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A B S T R A C T   

This paper investigates a coding method for medical video compression. The described technique has advantages 
of providing a higher visual quality of video coding, and efficiently reducing spatial redundancy. Firstly the 
bandelet transform, also called a non-separable transform, is studied in order to allow an efficient detection of 
the different complex geometries found in video. After describing the lifting operation in the bandelet transform, 
we reduced the artifactual effect caused by the quad-tree decomposition step in order to enhance the visual 
quality of the medical video sequence. Finally, the efficiency of the proposed method on medical video is tested 
and evaluated by means of a set of objective measurement parameters.   

1. Introduction 

Compression methods in the literature show that lossy coding may 
present a significantly undesirable effect as artifact, in the form of 
important changes in data content. In such cases, it is important to find a 
type of non-separable transform. In previous research, several trans-
formation algorithms have been proposed for data compression: the 
wavelet transform [1], the curvelet transform [2], the contourlet 
transform [3], the wedgelet transform [4], the ridgelet transform [5], 
and the discrete cosine transform [6]. All of these have shown that data 
can be compressed simply by making changes in resolution, orientation, 
etc. The poor directionality of the cited transforms prevents their use in 
many diagnosis applications, however. To overcome these limitations, 
high-dimensional signals are necessary to achieve a considerable 
development in the theory of multi-scale geometric analysis (MGA) 
where several MGA transformations have appeared, in particular DBT 
(Discrete bandelet transform) [7,8], which is well suited to capture 
geometric regularity. Therefore, many researchers have studied and 
proved the efficiency of bandelet transforms for many applications 
[9–11]. The bandelet transform is accurate and practical because the 
search operation is not applied directly to the function, but is done to the 
set of blocks obtained after wavelet decomposition. The success of the 
bandelet is generally limited by the clarity degree in the video. The 

purpose of this article is to extend the bandelet transform for high-order 
geometry, which reduces the order of computational complexity and 
improves video clarity. Hence, the bandelet transform will be guided to 
the designated complex geometry that corresponds to the regularity of 
the complex geometric structures of video, but with another imple-
mentation based on a lifting scheme [12]. The advantage of the lifting 
scheme is its ability to develop transforms without going through the 
Fourier domain, by calculating simultaneously the low and high fre-
quency sub-bands; also this structure of lifting is invertible. The lifting 
structure is used to improve the bandelet transform computation. The 
sub-band coders are used to code efficiently the generated coefficients. 
The Embedded Zerotree Wavelet (EZW) is firstly described by Shapiro’s 
[13] as the first sub-band coding algorithm. Next, the EZW encoder is 
improved by the works of Said and Pearlman, who proposed an efficient 
encoder known as Partitioning Set in the Tree Hierarchical Encoder 
(SPIHT) [14]. In this work, motion estimation techniques have been 
used to reduce temporal redundancy [15]. Estimation and judgment of 
the recovered image quality are given by the PSNR, MSSIM, VIF and 
other evaluation parameters. The remainder of the paper is organized as 
follows: Section 2 describes the bandelet transform, Section 3 elucidates 
the concept of the lifting scheme, Section 4 concerns the biorthogonal 
wavelet CDF9/7, Section 5 presents the SPIHT algorithm, and section 6 
is devoted to the proposed algorithm to illustrate its efficiency. Some 
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simulation results are given in Section 8. Finally, Section 9 concludes the 
work. 

2. The bandelet transform 

The first generation bandelet transform was introduced by Pennec 
and Mallat [7]. It combines decomposition into wavelets. The estimation 
of the geometry is done by studying image contours. A rectification of 
curves is conducted, and consists in deforming the curve to make it 
horizontal. Finally, wavelet decomposition is applied. In practice, it is 
first necessary to segment each image into regions, but this transform 
type produces blocking artifacts. The second-generation bandelets were 
then introduced in Ref. [8]. The idea is again to build an orthogonal base 
adapted to an image. However, this time the search for geometry is not 
done on a geometric function directly but in the different sub-bands 
obtained after wavelet decomposition. In order to improve the geome-
try detection step, inter-scale relations can be considered via the con-
struction of a tree connecting the coefficients, at each level of detail, 
corresponding to the same spatial location. 

