributes to defining the design space of program repair. Repair
approaches can be loosely characterized according to the main design philos-
ophy, in particular “generate- and-validate” and synthesis-based approaches.
Each of those repair approaches is a point in the design space of program re-
pair. Our goal is to facilitate the design, development and evaluation of re-
pair approaches by providing a framework that: a) contains components com-
monly present in most approaches, b) provides built-in implementations of ex-
isting repair approaches. This paper presents a Java framework named Astor
that focuses on the design space of generate-and-validate repair approaches.
The key novelty of Astor is to provides explicit extension points to explore
the design space of program repair. Thanks to those extension points, re-
searchers can both reuse existing program repair components and implement
new ones. Astor includes 6 unique implementations of repair approaches in
Java, including GenProg for Java called jGenProg. Researchers have already
defined new approaches over Astor. The implementations of program repair
approaches built already available in Astor are capable of repairing, in total,
98 real bugs from 5 large Java programs. Astor code is publicly available on
Github: https://github.com/SpoonLabs/astor.

Keywords: Software Maintenance, Automated Program Repair, Software
Testing, Evaluation Frameworks, Software Bugs, Defects

1. Introduction

Automated software repair is a research field that has emerged during the last
decade for repairing real bugs of software application. The main goal is to reduce
cost and time of software maintenance by proposing to developers automatically
synthesized patches that solve bugs present in their applications. Among pioneer
repair systems are GenProg [53], Semfix [41], Prophet [32], Nopol [59], and
others [20, 58, 39, 22, 23, 19, 32, 30, 42, 8, 10, 51, 38, 44, 31]. Automation of bug
fixing is possible by using automated correctness oracles. For instance, GenProg
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[53] introduced the use of test suite as correctness oracle: the correctness of a
bug fix is is assessed by executing all tests from its associated test suite.

Program repair systems can be loosely characterized along their main de-
sign philosophy: generate-and-validate approaches (which first generate a set of
candidate patches, and then validate them against the test suite) or synthesis
based approaches (which first use test execution information to build a repair
constraint, and then use a constraint solver to synthesize a patch). For example,
GenProg and JAFF [2] are generate-and-validate approaches based on genetic
programming.

More generally, every repair system is a point in the design space of program
repair. By making design decisions explicit in that design space, one can start
to have a fine-grain understanding of the core conceptual differences in the field.
For example, the main conceptual difference between GenProg and PAR [20]
lies in the repair operators: they do not use the same code transformations for
synthesizing patches.

To foster research on program repair, we aim at providing the research com-
munity with a generic framework that encodes the code design space of generate-
and-validate repair approaches.

In this paper, our main contribution is Astor (Automatic Software Trans-
formations fOr program Repair). Astor is a program repair framework for Java,
it provides 6 generate and validate repair approaches: jGenProg (a Java imple-
mentation of GenProg, originally in C), jKali (an implementation of Kali [46],
originally in C), jMutRepair (an implementation of MutRepair [6], not pub-
licly available), DeepRepair ([55]), Cardumen [36], and TIBRA (an extension
of jGenProg introduced in this paper). Those repair approaches are based on
twelve extension points that form the first ever explicit design space of program
repair. Over those twelve extension points, the program repair researchers can
both choose an existing component (among 33 ones), or implement new ones
for exploring a a new point in the design space of program repair.

Astor has been extensively used by the research community

a) for creating a novel repair system based on Astor [50, 55, 63, 54], which
is the key enabling factor,

b) for performing comparative evaluations, using Astor’s publicly available
implementation of existing approaches [57],

c) for reusing numerical results and/or patches obtained with Astor [58,
24, 48, 65].

Astor is publicly available on Github and is actively maintained. A user
community is able to provide support. Bug fixes and extensions are welcome as
external contributions (pull requests). From an open-science perspective, since
the whole code base is public, peer researchers can validate the correctness of
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the implementation and hence minimize threats to internal validity.
To sum up, our contributions are:

• The explicit design space of generate-and-validate program repair.

• The realization of that design space in Astor, where the most important
design decisions of program repair are encoded as extension point.

• Twelve extension points, which program repair researchers can either reuse
or extend for doing interesting research in the field.

• Six repair approaches that can be used out-of-the-box in comparative eval-
uations, incl. jGenProg, the most used Java implementation of GenProg
according to citation impact [53, 14, 26, 52, 11]. The study of the repair
capability of the implemented approaches based on the Defects4J bug
benchmark [18].

• The evaluation of two extension points of GenProg: choice of the ingredi-
ent space and ingredient transformation.

This paper is a completely rewritten long version of a short paper [35]. It
includes a detailed explanation of Astor’s architecture, extension pointss as well
as a large evaluation. The paper continues as follows. Section 2 describes the
design of Astor, Section 3 presents the extension points provided by Astor. Sec-
tion 4 presents the built-in approaches included in Astor. Section 5 presents a
evaluation of the built-in approaches and different implementations for the ex-
tension points. Section 6 presents the related work. Finally, section 8 concludes
the paper.

2. Architecture

2.1. The Design of Astor

Astor is a framework that allows researchers to implement new automated
program repair approaches, and to extend available repair approaches such as
jGenProg [33] (implementation of GenProg [53]), jKali [35] (implementation of
Kali [47]), jMutRepair [35] (implementation from MutRepair [6]), DeepRepair
[55], Cardumen [36].

Astor encodes the design space of generate-and-validate repair approaches,
which first search within a search space to generate a set of patches, and then
validate using a correctness oracle. Astor provides twelve extension points that
form the design space of generate-and-validate program repair. New approaches
can be implemented by choosing an existing component for each extension point,
or to implement new ones.

The extension points allow Astor users to define the design of a repair ap-
proach. Main design decisions are: a) code transformations (aka repair opera-
tors) used to define the solution search space; b) different strategies for navigat-
ing the search space of candidate solutions; and c) mechanism for validating a
candidate solution.
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Algorithm 1 Main steps of generate-and-validate repair approaches, imple-
mented in Astor (extension points are referred to as comment prefixed by //,
)

Require: Program under repair P
Require: test suite TS
Ensure: A list of test-suite adequate patches
1: suspicious ← run-fault-localization(P, TS) //EP FL
2: mpl ← create-modification-points(suspicious) //EP MPG
3: ops ← get-operators() //EP OD
4: tsa-patches-refined ← ∅
5: nr-iteration ← 0
6: starting-time ← System.currentTime
7: while continue-searching(starting-time, nr-iteration, size(tsa-patches)) do
8: program-variants ← generate-program-variants(P, mpl, ops)
9: tsa-patches ← tsa-patches + validate-variants(P, program-variants, TS)

10: nr-iteration ← nr-iteration + 1
11: end while//EP NS
12: tsa-patches-refined ← refining-patches(tsa-patches) //EP SP
13: return tsa-patches-refined

Astor was originally conceived for building test-suite based repair approaches
[53] and the first implemented approach over it was named jGenProg, a Java
implementation of GenProg [53], originally written in OCaml language for re-
pairing C code. In test-suite based repair, test suites are considered as a proxy
to the program specification, and a program is considered as fulfilling its speci-
fication if its test suite passes all the these cases otherwise, the program has a
defect. The test suite is used as a bug oracle, i.e., it asserts the presence of the
bug, and as correctness oracle.

An approach over Astor requires as input a buggy program to be repaired
and a correctness oracle such as a test suite. As output, the approach gener-
ates, when it is possible, one or more patches that are valid according to the
correctness oracle.

Algorithm 1 displays the high-level steps executed, in sequence, by a generate-
and-validate repair approach built in Astor. They are: 1) Fault localization (line
1), 2) Creation of a representation (line 2), 3) Navigation of the search space
(lines 7-11), and 4) Solution post-processing (line 12). In the remainder of this
section, we describe each step.

2.2. Fault Localization

The fault localization step is the first step executed by an approach built
over Astor. It aims at determining what is wrong in the program received as
input. This step is executed on line 1 of Algorithm 1. Fault localization con-
sists of computing locations that are suspicious. In the context of repair, fault
localization allows to reduce the search space by discarding those code locations
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that are probably healthy. A repair approach can use the suspiciousness val-
ues of locations to guide the search in the solution space. Consequently, fault
localization has an impact on the effectiveness of the repair approach [45].

Test-suite based repair approaches from Astor use fault localization tech-
niques based on spectrum analysis. Those techniques execute the test cases of a
buggy program and trace the execution of software components (e.g., methods,
lines). Then, from the collected traces and the tests results (i.e., fail or pass),
the techniques use formulas to calculate the suspicious value of each component.
The suspicious value goes for 0 (lowest probability that the component contains
a bug) to 1 (highest). Repair approaches use different formulas, for instance,
GenProg uses an ad-hoc formula [53], while MutRepair [6] uses the Tarantula
formula [17].