3. The lifting scheme 

The wavelet transform (WT), in general, produces floating point 
coefficients. Although these coefficients are used to reconstruct an 
original image perfectly in theory, the use of finite precision arithmetic 
and quantization results in a lossy scheme. 

Recently, reversible integer WT’s have been introduced [16]. In 
Ref. [17], and in order to reduce computational complexity, Calderbank 
et al. have shown that the biorthogonal WT can be implemented in the 

lifting scheme, as illustrated in Fig. 1. Note that only the decomposition 
part of 1D-WT is depicted in Fig. 1, for the reconstruction part is the 
reverse version of the one in Fig. 1. 

The lifting-based 1D-WT consists in splitting, lifting, and scaling 
modules, and the 1D-WT is treated as prediction error decomposition. In 
Ref. [18], the lifting scheme is used to improve quality of medical image 
compression. 

In Fig. 1, XðnÞ is the original signal and XL1 XH1 are the output signals 
obtained through the three steps of lifting-based 1DWT: 

Splitting: In this part, the signal XðnÞ is divided in XeðnÞ ¼ Xð2nÞ and 
XoðnÞ ¼ Xð2nþ1Þ that denote all even and odd samples of XðnÞ, 
respectively. 

Lifting: An estimation is used through prediction operation P to es-
timate XoðnÞ from XeðnÞ , and results in dðnÞ , which represents the 
detailed part of X. Next, it is updated by applying the update operation U 
and the resulting signal is combined with XeðnÞ to sðnÞ estimate, which 
represents the smooth part of XðnÞ. 

Scaling: A normalization factor is applied to dðnÞ and sðnÞ, respec-
tively. In order to produce the wavelet sub-band XL1 and XH1, the even 
part of sðnÞ is multiplied by a normalization factor Ke , and the odd part 
of dðnÞ is multiplied by K0, respectively. 

The lifting scheme of the biorthogonal transform 9/7 is made up of 
four steps: two operators of predictions and two update operators, as 
shown it Fig. 2. 

The lifting scheme is one of the most efficient structures. It is used in 
many applications, such as in a robust and secure color image water-
marking [19], audio watermarking [20], Fault diagnosis [21], and 
image fusion [22]. 

4. Biorthogonal wavelet CDF9/7 

The biorthogonal wavelet Cohen-Daubechies-Feauveau 9/7 (CDF9/ 
7) filter (also commonly known as Daubechies 9/7 filter) is part of the 
family of symmetric biorthogonal wavelet CDF characterized by their 
simplicity, biorthogonality, symmetry, and compact support. The low 
pass filters associated with wavelet 9/7 have p ¼ 9 coefficients in the 
analysis, p ¼ 7 coefficients to synthesize, as described in Table 1. They 
have N ¼ 4 null moments in analysis, and ~N ¼ 4 in synthesis. The 
wavelets 9/7 have a great number of null moments for a relatively short 
support. They are more symmetrical and very close to orthogonality. 
This is an important feature in coding, which ensures that the recon-
struction error is very close to the quantization error in terms of the 
mean squared error. Antonini and Barlaud were the first [23] to show 
the superiority of the biorthogonal wavelet transform 9/7 for the 
decorrelation of natural images. It has been widely used in image coding 
[14,24,25] and is used by the JPEG-2000 codec [26]. 

5. The SPIHT algorithm 

SPIHT [14] is one of the most advanced schemes available nowadays. 
It is widely used to enhance the quality of image and video. The SPIHT is 
a refined version of EZW used to exploit the inherent similarities across 
the sub-bands in a wavelet decomposition of an image. It codes the most 
important wavelet transform coefficients first, and transmits the bits. It 
delivers an excellent compression performance when applied to 1D, 2D, 
and 3D signals. Basically, the main advantages of SPIHT are: (i) provides 
a good image quality, (ii) very convenient for storage and progressive 
transmissions of significance coefficient, and (iii) used either for lossless 
or lossy compression. 

The SPIHT sorts information in three ordered lists: LIP for the list of 
insignificant pixels, LIS for the list of insignificant sets, and LSP for the list 
of significant pixels. At the initialization step, the pixels of frame are added 
to LIP, and those with descendants are added to LIS. The LSP is an empty 
list. Coding starts with LIP; if the number of pixels in frame is insignificant, 
it remains in LIP; otherwise, pixels are moved to LSP. Similarly, 

Fig. 1. Schematic diagram of the lifting-based 1D-WT.  

Fig. 2. Split, predict and update steps of forward CDF9/7 wavelet using lift-
ing scheme. 
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insignificant LIS pixels remain in LIS, while significant pixels are parti-
tioned into significant type A and type B sets and four pixels; the type B set is 

added to the end of LIS whereas the rest are examined for significance. 
The SPIHT use the following sets of coordinates: 

Oði; jÞ: set of coordinates of all offspring of node ði; jÞ. 
Dði; jÞ: set of coordinates of all descendants of node ði; jÞ. 
H: set of coordinates of all spatial orientation tree roots (nodes in the 
highest pyramid level). 

Lði; jÞ¼Dði; jÞ � Oði; jÞ

A LIS entry is of type:  

� A if it represents Dði; jÞ,  
� B if it represents Lði; jÞ. 

SPIHT uses the function SnðTÞ ¼
�

1 maxði; jÞ2Tfjcði; jÞjg � 2n

0 otherwise 

To indicate the significance of a set of coordinates T. The steps of the 
algorithm are as follows:   

6. The proposed algorithm 

The detection of complex geometrics, which has been dealt with by 
few authors, is an important issue to address. In video sequences, due to 
contours, poor visual quality between successive frames of videos often 
occurs. Fig. 3 shows the block diagram of the proposed medical video 
compression method using bandelet transforms based on the lifting 
scheme. The input medical video is decomposed in approximation and 
details through the two-dimensional CDF9/7 wavelet [27] based on the 
lifting scheme. The approximation is a coarser version of the original 
frame, while the other sub-band details represent the horizontal, verti-
cal, and diagonal directions, respectively. The resulting wavelet trans-
form of each frame of video is partitioned into smaller dyadic squares by 

Table 1 
The analysis and synthesis filter coefficients.  

The analysis filter coefficients. The synthesis filter coefficients 

i Low-pass filter High-pass filter Low-pass filter High-pass filter 

0 0.6029490182363579 
0.6029490182363579 

þ1.115087052457000 þ1.115087052457000 0.6029490182363579 

�1 þ0.266864118442875 þ0.591271763114250 – 0.591271763114250 – 0.266864118442875 
�2 – 0.078223266528990 – 0.057543526228500 – 0.057543526228500 – 0.078223266528990 
�3 – 0.016864118442875 – 0.091271763114250 þ0.091271763114250 þ0.016864118442875 
�4 þ0.026748757410810   þ0.026748757410810  

(A) Initialization:

;tuptuo

set the LSP as an empty list;
add the coordinates to the list LIP, and only those with descendants also to the LIS, as type A entries.

(B) Sorting pass:
(B.1) for each entry in the LIP do:

(B.1.1) transmit ;

(B.1.2) if then move to the LSP and transmit the sign of ;

(B.2) for each entry in the LIS do:
(B.2.1) if the entry is of type A then

transmit ;

if then

for each do:

transmit ;

if then add to the LSP and output the sign of ;

if then add  to the end of the LIP;

if then move to the end of the LIS, as an entry of type B, and go to step (2.2.2); otherwise,

remove entry  from the LIS;
(B.2.2) if the entry is of type B then

transmit ;

if  then

add each to the end of the LIS as an entry of type A;

remove from the LIS.

(C) Refinement pass:
for each entry  in the LSP, except those included in the last sorting pass, output the nth most significant bit of ;

(D) Quantization-step update:
decrement n by 1 and go to step (2).