Astor provides fault localization as an extension point named EP FL, where
researchers can plug implementations of any fault localization technique. Astor
provides a component (used by default) that implement that point and uses the
fault localization library named GZoltar [4] and the Ochiai formula [1].1

2.3. Identification of Modification Points

Once the fault localization step returns a list of suspicious code locations
(such as statements), Astor create a representation of the program under repair.

Definition 1: A Modification point is a code element (e.g., a statement,
an expression) from the buggy program under repair that can be modified
with the goal of repairing the bug.

Astor creates modification points from the suspicious statements returned
by the fault localization step (section 2.2). This step is executed in line 2
of Algorithm 1. Astor provides an extension point named EP MPG (section
3.2) to define the granularity of each modification point according to that one
targeted by a repair approach built over Astor. For instance, jGenProg creates
one modification point per each statement indicated as suspicious by the fault
localization. Cardumen, another approach built over Astor, works at a fine-
grained level: it creates a modification point for each expression contained in a
suspicious statement. Other approaches focus on particular code elements, such
as jMutRepair which creates modification points only for expressions with unary
and binary operators. For example, let us imagine that the fault localization
marks as suspicious the two lines presented in Listing 1.

Listing 1: Two suspicious statements

9 . . . .
10 myAccount = getAccount (name ) ;
11 myAccount . setBalance ( previousMonth + currentMonth ) ;
12 . . . .

1http://www.gzoltar.com/
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jGenProg creates two modification points, both pointing to statements, one
to the assignment at line 10, another to the method invocation at line 11. Con-
trary, Cardumen creates 3 modifications points: one pointing to the expression
at the right size of the assignment at line 10, a second one to the method invo-
cation at line 11 (note that the method invocation it is also an expression), and
the last one pointing to the expression (previousMonth + currentMonth) which is
the parameter of the method invocation at line 11.

2.4. Creation of repair operators

Astor synthesizes patches by applying automated code transformation over
suspicious modification points. Those transformations are done by repair oper-
ators and the set of all repair operators that an approach considers during the
repair conform the repair operator space.

Definition 2: a Repair operator is an action that transforms a code ele-
ment associated to a modification point into another, modified compatible
code element.

Astor provides an extension point named EP OD (section 3.5) for specifying
the operator space that a repair approach will use. The extension point is
invoked at line 3 of Algorithm 1. Astor works with two kinds of repair operators:

Synthesis and repair operators. An approach can synthesize new code by di-
rectly applying one transformation operators to a modification point, without
the need of any extra information (in particular without using ingredients). One
of them is the repair operator from jMutRepair which changes a logical operator
from > to >=. For example, it generates the new code (fa ∗ fb) >= 0.0 from
the code (fa ∗ fb) > 0.0 without the use of any further information.

Synthesis based on ingredients. There are operators that need some extra infor-
mation before applying a code transformation in a modification point mpi. For
instance, two operators (Insert and Replace) from GenProg [53] need one state-
ment (aka the ingredient) taken from somewhere in the application under repair.
Once selected, the ingredient is inserted before or replace the code at mpi. Such
approaches are known as Ingredient-based repair approaches [53]. jGenProg and
DeepRepair [55] are two ingredient-based approaches built over Astor. Astor
gives support to such repair approaches by automatically providing: a) a pool
of ingredients available, b) strategies for selecting ingredients from the pool.

2.5. Navigation of the search space

Once that that all code transformations to be applied to a suspicious element
are known, Astor proceeds with the navigation of the search space. The goal
is to find, between all possible modified versions of the buggy program, one
or more versions that do not contain the bug under repair and that do not
introduce new bugs.
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Algorithm 2 Method generate-program-variants (as comment prefixed by //,
the name of the extension point)

Require: Program under repair P
Require: List of modification points MPs
Require: List of operator OS
1: mps ← choose-modification-points(MPs) //EP MPS
2: transformations ← ∅
3: for all mp-i ∈ mps do
4: op-j← choose-operator(mp-i, OS) //EP OS
5: transformations ← transformations ∪ create-transformation(P, mp-i, op-

j)
6: end for
7: program-variants ← apply-transformations(transformations, P)
8: return program-variants

The navigation of the search space is executed by the main loop (Algorithm
1 line 7). In each iteration, the approach verifies whether a set of code changes
done by repair operators over some modification points (which produce a mod-
ified version of the program) repair the bug. A modified version of a buggy
program is called in Astor a Program variant.

Definition 3: a Program variant is a entity that stores: a) one or more
code locations known as modification point; b) the repair operators applied
to each modification point; c) the code source resulting from the execution
of all repair operators over the corresponding modification points.

Then, Astor computes a candidate patch from a program variant. A Patch
produced by Astor is a set of changes between the buggy version and a modified
version represented by a program variant.

Astor allows to override the navigation strategy using the extension point
EP NS (section 3.3). Algorithm 1 presents the default implementation of the
navigation strategy, named Selective, which executes the two main steps that
characterize a generate-and-validate technique: first, the algorithm generates 1+
program variants (Line 8), then it validates them against the test suite (Line
9).

2.5.1. Generation of Program Variants

Algorithm 2 shows the main steps that Astor executes for creating a program
variant. Let us analyze each of them.

Selection of modification points. First, a repair approach built over Astor chooses,
according to a selection strategy, the modifications points (at least one) to apply
repair operators (Algorithm 2 line 1). Astor provides an extension point named

7



Algorithm 3 Method create-transformation (as comment prefixed by //, the
name of the extension point)

Require: Program under repair P
Require: Modification point MP
Require: Repair operator OP
1: if needs-ingredient(OP ) then
2: if pool-not-initialized(ingredient-pool) then
3: ingredient-pool ← build-pool(P) //EP IPD
4: end if
5: ingredient ← select-ingredient(ingredient-pool) // EP IS
6: transformed-ingredient ← transform-ingredient(ingredient) //EP IT
7: return (MP , OP , transformed-ingredient)
8: else
9: return (MP , OP )

10: end if

EP MPS (section 3.4) for specifying customized strategies of modification points
selection.

Selection of repair operators. For each selected modification point mpi, an ap-
proach selects one repair operator opj to apply at mpi (Algorithm 2 line 4)
and adds the transformation created by create-transformation (Algorithm 3) to
the set of code transformations (Algorithm 2 line 5). Astor provides an exten-
sion point named EP OS (section 3.6) for specifying customized strategies of
operator selection.

Creation of code transformation. In Astor, a code transformation is a concept
that groups a modification point mp and a repair operator op. Algorithm 3
shows the creation of code transformations. When the operator is of kind
ingredient-based (section 2.4) the transformation needs an additional element:
an ingredient for synthesizing a patch. Astor provides to those operators a pool
that contains all the ingredients that they can use.

For creating a transformation, Astor first detects if the operator needs in-
gredients or not (Algorithm 3 line 1). If it does not need any ingredient, Astor
returns the transformation composed by the mp and op (Algorithm 3 line 9).
Otherwise, Astor creates an ingredient pool from the program under repair.
The creation involves to first parse the code at a given granularity (by default,
that one given by the extension point EP MPG) and then store each parsed
element in the pool (Algorithm 3 line 3). Astor provides an extension point
named EP IPD (section 3.7) for plugging a customized strategy for building the
ingredient pool.

The ingredient pool is queried by the repair approach when an ingredient-
based repair operator needs an ingredient for synthesizing the candidate patch
code (Algorithm 3 line 5). Astor provides an extension point named EP IS

8



(section 3.8) for plugging in a customized strategy in order to select an ingredient
from the ingredient pool.

Moreover, when an operator gets an ingredient for the ingredient pool, it
can use it directly (i.e., without applying any transformation) or after applying
a transformation over the ingredient (Algorithm 3 line 6). For instance, a trans-
formation proposed by Astor is to replace variables from the ingredient that is
not in the scope of the modification point. Astor provides an extension point
named EP IT (section 3.9) for plugging a customized strategy of ingredients
transformation.

Creation of program variants. A repair approach over Astor generates program
variants from the code transformation previously generated (Algorithm 2 line
7) and returns them for validation stage (line 8).

2.5.2. Candidate patch validation

Algorithm 4 shows the main steps that Astor executes for validating program
variants and returning test-suite adequate patches. Once program variants are
created, the Astor framework synthesizes from each variant the code source
of the patch (Algorithm 4 line 2), then applies it to the buggy version of the
program under repair and finally evaluates the modified version (line 3) using
the correctness oracle. If the patched version is valid, the corresponding patch
is a solution and it is stored (line 5).

Astor provides an extension point named EP PV (section 3.10) for specify-
ing the validation process to be used by the repair approach. Built-in repair
approaches over Astor use test-suite as specification of the program [53] and as
correctness oracle. No failing test cases means the program is correct according
to the specification encoded on the test suite. To validate candidate patches,
Astor runs the test suite on the patched version of the buggy program.

Moreover, Astor defines an extension point named EP FF (section 3.11) to
specify the Fitness Function that evaluates the patch using the output from the
validation process (Algorithm 4 line 4). The result of this function is used to
determine if a patch is a solution (i.e., repair the bug) or not. By default, the
fitness function on Astor counts the number of failing test cases. No failing test
case means the patch is a solution and is known as test-suite adequate patch.

2.6. Evaluation of conditions for ending navigation

An approach over Astor finishes the search of patches, i.e., stops the loop
at line 7 from Algorithm 1, when any of these conditions is fulfilled (configured
by the user): a) finding n plausible patches, b) iterating n times, c) executing
during h hours (timeout).

2.7. Solution post-processing

After finishing navigating the search space, Astor provides an extension point
named EP SP (section 3.12) for processing the patches found, if any. We envi-
sion two kinds of post-processing. First, the post-processing of each patch found
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Algorithm 4 Method validate-variants (as comment prefixed by //, the name
of the extension point)

Require: Program under repair P
Require: List of program program− variants
Require: Test suite TS
1: for all pv-i ∈ program-variants do
2: patch-i ← synthesize-patch-from-variant(P, pv-i)
3: validation-result ← validate(TS, P, patch-i, pv-i) //EP PV
4: if is-valid(validation-result) //EP FF then
5: tsa-patches ← tsa-patches ∪ pc-i
6: end if
7: end for
8: return tsa-patches // test suite adequate patches

aims at applying, for instance, patch minimization or code formatting. As pro-
posed by the GenProg [53], some changes done in a solution program variant
could not be related to the bug fixing. A post-processing aims at removing such
changes and keeping only those that are necessary to repair the bug. Second,
the post-processing of the list of patches aims sorting patches according to a
given criterion. By default, Astor lists the patches found in chronological order
(first patch found, first patch listed). However, as the number of patches could
be large, a repair system could order patches according to, for instance, their
location, to the number of modifications each introduce, type of modification,
etc.

3. Extension points provided by Astor

In this sectionn we detail the main extension points that are provided by the
Astor framework for creating new repair approaches. For each extension point
we give the name and description of the components already included in the
framework. Table 3 summarizes all extension points.

3.1. Fault Localization (EP FL)

3.1.1. Implemented components

• GZoltar: use of third-party library GZoltar.

• CoCoSpoon: use of third-party library CoCoSpoon.

• Custom: name of class that implements interface FaultLocalizationStrategy.

This extension point allows to specify the fault localization algorithm that
Astor executes (at Algorithm 1 line 1) to obtain the buggy suspicious locations as
explained in section 2.2. The extension point takes as input the program under
repair and the test suite, and produces as output a list of program locations, each
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Extension point Component Explanation

Fault GZoltar Use of third-party library GZoltar

localization (EP FL) CoCoSpoon Use of third-party library CoCoSpoon

Granularity

modification

points (EP MPG)

Statements Each modification point corresponds to a statement
and repair operators generate code at the level of state-
ments

Expression Each modification point corresponds to an expression
and repair operators generate code at the level of ex-
pressions

logical-relational-
operators

Modification points target to binary expression whose
operators are logical (AND, OR) or relational (e.g., >
==)

if conditions Modification points target to the expression inside if
conditions

Navigation Exhaustive Complete navigation of the search space

strategy (EP NS) Selective Partial navigation of search space guided, by default,
by random steps

Evolutionary Navigation of the search space using genetic algo-
rithm

Selection of

suspicious

Uniform-random Every modification point has the same probability to
be changed by an operator

modification

points (EP MPS)

Weighted-random The probability of changed of a modification point
depends on the suspiciousness of the pointed code

Sequential Modification points are changes according to the sus-
piciousness value, in decreasing order

Operator space

definition (EP OD)

IRR-statements Insertion, Removement and Replacement of state-
ments

Relational-Logical-op Change of unary operators, and logical and relational
binary operators

Suppression Suppression of statement, Change of if conditions by
True or False value, insertion of remove statement

R-expression replacement of expression by another expression

Selection of

operator (EP OS)

Uniform-Random Every repair operator has the same probability of be
chosen to modify a modification point

Weighted-Random Selection of operator based on non-uniform probabil-
ity distribution over the repair operators.

Ingredient pool

definition (EP IPD)

File Pool with ingredients written in the same file where
the patch is applied.

Package Pool with ingredients written in the same package
where the patch is applied.

Global Pool with all ingredients from the application under
repair.

Selection of Uniform-random Ingredient randomly chosen from the ingredient pool

ingredients (EP IS) Code-similarity-based Ingredient chosen from similar method to that where
the candidate patch is written

Name-probability-based Ingredient chosen based on the frequency of its vari-
able’s names

Ingredient No-Transformation Ingredients are not transformed

transformation
(EP IT)

Random-variable-
replacement

Out-of-scope variables from an ingredients are re-
placed by randomly chosen in-scope variables

Name-cluster-based Out-of-scope variables from an ingredients are re-
placed by similar named in-scope variables

Name-probability-based Out-of-scope variables from an ingredients are re-
placed by in-scope variable based on the frequency
of variable’s names

Candidate patch

Validation (EP PV)

Test-suite Original test-suite used for validating a candidate
patch

Augmented-test-suite New test cases are generated for augmented the orig-
inal test suite used for validation

Fitness function for

evaluation (EP FF)

Number-failing-tests The fitness is the number of failing test cases. Lower
is better. Zero means the patch is a test-suite ade-
quate patch

Solution

prioritization
(EP SP)

Chronological Generated valid patches are printing Chronological
order, according with the time they were discovered

Less-Regression Patches are presented according to the number of fail-
ing cases from those generated test cases, in ascending
order

Table 1: Summary of extension points and components already implemented in Astor.
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one with a suspicious value. The suspicious value associated to location l goes
between 0 (very low probability that l is buggy) and 1 (very high probability
that l is buggy). New fault localization techniques such that PRFL presented
by Zhang et al. [66] can be implemented in this extension point.

3.2. Granularity of Modification points (EP MPG)

3.2.1. Implemented components

• Statements: each modification point corresponds to a statement. Repair
operators generate code at the level of statements.

• Expressions: each modification point corresponds to an expression. Repair
operators generate code at the level of expressions.

• Logical-relational-operators: Modification points target to binary expres-
sion whose operators are logical (AND, OR) or relational (e.g., >,==).

• Custom: name of class that implements interface TargetElementProcessor.

3.2.2. Description

The extension point EP MPG allows to specify the granularity of code that
is manipulated by a repair approach over Astor. The granularity impacts two
components of Astor. First, it impacts the program representation: Astor cre-
ates modifications points only for suspicious code elements of a given granular-
ity (Algorithm 1 line 2). Second, it impacts the repair operator space: a repair
operator takes as input code of a given granularity and generates a modified
version of that piece of code. For example, the approach jGenProg manipulates
statements, i.e., the modification points refer to statements and it has 3 re-
pair operators: add, remove and replace of statements. Differently, jMutRepair
manipulates binary and unary expressions using repair operators that change
binary and unary operators.

3.3. Navigation Strategy (EP NS)

3.3.1. Implemented components

• Exhaustive: complete navigation of the search space.

• Selective: partial navigation of search space guided, by default, by random
steps.

• Evolutionary: navigation of the search space using genetic algorithm.

• Custom: name of class that extends class AstorCoreEngine.

3.3.2. Description

The extension point EP NS allows to define a strategy for navigating the
search space. Algorithm 2 from section 2.5 displays a general navigation strat-
egy, where most of its steps are calls to other extension points. Astor provides
three navigation strategies: exhaustive, selective and evolutionary.
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Exhaustive navigation. This strategy exhaustively navigates the search space,
that is, all the candidate solutions are considered and validated. An approach
that carries out an exhaustive search visits every modification point mpi and
applies to it every repair operator opj from the repair operator space. For
each combination mpi and opj , the approach generates zero or more candidates
patches. Then, for each synthesized patchi the approach applies it into the
program under repair P and then executes the validation process as explained
in section 2.5.2.

Selective navigation. The selective navigation visits a portion of the search
space. This strategy is necessary when the search space is too large to be
exhaustively navigated. On each step of the navigation, it uses two strategies
for determining where to modify (i.e., modification points) and how (i.e., repair
operators). By default, the selective navigation uses weighted random for se-
lecting modification points, where the weight is the suspiciousness value, and
uniform random for selecting operators. Those strategies can be customized
using extension points EP MPS (section 3.4) and EP OS (section 3.6), respec-
tively.

Evolutionary navigation. Astor framework also provides the Genetic Program-
ming [21] technique for navigating the solution search space. This technique
was introduced in the domain of the automatic program repair by JAFF [2] and
GenProg [53]. The idea is to evolve a buggy program by applying repair oper-
ators to arrive to a modified version that does not have the bug. In Astor, it is
implemented as follows: one considers an initial population of size S of program
variants and one evolves them across n generations. On each generation i, Astor
first creates, for each program variant pv, an offspring pvo (i.e., a new program
variant) and applies, with a given probability, repair operators to one or more
modification points from pvo. Then, it applies, with a given probability, the
crossover operator between two program variants which involves to exchange
one or more modification points. Astor finally evaluates each variant (i.e., the
patch synthesized from the different operators applied) and then chooses the S
variants with best fitness values (section 2.5.2) to be part of the next generation.