,,log 2 max i ji jn C

,i j H

,i j

,Sn i j

, 1Sn i j ,i j ,i jC

,i j

,Sn D i j

, 1Sn D i j

, ,k l O i j

,Sn k l

, 1Sn k l ,k l ,k lC

, 0Sn k l ,k l

,L i j ,i j

,i j

,Sn L i j

, 1Sn L i j

, ,k l O i j

,i j

,i j ,i jC
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quad-tree decomposition, where the transformed video is recursively 
divided into four smaller squares of varying dyadic sizes. To define the 
singularities, a global regularity condition is imposed on the squares 
results of the quad-tree decomposition algorithm. The blocks should be 
under satisfactory Lagrangian conditions defined as: 
X

j

� �
�fj � fjR

�
�2
þ λ
�
RjS þRjG þ RjC

��
(1)  

where 

�
�
�fj � fjR

�
�
�

2
: The Euclidean norm restricted to the region Sj 

λ ¼ 3
28: The Lagrange multiplier 

RjS: The number of bits needed to encode the dyadic sub-square 
RjG: The number of bits needed to encode the geometric parameters 
RjC: The number of bits needed to encode the warped coefficient 

The Lagrangian of the subdivided square must be small enough to 
build the best quad-tree and to minimize the probability that a square 
contains singularities. The geometric flow is applied for each bloc as a 
result of the quad-tree decomposition to follow the different complex 
geometry with precision. In addition, the successive division of the 
square is directly linked to the presence of the uniformed geometrical 
flow in the sub-square. Then, a rectification step is carried out, the 
deformed wavelet coefficients are calculated with an operation that 
consists in deforming the curve to make it horizontal if it is rather 
horizontal, and inversely, after a mono-dimensional wavelet trans-
formation based on structure lifting is applied consecutively. The Lifting 
structure is used to improve and reduce the limits of the bandelet, and 
therefore allows extending the wavelet theory in a non-linear frame-
work, and simply permits the construction of non-linear transforms. 
Finally, the resultant modified bandelet coefficients are encoded using 
the SPIHT algorithm. 

The proposed algorithm is formulated as follows:  

1. Decomposition of the input medical video through 2D wavelet 
transforms (biorthogonal CDF9/7).  

2. Applying quad-tree decomposition recursively for each frame and for 
each sub-band as a result of biorthogonal CDF9/7 to restrict complex 
geometrics in dyadic square.  

3. Warping the uniformed geometric flow applied in each dyadic square 
with a warped operator to horizontal and vertical directions.  

4. Computing the warped wavelet coefficients.  
5. Performing 1D wavelet transform based on lifting scheme.  
6. The resulting bandelet coefficients are encoded using the SPIHT 

encoder. 

7. Video quality parameters assessment 

The objective metrics are used to assess the performance of the 
proposed algorithm and the measure the quality of the reconstructed 
video. 

7.1. The peak signal-to-noise ratio (PSNR) 

The PSNR represents an objective evaluation parameter for the 

measurement of visual quality. It is defined as follows: 

PSNR¼ 10log10

�
ð2n � 1Þ2

MSE

�

(2)  

where  

� ð2n � 1Þ is the dynamic of the signal (the maximum possible value for 
a pixel). In the standard case of an image where the components of a 
pixel are coded on n ¼ 8 bits, ð2n � 1Þ ¼ 255:
� MSE represents the mean square error between two frames, namely 

the original frame fði; jÞ and the recovered frame frði; jÞ of size M� N 
and is given by 

MSE¼
1

MN

XM

i¼1

XN

j¼1
ðf ði; jÞ � frði; jÞÞ2 (3)  

7.2. The mean SSIM (MSSIM) 

The PSNR is an easy, fast, and very popular quality measurement 
metric, widely used to compare the quality of video encoding and 
decoding. Although a high PSNR generally means a good quality 
reconstruction, this is not always the case. Indeed, PSNR requires the 
original image for comparison but this may not be available in every 
case; also PSNR does not correlate well with subjective video quality 
measures, therefore it is not very suitable to perceived visual quality. 
Hence, there is an interest in considering a measure of structural simi-
larity (SSIM) adapted to the human visual system. The SSIM index in-
troduces three key features: luminance l, contrast c, and structure s. 