3.4. Selection of suspicious modification points (EP MPS)

3.4.1. Implemented components

• Uniform-random: every modification point has the same probability to be
selected and later changed by an operator.

• Weighted-random: the probability of changed of a modification point de-
pends on the suspiciousness of the pointed code.

• Sequential: modification points are changes according to the suspicious-
ness value, in decreasing order.

• Custom: name of class that extends class SuspiciousNavigationStrategy.
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The extension point EP MPS allows to specify the strategy to navigate the
search space of suspicious components represented by modification points. This
extension point is invoked in every iteration of the navigation loop (Algorithm
1 line 7): the strategy selects the modification points where the repair algo-
rithm will apply repair operators (Algorithm 2 line 1). Under the uniform ran-
dom strategy, each modification point mpx has the same probability of being
selected, that is pu() = 1/|MP |, where |MP | is the total number of modifi-
cation points considered. With the weighted random strategy, each modifica-
tion point has a particular probability of being selected computed as follows:
pw(mpx) =

svmpx∑|MP |
j=1

svmpj

, where |MP | is the total number of modification points

and svmpx
is the suspiciousness value of the modification point given by the fault

localization algorithm.

3.5. Operator spaces definition (EP OD)

3.5.1. Implemented components

• IRR-Statements: insertion, removement and replacement of statements.

• Relational-Logical-operators: change of unary operators, and logical and
relational binary operators.

• Suppression: suppression of statement, change of if conditions by True or
False value, insertion of remove statement.

• R-expression: replacement of expression by another expression.

• Custom: name of class that extends class OperatorSpace.

3.5.2. Description

After a modification point is selected, Astor selects a repair operator from
the repair operator space to apply into that point. Astor provides the exten-
sion point EP OD for specifying the repair operator space used by a repair
approach built on Astor. The extension point is invoked at line 3 of Algorithm
1. The operators space configuration depends on the repair strategy. For exam-
ple, jGenProg has 3 operators (insert, replace and remove statement) whereas
Cardumen has one (replace expression).

3.6. Selection of repair operator (EP OS)

3.6.1. Implemented components

• Uniform-random: every repair operator has the same probability of being
chosen to modify a modification point.

• Weighted-random: selection of operator based on non-uniform probability
distribution over the repair operators. Each repair operator has a partic-
ular probability of being chosen to modify a modification point.

• Custom: name of class that extends OperatorSelectionStrategy.
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3.6.2. Description

The extension point EP OS allows Astor’s users to specify a strategy to se-
lect, given a modification point mp, one operator from the operator space. By
default, Astor provides a strategy that applies uniform random selection and
it does not depend on the selected mp. This strategy is used by approaches
that uses selective navigation of the search space such as jGenProg and it is
executed at line 4 from Algorithm 2. This extension point is useful for imple-
menting strategies based on probabilistic models such those presented by [34].
In that work, several repair models are defined from different sets of bug fix com-
mits, where each model is composed by repair operators and their associated
probabilities calculated based on changes found in the commits.

3.7. Ingredient pool definition (EP IPD)

3.7.1. Implemented components

• File: pool with ingredients written in the same file where the patch is
applied.

• Package: pool with ingredients written in the same package where the
patch is applied.

• Global: pool with all ingredients from the application under repair.

• Custom: name of class that extends the class AstorIngredientSpace.

3.7.2. Description

The ingredient pool contains all pieces of code that an ingredient-based re-
pair approach can use for synthesizing a patch (section 2.4). For example, in
jGenProg the ingredient pool contains all the statements from the application
under repair. Then, jGenProg replaces a buggy statement by another one se-
lected from the pool. jGenProg can also add a statement before the suspicious
one.

The extension point EP IPD allows to customize the creation of the ingre-
dient pool. Astor provides three methods for building an ingredient pool, called
“scope”: file, package and global scope. When “file” scope is used, the ingre-
dient pool contains only ingredients that are in the same file where the patch
will be applied (i.e., mp). When the scope is “package”, the ingredient pool is
formed with all the code from the package that contains the modification point
mp. Finally, when the scope is “global”, the ingredient pool has all code from
the program under repair. By default the original GenProg has a global ingredi-
ent scope, because it yields the biggest search space. The “file” ingredient pool
is smaller than the package-one, which is itself smaller than the global one.
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3.8. Selection of ingredients (EP IS)

3.8.1. Implemented components

• Uniform-random: ingredient randomly chosen from ingredient pool.

• Code-similarity-based: ingredient chosen from similar methods to the
buggy method.

• Name-probability-based: ingredient chosen based on the frequency of its
variable’s names.

• Custom: name of class that extends class IngredientSearchStrategy.

3.8.2. Description

The extension point EP IS allows to specify the strategy that an ingredient-
based repair approach from Astor uses for selecting an ingredient from the ingre-
dient pool. Between the implementations of this point provided by Astor, One,
used by default by jGenProg, executes uniform random selection for selecting
an ingredient from a pool built given a scope (see section 3.7). Another, defined
for DeepRepair approach, prioritizes ingredients that come from methods which
are similar to the buggy method.

3.9. Ingredient transformation (EP IT)

3.9.1. Implemented components

• No-transformation: ingredients are not transformed.

• Random-variable-replacement: out-of-scope variables from an ingredients
are replaced by randomly chosen in-scope variables.

• Name-cluster-based: out-of-scope variables from an ingredients are re-
placed by similar named in-scope variables.

• Name-probability-based: out-of-scope variables from an ingredients are
replaced by in-scope variable based on the frequency of variable’s names.

• Custom: name of class that extends class IngredientTransformationStrategy.

3.9.2. Description

The extension point EP IT allows to specify the strategy used for transform-
ing ingredients selected from the pool. Astor provides four implementations of
this extension point. For instance, the strategy defined for DeepRepair approach
replaces each out-of-scope variable form the ingredient by one variable in the
scope of the modification points. The selection of that variable is based on a
cluster of variable names, which each cluster variable having semantically re-
lated names [55]. Cardumen uses a probabilistic model for selecting the most
frequent variables names to be used in the patch. On the contrary, jGenProg,
as also the original GenProg, does not transform any ingredient.
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3.10. Candidate Patch Validation (EP PV)

3.10.1. Implemented components

• Test-suite: original test-suite used for validating a candidate patch.

• Augmented-test-suite: new test cases are generated for augmented the
original test suite used for validation.

• Custom: name of class that extends class ProgramVariantValidator.

3.10.2. Description

The extension point EP PV executes the validation process of a patch (sec-
tion 2.5.2). Astor framework provides to test-suite based repair approaches a
validation process that runs the test-suite on the patched program. The valida-
tion is executed in Algorithm 2 line 3.

Another strategy implemented in Astor was called MinImpact [63], proposed
to alleviate the problem of patch overfitting [49]. MinImpact uses additional
automatically generated test cases to further check the correctness of a list
of generated test-suite adequate patches and returns the one with the highest
probability of being correct. MinImpact implements the extension point EP PV
by generating new test cases (i.e., inputs and outputs) over the buggy suspicious
files, using Evosuite [12] as test-suite generation tool. Once generated the new
test cases, MinImpact executes them over the patched version. The intuition is
that the more additional test cases fail on a tentatively patched program, the
more likely the corresponding patch is an overfitting patch. MinImpact then
sorts the generated patches by prioritizing those with less failures over the new
tests.

Moreover, this extension point can be used to measure other functional and
not functional properties beyond the verification of the program correctness.
For example, instead of focusing on automated software repair, an approach
built over Astor could target on minimizing the energy computation. For that,
that approach would extend this extension point for measuring the consumption
of a program variant.

3.11. Fitness Function for evaluating candidate (EP FF)

3.11.1. Implemented components

• Number-failing-tests: the fitness is the number of failing test cases. Lower
is better. Zero means the patch is a test-suite adequate patch.

• Custom: name of class that implements FitnessFunction.

3.11.2. Description

The extension point EP FF allows to specify the fitness function, which
consumes the output from the validation process of a program variant pv and
assigns to pv its fitness value. Astor provides an implementation of this exten-
sion point which considers as fitness value the number of failing test cases (low
is better).
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On evolutionary approaches (section 3.3.2) such as jGenProg, this fitness
function guides the evolution of a population of program variants throughout a
number of generations. In a given generation t, those variant with better fitness
will be part of the population at generation t+ 1. On the contrary, on selective
or exhaustive approaches, the fitness function is only used to determined if a
patched program is solution or not.

3.12. Solution prioritization (EP SP)

3.12.1. Implemented components

• Chronological: generated valid patches are printing chronological order,
according with the time they were discovered.

• Less-regression: patches are presented according to the number of failing
cases from those generated test cases, in ascending order.

• Custom: name of class that implements SolutionVariantSortCriterion

3.12.2. Description

The extension point EP SP allows to specify a method for sorting the discov-
ered valid patches. By default, approaches over Astor present patches sorted by
time of discovery in the search space. Astor proposes an implementation of this
point named Less-regression. The strategy, defined by MinImpact [63], sorts
the original test-suite adequate patches with the goal of minimizing the intro-
duction of regression faults, i.e., the approach prioritizes the patches with less
failing test cases from those tests automatically generated during the validation
process.

4. Repair Approaches implemented in Astor

In this section we present a brief description of repair approaches built over
Astor framework and publicly available at Github platform. Those approaches
were built combining different components implemented for the extension points
presented in section 3. Table 4 displays the components that form each built-in
repair approach from Astor. The approaches are presented in the order they
were introduced into Astor framework.

4.1. jGenprog

jGenProg is an implementation of GenProg [53] built over Astor framework.
The approach belongs to the family of ingredient-based repair approaches (sec-
tion 2.4) and it has 3 repairs operators: insert, replace and remove statements.
For the two first mentioned operators, jGenProg uses statements written some-
where in the application under repair for synthesizing patches that insert or
replace statement. jGenProg can navigate the search space (section 3.3.2) in
two ways: a) using evolutionary search, as the original GenProg does; or b) using
selective, as RSRepair [44] does.
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Name Extension jGenProg jKali jMutRepair DeepRepair Cardumen TIBRA

Point 4.1 4.2 4.3 4.4 4.5 4.6

3.1 Fault lo-
calization
(EP FL)

GZoltar - GZoltar GZoltar GZoltar GZoltar

3.2 Granularity
of mod-
ification
points
(EP MPG)

Statement Statements
+ if

Relational-
Logical-
operators

Statement Expression Statement

3.3 Navigation
strategy
(EP NS)

Selective
or Evolu-
tionary

Exhaustive Exhaustive
or Selec-
tive

Selective
or Evolu-
tionary

Selective Selective

3.4 Selection
susp.
points
(EP MPS)

Weighted-
random

Sequence Weighted-
random

Weighted-
random

Weighted-
random

Weighted-
random

3.5 Operator
space
definition
(EP OD)

IRR-
statements

Suppression Relational-
Logical-
operators

Suppression R-
expression

Weighted-
random

3.6 Selection
operator
(EP OS)

Random Sequential Random Random - Random

3.7 Ingredient
pool def-
inition
(EP IPD)

Package - - Package Global Package

3.8 Selection
ingre-
dients
(EP IS)

Uniform-
random

- - Code-
similarity-
based

Uniform-
random

Uniform-
random

3.9 Ingredient
transfor-
mation
(EP IT)

No-transf. - - Name-
cluster-
based

Name-
probability-
based

Random-
variable-
replacement

3.10 Candidate
patch val-
idation
(EP PV)

Test-suite Test-suite Test-suite Test-suite Test-suite Test-suite

3.11 Fitness
function
(EP FF)

#failing-
tests

#failing-
tests

#failing-
tests

#failing-
tests

#failing-
tests

#failing-
tests

3.12 Solution
priori-
tization
(EP SP)

Chronol. Chronol. Chronol. Chronol. Chronol. Chronol.

Table 2: Main Extension points and decision adopted by each approach. Each approach and
extension point includes a reference to the section that explain it.

4.2. jKali

The technique Kali was presented by [47] for evaluating the incompleteness
test suites used by repair approaches for validating candidate patches. The in-
tuition of the authors was that removing code from a buggy application was
sufficient to pass all test from incomplete test suite. Consequently, the gener-
ated patches overfit the incomplete test suite and are not valid of inputs not
included on it. jKali is an implementation of Kali built over Astor framework
which removes code and skips the execution of code by adding return statements
and turning True/False expressions from if conditions. As Kali, jKali does an
exhaustive navigation of the search space (section 3.3.2).

4.3. jMutRepair

Mutation-based repair system was introduced by Debroy et Wong [6] to
repair bugs using mutation operators proposed by mutation testing approaches
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[7, 15]. We implemented that system over Astor, named jMutRepair, with has
as repair operators the mutation of relational (e.g.,==, >) and logical operators
(e.g., AND, OR). jMutRepair does an exhaustive or selective navigation of the
search space (section 3.3.2).

4.4. DeepRepair

DeepRepair [55] is an ingredient-based approach built over jGenProg that
applies deep learning based techniques during the patch synthesis process. In
particular, DeepRepair proposes new strategies for: a) selecting ingredients (sec-
tion 3.8) based on similarity of methods and classes: ingredients are taken from
the most similar methods or classes to those that contains the bug; b) trans-
forming ingredients (section 3.9) based on semantic of variables names: out-
of-scope variables from an ingredients are replaced by in-scope variables with
semantically-related names.

4.5. Cardumen

Cardumen [36] is a repair system that targets fine-grained code elements:
expressions. It synthesizes repairs from templates mined from the applications
under repair. Then, it creates concrete patches from those templates by using a
probabilistic model of variable names: it replaces template placeholders by vari-
ables with the most frequent names at the buggy location. Cardumen explores
the search space using the selective strategy (section 3.3.2).

4.6. TIBRA

TIBRA (Transformed Ingredient-Based Repair Approach), is an extension
of jGenProg which, as difference with the original GenProg who discards ingre-
dients with out-of-scope variables, it applies transformation into the ingredients.
The approach adapts an ingredient i.e., statement taken somewhere, by replac-
ing all variables out-of-scope from it by in-scope variables randomly chosen from
the buggy location.

5. Evaluation

In this section we present an evaluation of repair approaches built over As-
tor. We first study the capacity of approaches presented in section 4 to repair
real bugs. Then, we focus on the ingredient pool, the component of GenProg
that stores the source code used for synthesizing candidate patches. There, we
compare different implementations of the extension points from section 3 related
to the creation of the ingredient pool and to the transformation of ingredients.
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5.1. Research questions

The research questions that guide the evaluation of Astor are:

1) Repairability:

RQ 1.1 - How many bugs from Defects4J are repaired using the repair
approaches built over Astor?

RQ 1.2: What are the bugs uniquely repaired by approaches from As-
tor?

RQ 1.3 - Which code granularity repairs more bugs?

2) Focus on ingredient-based repair:

RQ 2.1 -To what extent does a reduced ingredient space impact re-
pairability?

RQ 2.2 - To what extent does the ingredient transformation strategy
impact repairability?

5.2. Protocol

We have used repair approaches from Astor for a large evaluation consisting
in searching for patches for 357 bugs from the Defects4J benchmarks [18], those
from 5 projects: Apache Commons Math, Apache Commons Lang, JFreeChart,
Closure and Joda Time. A patch is said to be test-adequate if it passes all tests,
including the failing one. As shown by previous work [46], a patch may be test-
adequate yet incorrect, when it only works on the inputs from the test suite and
does not generalize. Those patches are known as overfitting patches [49, 25, 64].
This paper does not aim at studying the correctness of the test-suite adequate
patches found by a repair approach as done in, for instance, in [33]. In the rest
of the paper, “to repair a bug” means to find a test-suite adequate patch.

The main experimental procedure is composed of the following steps. First,
we selected the repair approaches to study according to the addressed research
question. Then, we created scripts for launching repairs attempts for each ap-
proach on each bug from Defects4J. A repair attempt consists on the execution
of a repair approach executed with a timeout of 3 hours and a concrete value
of random seed. In case of exhaustive approach such as jKali, the seed is not
used due it does not have any stochastic sub-component. For each configu-
ration, we run at least 3 repair attempts (i.e., 3 different seeds). Finally, we
collected the results from each repair attempt, grouped the results (i.e., patches
and statistics) according to the configuration, and compared the results.

5.3. Evaluation of Repairability

In this section we focus on the ability of repair approaches over Astor in-
troduced in section 4 to repair bugs from Defects4J and we compare their re-
pairability against other repairs systems.
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5.3.1. RQ 1.1 - How many bugs from Defects4J are repaired using the repair
approaches built over Astor?

Table 3 displays the bugs from Defects4J repaired by approaches built over
Astor framework. In total, 98 bugs out of 357 (27.4%) are repaired by at
least one repair approach. Six approaches were executed: jGenProg (49 bugs
repaired), jKali (29), jMutRepair (23), DeepRepair (51), Cardumen (77), and
TIBRA (35).

We observe that there are 9 bugs such as Chart-1 and Math-2 that all evalu-
ated repair approaches found at least one test-suite adequate patches. Contrary,
35 bugs were repaired by only one approach. 19 of them, such as Math-101,
are repaired by Cardumen, 9 only by DeepRepair (e.g., Math-22), 3 by jGen-
Prog (e.g., Chart-19), 3 by TIBRA (e.g., Chart-23), and one for jMutRepair
(Closure-38).