SSIMðf ; frÞ¼ lðf ; frÞcðf ; frÞsðf ; frÞ (4) 

The luminance comparison function l is determined by the following 
expression: 

lðx; yÞ¼
2MxMy þ C1

M2
x þM2

y þ C1
(5)  

where 
Mx and My are the mean intensity of the signal x and y defined by 

Mx ¼
1
N
PN

i¼1xi and My ¼
1
N
PN

i¼1yi respectively. 
Ci ¼ K2

i D2; i ¼ 1; 2; and Ki is a constant, such as Ki << 1 and D is the 
dynamic range of the pixel values (D ¼ 255 corresponds to a grey-scale 
digital image when the number of bits/pixel is 8). 

The contrast comparison function c takes the following form: 

cðx; yÞ¼
2σxσy þ C2

σ2
x þ σ2

y þ C2
(6)  

where 

σx¼

 
1

N � 1

XN

i¼1

�
x2

i �
�
Mx
�2
�
!1=2 

The structure comparison function s is defined as follows: 

sðx; yÞ¼
σxy þ C3

σxσy þ C3
¼

cov ðx; yÞ þ C3

σxσy þ C3
(7)  

Fig. 3. The block diagram of the proposed algorithm.  
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C3¼
C2

2
and cov

�

x; y
�

¼ Mxy � MxMy  

with 

Mxy¼
1

N � 1
XN

i¼1
xiyi 

Hence, the explicit expression of the structural similarity (SSIM) 
index is: 

SSIMðx; yÞ¼
�
2MxMy þ C1

��
2σxy þ C2

�

�
M2

x þM2
y þ C1

��
σ2

xσ2
y þ C2

� (8)  

where 

σxy¼

 
1

N � 1
XN

i¼1

�
ðxiyiÞ

2
�
�
Mxy
�2
�
!1=2 

Generally, over the whole video coding, a mean value of SSIM is 
required as Mean SSIM (MSSIM): 

MSSIMðf ; frÞ¼
1
L
XL

i¼1
SSIMðfi; friÞ (9)  

where fi and fri are the contents of frames (original and recovered 
respectively) at the ith local window (or sub-image), and L is the total of 
local windows number in frame. The MSSIM values exhibit greater 
consistency with the visual quality. 

7.3. The visual information fidelity (VIF) 

In 2006, Sheikh and Bovik proposed a new paradigm for video 
quality assessment; visual information fidelity (VIF). This criterion 
quantifies the Shannon information that is shared between the original 
and recovered images according to the contained information in the 
original image itself. It uses natural scene statistics modelling in 
conjunction with an image-degradation model and a human visual 
system (HVS) model. 

Visual Information Fidelity uses the Gaussian scale mixture model 
(GSM) in the wavelet domain. To obtain VIF, one performs a scale-space- 
orientation wavelet decomposition using the steerable pyramid, and 
models each sub-band in the source as C ¼ SU, where S is a random field 
of scalars and U is a Gaussian vector. 

The distortion model is D ¼ GCþ v;where G is a scalar gain field and 
v is an additive Gaussian noise. 

VIF then assumes that the distorted and source images pass through 
the human visual system and the HVS uncertainty is modelled as visual 
noise N and N’ for the source and distorted image, respectively. 

The model is then: 

Reference  signal E¼C þ N (10)  

Test  signal F¼Dþ N (11)  

where E and F denote the visual signal at the output of the HVS model 
from the reference and the test videos respectively, from which the brain 
extracts cognitive information. 

The VIF measure takes values between 0 and 1, where 1 means 
perfect quality and is given by: 

VIF¼

P

j
I
�
Cj; Fj=sj

�

P

j
I
�
Cj; Ej=sj

� (12)  

where, IðX; Y =zÞ is the conditional mutual information between X and Y;
given z; C denotes the random field from a channel in the original image, 
sj is a realization of Sj for a particular image and the index j runs through 

all the sub-bands in the decomposed image. 

7.4. The edge measurement (EDGE) 

This type of quality measurement can be obtained from, 

Edge ¼
1

M � N

XM

i¼1

XN

j ¼1
ðQ ði; jÞ � bQ ði; jÞÞ2 (13)  

where Q ði; jÞ and bQ ði; jÞ are the gradients of the original and compressed 
image. 