Response to RQ 1.1: The repair approaches built over Astor find
test-adequate patches for 98 real bugs out of 357 bugs from Defects4J. The
best approach is Cardumen: it finds a test-suite adequate patch for 77 bugs.

Compared with other repair system evaluated over Defects4J, approaches
from Astor repair more bugs (98 bugs repaired) from Defects4J than: ssFix [57]
(60 bugs repaired), ARJA [65] (59 bugs), ELIXIR [48] (40 bugs), GP-FS [54]
(37 bugs), JAID [5] (31 bugs), ACS [58] (18 bugs), HDRepair [24] (15 bugs from
[57]). In particular, Cardumen repairs more that all those approaches: it found
test-suite adequate patches for 77 bugs. On the contrary, Nopol [59] (103 bugs
repaired [9]) repairs more than Astor framework.

5.3.2. RQ 1.2: What are the bugs uniquely repaired by approaches from Astor?

We consider automated program repair approaches from the literature for
which: 1) the evaluation was done over the dataset Defects4J; 2) the identifiers
of the repaired bugs from Defect4J are given on the respective paper or included
in the appendix.

We found 10 repair systems that fulfill both criteria: Nopol [59, 9], jGenProg
[33], DynaMoth [10], HDRepair [24], DeepRepair [55], ACS [58], GP-FS [54],
JAID [5], ssFix [57] and ARJA [65]. In the case of HDRepair, as neither the
identifiers of the repaired bugs nor the actual patches were reported by [24],
we considered the results reported by [57] (ssFix’s authors) who executed the
approach. We discarded the Java systems JFix ([22]), S3 ([23]), Genesis ([30])
(evaluated over different bug datasets) and ELIXIR [48] (repaired ids from De-
fect4J not publicly available).

Approaches built on Astor framework found test-suite adequate patches for
11 new bugs of Defects4J, for which no other system ever has managed to find
a single one. Those uniquely repaired bugs are: 5 from Math (ids: 62, 64, 72,
77, 101), 2 from Time (9, 20), 2 from Chart (11, 23), and 2 from Closure (13,
46).
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Table 3: Bugs from dataset Defects4J repaired by approaches built over Astor. In total, 98
bugs from 5 Java projects were repaired. R means ‘bug with at least one test-suite adequate
patch’.
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3 R R R R 4

4 R 1

5 R R R R R 5

6 R R 2

7 R R R R R 5

9 R R 2

11 R R 2

12 R R R R 4

13 R R R R 4

14 R 1

15 R R R R 4

17 R R 2

18 R 1

19 R 1

23 R 1

24 R R 2

25 R R R R R 5

26 R R R R R R 6
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7 R R 2

10 R R R 2

12 R 1

13 R R 2

21 R R R R 3

22 R R R R 4

33 R 1

38 R 1

40 R 1

45 R R 2

46 R R R 3

49 R 1

55 R 1

133 R 1
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10 R R R 3

14 R 1

20 R 1

22 R R R 3
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24 R 1

28 R R R R R R 6

30 R 1

32 R R R R R 5

33 R 1

39 R 1

40 R R R R R 5

41 R 1

44 R R 2

46 R 1

49 R R R R R 5

50 R R R R R R 6

53 R R R 3

56 R R 2

57 R R R 3

58 R R R 3

60 R R R 3

62 R 1

63 R R R 3

64 R 1

69 R 1

70 R R R 3

71 R R 2

72 R 1

73 R R R R 4

74 R R R 3

77 R 1

78 R R R R R 5

79 R R 2

80 R R R R R R 6

81 R R R R R R 6

82 R R R R R R 6

84 R R R R R 5

85 R R R R R R 6

88 R R 2

95 R R R R 4

97 R R 2

98 R 1

101 R 1

104 R R 2

105 R 1

T
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4 R R R 3

7 R 1

9 R 1

11 R R R R R 5

17 R 1

18 R 1

20 R 1∑
98 49 29 23 51 77 35

Response to RQ 1.2: The repair approaches built over Astor find new
unique test-adequate patches. Astor repair 11 bugs which have never been
repaired previously by any repair system.

In the remain of the evaluation section, we evaluates different section imple-
mentation for tree extension points from 3.
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5.3.3. RQ 1.3 - Which code granularity repairs more bugs?

We compared the repairability of two approaches that use different imple-
mentations of the extension point EP MPG for manipulating different granu-
larity of code source. The level of code granularity impacts on the size of the
search space and thus in the ease to find a patch. On one hand, Cardumen ap-
proach is able to synthesize a fine-grained patches by modifying, for example, an
expression inside a statement with other expressions inside. On the other hand,
the code modifications done by jGenProg (or by any approach that extends it
such as DeepRepair or TIBRA) to find a patch are coarse-level: as it works at
the level of statements, an entire statement is inserted, deleted or replaced.

Table 3 shows that Cardumen (expression level) and jGenProg’s family ap-
proaches (statement level) repaired 77 and 72 bugs, respectively, and 52 of them
were repaired by both approaches. Even the difference of repairability is not
statistically significant enough (Mann-Whitney test shows a p-value of 0.649),
the experiment shows that there is a considerable portion of bugs that can be
repaired only in a given granularity: 25 bugs are repaired by Cardumen but
not by jGenProgs family, and 20 bugs are repaired by only this latter family of
approaches.

Response to RQ 1.3: The extension point EP MPG has an impact
on repair. We compared the extensions statements and expression imple-
mented in jGenProg and Cardumen, respectively. By applying operators
at the level of statements and expressions, 52 patches (72.2% and 67.5%,
resp.) are repaired by both jGenProg and Cardumen, respectively. The
remaining bugs (20 and 25, resp.) are only repaired using a specific granu-
larity.

The implication is that, for those bugs repaired by both approaches, there
are patches that: a) produce similar behaviours w.r.t the test-suite (i.e., passing
all tests), and b) the changed codes have different granularities. For example,
both jGenProg and Cardumen synthesize the following patch for bug Math-70:

Listing 2: Patch for Math-70 at class BisectionSolver.java

72 − re turn s o l v e (min , max ) ;
72 + return s o l v e ( f , min , max ) ;

}

jGenProg synthesizes that patch by applying the replace operator to the
modification point that references to the return statement at line 72 of class
BisectionSolver. The replacement return statement (i.e., the ingredient) is taken
from line 59 from the same buggy class. Meanwhile, Cardumen arrives to the
same patch by replacing a modification point that references to the expression
corresponding to the method invocation solve inside the return statement at line
72. The replacement synthesized from a template:

solve( UnivariateRealFunction 0, double 1, double 2) mined from the same class
BisectionSolver and instantiated using variables in scope at line 72.

24



One of the 25 bugs repaired by Cardumen but not by jGenProg is Math-101
The patch proposed modifies the expression related to a variable initialization
(endIndex) at line 376 from startIndex + n to source.length() on class Complex-
Format.

Listing 3: Patch for Math-101 by Cardumen

376 − i n t endIndex = sta r t Index + n ;
376 + in t endIndex = source . l ength ( ) ;

Cardumen is able to synthesize the patch by instantiating the template
String 0 .length() mined from the application under repair. Approaches work-

ing at a different (and coarse) granularity are not capable to synthesize that
patch: in the case of jGenProg, the statement int endIndex = source.length();

(the ingredient for the fix) does not exist anywhere in the application under
repair.

Astor framework provides to developers of approaches the flexibility to ma-
nipulate specific code elements at a given granularity level by implementing the
extension point EP MPG. For instance, jMutRepair implements EP MPG to
manipulate relational and logical binary operator. This allows to target to spe-
cific defect classes and to reduce the search space size. That is the case for bug
Closure-38, which is only repaired by jMutRepair.

Listing 4: Patch for Closure-38 by jMutRepair at class CodeConsumer

245 − i f ( x < 0) && ( prev == ’− ’) {
245 + i f ( x <= 0) && ( prev == ’− ’) {

5.4. Design of ingredient-based repair approaches

In this section we study and compare two different implementations for
the extension points related to ingredient-based repair approaches EP IPD and
EP IT. The goal of the next experiments is to study whether improvements
introduced via those extension points impact on the repairability with respect
to the vanilla jGenProg.

5.4.1. RQ 2.1 -To what extent does a reduced ingredient space impact repairabil-
ity?

We evaluate the extension point EP IPD by using different strategies for
building an ingredient pool (Section 3.7). The experiment’s goal is to know
whether using a reduced ingredient pool, such as File and Package pools pre-
serves the repair capability of a the vanilla GenProg approach (which uses Global
scope as default).

To study the impact of using a reduced ingredient pool, we executed jGen-
Prog on Defects4J using the baseline ingredient pool used by the original Gen-
Prog [53] (i.e, Global pool) and the optimized modes (File and Package pool),
based on the empirical evidences of ingredient’s locations [37, 3]. For each bug
from Defects4J and for each pool type (File, Package and Global) we executed
3 repairs attempts with a timeout of 3 hours, using on each attempt a different
random seed value.
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In this experiment, jGenProg repaired, in total, 39 bugs using ingredient
based repair operators.2 The numbers of repaired bugs are different according
with the ingredient pool used by jGenProg: it repaired 33, 28 and 14 bugs us-
ing File, Package and Global pool, respectively. We applied the Wilcoxon rank
sum test (aka Mann-Whitney test) to verify that the difference of repairability
between jGenProg using a reduced space and jGenProg using Global are stati-
cally significant, obtaining p-values of 1.296e-05 (File vs Global) and 0.001613
(Package vs Global).

Moreover, we found that all the bugs repaired using Global scope were also
repaired by jGenProg using either File or Package scopes. This means that a
reduced ingredient space still continue having, at least, one ingredient that is
used to synthesize a test-suite adequate patch.

The reduction of the ingredient space produces another advantage: it allows
jGenProg to find faster the first test-suite adequate patch. For the 12 bugs
that were repaired jGenProg using both File and Global scopes, 10 of them
were repaired faster using File scope (83%), saving on average 22.8 minutes.
Similarly, for the 14 bugs that were repaired using both Package and Global
scopes, 12 of them were repaired faster using package. This result validates the
fact that locality-aware repair speeds-up repair [3, 37].

Response to RQ 2.1: The extension point EP IPD impacts the num-
bers of repaired bugs and on the repair time. We compared jGenProg using
the File, Package and Global (default by GenProg) scopes for building the
ingredient pool. For our repair attempts bounded by a 3-hours maximum
budget, the File and Package ingredients pools found more test-suite ad-
equate patches and faster (reduction of 22 minutes on average) than the
baseline (Global).

5.4.2. RQ 2.2 - To what extent does the ingredient transformation strategy im-
pact repairability?

By default, the original GenProg does not apply any transformation of ingre-
dients once they are selected from the ingredient search space. As we presented
in Section 3.9 Astor provides an extension point EP IT for plugging an ingre-
dient transformation strategy. We now present the evaluation of two different
implementations of EP IT, both included in Astor.

First, we evaluated the approach TIBRA (Section 4.6), which replaces out-
of-scope variables from an ingredient, and we compared the results against those
from the original jGenProg (which does not transformation ingredients selected
from the search space). TIBRA repaired 11 bugs (e.g., Math-63 in Table 3) that
jGenProg did not repair, showing that the transformation of ingredient allows
to find patches for unrepaired bugs. The Wilcoxon signed-rank test shows that

2In this experiment we did not consider all bugs repaired using the remove operator.
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the difference between the repairability from vanilla jGenProg and TIBRA is
statistically significant, with a p-value of 1.247e-09.

A second implementation of the extension point EP IT is a cluster-based
ingredient transformation strategy proposed by DeepRepair [55] (which is built
over Astor). We carried out a second experiment that compared jGenProg using
this strategy (named DeepRepair RE in [55]) with the original jGenProg. The
results showed that there is not a statistical differences between the repairability
of bugs from Defects4j.3 The transformation of ingredients using the cluster-
based strategy allows to repair only 4 bugs that jGenProg could not (e.g., Math-
98 in Table 3). However, we found that there are notable differences between
DeepRepair and jGenProg patches: 53%, 3%, and 53% of DeepRepairs patches
for Chart, Lang, and Math, respectively, are not found by jGenProg.

Finally, we compared TIBRA and DeepRepair. TIBRA repairs in total 35
bugs, of them 21 are also repaired by DeepRepair. This means that 28 and
14 bugs are only repaired by DeepRepair (RE) and TIBRA, respectively. The
Wilcoxon signed-rank test shows that the difference between the repairability
from DeepRepair (RE) and TIBRA is statistically significant, with a p-value of
0.02739. This last experiment shows the benefits of using a customized strategy
based on cluster of variables names over a strategy based on random selection
of variables.

Response to RQ 2.2: The extension point EP IT impacts the re-
pairability. We compared three extensions: no-transformation, cluster-
based, and random-variable-replacement implemented in jGenProg, Deer-
Repair and TIBRA, respectively. DeepRepair and TIBRA discover new
test-suite adequate patches that cannot by synthesized by jGenProg for 4
and 11 bugs, respectively.

6. Related Work

6.1. Program Repair Frameworks

To our knowledge, Astor is the first and unique framework on Java that
implements a repair workflow from generate-and-validate repair approaches and
provides twelve extension points for which the program repair researcher can
either choose an existing component (i.e., taking one already implemented design
decision in the design space), or can implement a new technique.

6.2. Works that extend approaches from Astor

In this section we present the repair approaches and extensions from the
bibliography that were built over the Astor framework. Tanikado et al. [50]

3Wilcoxon test shows a p-value = 0.3626. Consequently, in [55] we fail to reject the Null
Hypothesis that states that the DeepRepair’s ingredient transformation strategy RE generates
the same number of test-adequate patches as jGenProg.
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extended jGenProg provided by Astor framework for introducing two novel
strategies. One, named similarity-order, which extends extension point EP IS,
chooses ingredients according to code fragment similarities. The second one,
named freshness-order, which extends the modification point EP MPS, consists
on selecting, with a certain priority, modification points whose statements were
more recently updated. Wen et al. [54] presented a systematic empirical study
that explores the influence of fault space on search-based repair techniques. For
that experiment, the author created the approach GP-FS, an extension of jGen-
Prog, which receives as input a faulty space. In their experiment, the authors
generated several fault spaces with different accuracy, finding that GP-FS is
capable of fixing more bugs correctly when fault spaces with high accuracy are
fed. White et al. [55] presented DeepRepair, an extension of jGenProg, which
navigates the search space guided by method and class similarity measures in-
ferred with deep unsupervised learning. DeepRepair was incorporated to Astor
framework as built-in approach.

6.3. Works that execute built-in approaches from Astor

Works from the literature executed repair approaches from Astor framework
during the evaluation of their approaches. For example, Yuefei presents and
study [29] for understanding and generating patches for bugs introduced by
third-party library upgrades. The author run jGenProg from Astor to repair
the 6 bugs, finding correctly 2 patches for bugs, and a test-suite adequate but
yet incorrect patch for another bug. The approach ssFix [57] performs syn-
tactic code search to find existing code from a code database (composed by
the application under repair and external applications) that is syntax-related
to the context of a bug statement. In their evaluation, the authors executed
two approaches from Astor, jGenProg and jKali, using the same machines and
configuration that used for executing ssFix.

6.4. Works that compare repairability against that one from built-in approaches
from Astor

We have previously executed jGenProg and jKali over bugs from Defects4J
[18] and analyzed the correctness of the generated patches [33]. Note that, the
number of repaired bugs we reported in that experiment, executed in 2016, are
lower that the results we present in this paper in section 5. The main reason
is we have applied several improvements and bugfixings over Astor framework
since that experiment.

Other works have used the mentioned evaluation of jGenProg and jKali pre-
sented in [33] for measuring the improvement introduced by their new repair
approaches. For example, Le et al. presented a new repair approach named
HDRepair [24] which leverages on the development history to effectively guide
and drive a program repair process. The approach first mines bug fix patterns
from the history of many projects and the then employ existing mutation op-
erators to generate fix candidates for a given buggy program. The approach
ACS (Automated Condition Synthesis) [58], targets to insert or modify an if
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condition to repair defects by combining three heuristic ranking techniques that
exploit 1) the structure of the buggy program, 2) the document of the buggy
program (i.e., Javadoc comments embedded in the source code), and 3) the con-
ditional expressions in existing projects. Yuan and Banzhaf [65] present ARJA,
a genetic-programming based repair approach for automated repair of Java pro-
grams. ARJA introduces a test filtering procedure that can speed up the fitness
evaluation and three types of rules that can be applied to avoid unnecessary
manipulations of the code. ARJA also considers the different representation of
ingredient pool introduced by Astor framework [35]. In addition to the evalua-
tion of Defects4J, the authors evaluated the capacity of repair real multi-location
bugs over another dataset built by themselves. Saha et al. presented Elixir [48] a
repair technique which has a fixed set of parameterized program transformation
schemas used for synthesized candidate patches. JAID by [5] is a state-based
dynamic program analyses which synthesizes patches based on schemas (5 in
total). Each schema trigger a fix action when a suspicious state in the sys-
tem is reached during a computation. JAID has 4 types of fix actions, such as
modify the state directly by assignment, and affect the state that is used in an
expression.

6.5. Works that analyze patches from built-in approaches from Astor

Other works have analyzed the publicly available patches of jGenProg and
jKali from our previous evaluation of repair approaches over Defects4J dataset
[33]. Motwani et al. [40] analyzed the characteristics of the defects that re-
pair approaches (including jGenProg and jKali) can repair. They found that
automated repair techniques are less likely to produce patches for defects that
required developers to write a lot of code or edit many files. They found that
the approaches that target Java code, such as those from Astor, are more likely
to produce patches for high-priority defects than the techniques which target
C code. Yokoyama et al. [62] extracted characteristics of defects from defect
reports such as priority and evaluated the performance of repairs approaches
against 138 defects in open source Java project included in Defects4J. They
found that jGenProg is able to find patch for many high-priority defects (1
Blocker, 2 Critical, and 11 Major). Liu et al [27] presented a approach that
heuristically determines the correctness of the generated patches, by exploiting
the behavior similarity of test case executions. The approach is capable of auto-
matically detecting as incorrect the 47.1% and 52.9% of patches from jGenprog
and jKali, respectively. Jiang et al. [16] analyzed the Defects4J dataset for
finding bugs with weak test cases. They results shows that 42 (84.0%) of the 50
defects could be fixed with weak test suites, indicating that, beyond the current
techniques have a lot of rooms for improvement, weak test suites may not be
the key limiting factor for current techniques.

6.6. Other test-suite based repair approaches

During the last decade, other approaches target other programming lan-
guages (such as C) or we evaluated over other datasets rather than Defects4J
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were presented. Arcuri [2] applies co-evolutionary computation to automati-
cally generate bug fixes for Java program. GenProg [53, 14], one of the earliest
generate-and-validate techniques, uses genetic programming to search the re-
pair space and generates patches created from existing code from elsewhere in
the same program. It has three repair operators: add, replace or remove state-
ments. Other approaches have extended GenProg: for example, AE [51] employs
a novel deterministic search strategy and uses program equivalence relation to
reduce the patch search space. The original implementation [53] targets C code
and was evaluated against dataset with C bugs such as ManyBugs and Intro-
Class [13]. Astor provides a Java version of GenProg called jGenProg which
also employs genetic programming for navigating the search space. RSRepair
[43] has the same search space as GenProg but uses random search instead,
and the empirical evaluation shows that random search can be as effective as
genetic programming. Astor is able to execute a Java version of RSRepair by
choosing random strategies for the selection of modification points (extension
point EP MPS) and operators (extension point EP OS). Debroy & Wong [6]
propose a mutation-based repair method inspired from mutation testing. This
work combines fault localization with program mutation to exhaustively ex-
plore a space of possible patches. Astor includes a Java version of this approach
called jMutRepair. Kali [46] has recently been proposed to examine the fixability
power of simple actions, such as statement removal. As GenProg, Kali targets C
code. Astor proposes a Java version of Kali, which includes all transformations
proposed by Kali.

Other approaches have proposed new set of repair operators. For instance,
PAR [20], which shares the same search strategy with GenProg, uses patch
templates derived from human-written patches to construct the search space.
The PAR tool used the original evaluation is not publicly available. However,
it is possible to implement PAR over the Astor framework by implementing
the repair operator based on those templates using the extension point EP OD.
The approach SPR [31] uses a set of predefined transformation schemas to con-
struct the search space, and patches are generated by instantiating the schemas
with condition synthesis techniques. SPR is publicly available but targets C pro-
grams. An extension of SPR, Prophet [32] applies probabilistic models of correct
code learned from successful human patches to prioritize candidate patches so
that the correct patches could have higher rankings.

There are approaches that leverage on human written bug fixes. For ex-
ample, Genesis [30] automatically infers code transforms for automatic patch
generation. The code transformation used Genesis are automatically infer from
previous successful patches. The approach first mines bug fix patterns from the
history of many projects and the then employ existing mutation operators to
generate fix candidates for a given buggy program. Both approaches need as
input, in addition to the buggy program and its test suite, a set of bug fixes.
Two approaches leveraged on semantics-based examples. SearchRepair [19] uses
a large database of human-written code fragments encore as satisfiability mod-
ulo theories (SMT) constraints on their input-output behavior for synthesizing
candidates repairs. S3 (Syntax- and Semantic-Guided Repair Synthesis) by [23],
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a repair synthesis engine that leverages programming-by-examples methodology
to synthesize repairs.

Other approaches belong to the family of synthesis-based repair approaches.
For example, SemFix [41] is a constraint based repair approach for C. This ap-
proach provides patches for assignments and conditions by combining symbolic
execution and code synthesis. Nopol [59] is also a constraint based method,
which focuses on fixing bugs in if conditions and missing preconditions, as As-
tor, it is implemented for Java and publicly available. DynaMoth [10] is based on
Nopol, but replaces the SMT-based synthesis component of Nopol by a new syn-
thesizer, based on dynamic exploration, that is able to generate richer patches
than Nopol e.g., patches on If conditions with method invocations inside their
condition. DirectFix [38] achieves the simplicity of patch generation with a Max-
imum Satisfiability (MaxSAT) solver to find the most concise patches. Angelix
[39] uses a lightweight repair constraint representation called “angelic forest to
increase the scalability of DirectFix.

6.7. Studies analyzing generated patches

Recent studies have analyzed the patches generated by repair approaches
from the literature. The results of those studies show that generated patches
may just overfit the available test cases, meaning that they will break untested
but desired functionality. For example, Qui et al. [46] find, using Kali system,
that the vast majority of patches produced by GenProg, RSRepair, and AE
avoid bugs simply by functionality deletion. A subsequent study by Smith et
al. [49] further confirms that the patches generated by GenProg and RSRepair
fail to generalize.

Due to the problematic of test overfitting, recent works by [28, 63] propose
to extend existing automated repair approach such as Nopol, ACS and jGen-
Prog. Those extended approaches generate new test inputs to enhance the test
suites and use their behavior similarity to determine patch correctness. For ex-
ample, Liu reported [28] that their approach, based on patch and test similarity
analysis, successfully prevented 56.3% of the incorrect patches to be generated,
without blocking any correct patches. Yang et al. presented a framework named
Opad (Overfitted PAtch Detection) [60] to detect overfilled patches by enhanc-
ing existing test cases using fuzz testing and employing two new test oracles.
Opad filters out 75.2% (321/427) overfitted patches generated by GenProg/AE,
Kali, and SPR.

7. Threat to Validity

Internal validity. A threat to the validity of our results relates to whether our
implementation of existing repair approaches are faithful to the original C im-
plementation. We have developed jGenProg, jKali and jMutRepair based on
our deep analysis of the algorithms of GenProg, Kali and Mutation Repair,
respectively, presented in different publications [53, 46, 6]. In the case of Gen-
Prog, we clearly see GenProg as two separate things: a repair approach and
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a tool. We encode jGenProg based on the material presented in the GenProg
publications. As the code of Astor is publicly available in the platform GitHub,
researchers and developers can review and evaluate them, and if required to
propose improvements if they spot inconsistencies with the original approach.

External validity. We have evaluated the repair approaches built over Astor
on 357 buggy program revisions, in five unique software systems, from the De-
fects4J benchmark [18]. One threat is that the number of bugs may not be large
enough nor not representative. To mitigate this threat, we have executed repair
approaches from Astor over other datasets of Java bugs (e.g., [61]), and we have
found that Astor is also capable to repair bugs from an alternative dataset.

Summary. jGenProg has random components such as the selection of suspicious
statements to modify. It is possible that different runs of jGenProg produce
different patches. For this reason, we have executed each repair attempt with
at least three different random seeds. This is not meant to be a comprehensive
solution to randomness. However, our goal is to validate our implementation,
not the core idea, which was validated in the original publications. Despite this
small number of seeds, our experiments are computationally expensive due to
the large number of bugs and the combinatorial explosion of repair approaches
and configuration parameters. For instance, the experiment presented in Section
5.4.2 consists of 19,949 trials spanning 2,616 days of computation time [55].
Moreover, as studied by different works [46, 49, 25, 64, 56, 33], automated
generated patches can suffer from Overfitting. Those patches are correct with
respect to the test suites used for validating them (they are test-suite adequate
patched), but yet incorrect. One of the reasons of accepting those patches is
that the specification used by a repair approach (such as test-suites in the cases
of test-suite based repair approaches) can be incomplete: a test suite does not
include any input that triggers the unexpected -and incorrect- behaviour of
a patch. In our previous study, we manually analyzed patches generated by
approaches built Astor, found that a portion of them overfit the evaluation test
suites. However, we believe that the overfitting problem affects to the repair
approaches rather than the repair framework itself. Astor provides to developers
extensions points for designing a new generation of repair approaches that aim
at reducing the overfitting.

8. Conclusion

In this paper we presented Astor, a novel framework developed in Java that
encodes the design space of generate-and-validate program repair approaches.
The framework contains the implementation of 6 repair approaches. It uniquely
provides extension points for facilitating research in the field. The built-in
repair approaches provided by Astor have already been used by researchers
during the evaluation of their new repair approaches. Moreover, researchers
have already implemented new components for Astor’s extension points. This
paper presented an evaluation of the approaches provided by Astor, which repair
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98 real bugs from the Defects4J dataset. We hope that Astor will facilitate the
construction of new repair approaches and comparative evaluations in future
research in automatic repair. Astor is publicly available at https://github.

com/SpoonLabs/astor.
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