7.5. The weighted peak signal to noise ratio (WPSNR) 

This parameter is based on the fact that the human eye is less sen-
sitive to changes in textured areas than in smooth areas, WPSNR has 
another parameter that takes into account the texture of the image. The 
WPSNR formula is shown below: 

WPSNR ¼ 10 log 10

�
ð2n � 1Þ2

NVF � MSE

�

(14) 

The noise visibility function (NVF) uses a Gaussian model to estimate 
the amount of texture content in all parts of the image. In textured re-
gions with edges, NVF will have a value greater than 0, while in smooth 
regions the value of NVF will be greater than 1. 

NVF ¼ NORM
�

1
1 þ δ2

bloc

�

(15)  

where δbloc is the luminance variance for a block and NORM is the 
normalization function. 

7.6. The visual signal to noise ratio (VSNR) 

The principle of the parameter VSNR is based first on the difference 
image computation E between the original image I and the distorted 
image bI. The images I and E are then subjected to a discrete wavelet 
transformation (2D-DWT, M decomposition levels). 

Within each sub-band fSIg and fSEg, the VSNR then calculates the 
distortion visibility, comparing the contrast of the distortion to the 
detection threshold, and then calculates the RMS contrast of the error 
signal ðdpcÞ. 

dpc ¼ CðEÞ

¼
1

μLðIÞ

 
1
N
XN

i¼1
½LðEi þ μIÞ � μLðEþμI Þ

�
2

!1=2 (16)  

where μI ¼
1
N
PN

i¼1Ii, μLðIÞ ¼
1
N
PN

i¼1LðIiÞ, LðEi þμIÞ and 

μLðEþμIÞ
¼ 1

N
PN

i¼1LðEi þμIÞ respectively denote the average pixel value, 
the average luminance of I, the distortion of the i-pixel luminance of the 
image, and the distortion of the average luminance. 

Based on the strategy of the global priority idea, in the HVS, the 
VSNR calculates a global priority, preserving the contrast ðdgpÞ. 

dgp¼

 
XM

m¼1

�
C*� Efm

�
� C

�
Efm
��2

!1=2

(17)  

where CðEfm Þ denotes the current contrast of distortion. 
The final index is a linear combination of dpc and dgp. We define a 

visual distortion VD, as the linear combination of dpc and dgp. 

VD ¼ α dpc þ ð1 � αÞ dgp
ffiffiffi
2
p (18)  

where the parameter α 2 ½0;1�. 
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The quantity dpc is about this distance from the origin. The quantity 
dgp is the distance between the two points; so, in general, dgp 2 ½0;
ffiffiffi
2
p

dpc� and so, VD 2 ½0; dpc�. 
The amount is dpc necessary to account for differences in perceived 

fidelity when two images are of different total distortion contrasts, but 
the two images have dgp ¼ 0. If both images have dgp ¼ 0, the image 
with the higher total distortion contrast ðdpcÞ will generally be less 
ranked in the perceived fidelity (assuming the additional distortion 
contrast is visible). The quantity dpc is necessary to account for this 
condition. The VSNR, in dB, is therefore given by: 

VSNR ¼ 10 log 10

�
C2
�
I
�

ðVDÞ2

�

¼ 20 log 10

0

B
B
@

CðIÞ

α dpc þ

�

1 � α
�

dgpffiffi
2
p

1

C
C
A

(19)  

where CðIÞ indicates the RMS contrast of the original image I, given by 
CðIÞ ¼ σLðIÞ=μLðIÞ (σLðIÞ is the standard deviation, μLðIÞ denotes the 
average luminance of I). Note that when the global priority is at most 
disturbed for a given data CðEÞ, at most dgp ¼

ffiffiffi
2
p

dpc, VD ¼ dpc 

therefore VSNR ¼ 20 log 10 ðCðIÞ =dpcÞ ¼ 20 log 10 ðCðIÞ =CðEÞÞ; in 
this case the VSNR is given by the SNR contrast from I to E. 

8. Results and discussion 

In order to evaluate the efficiency of the proposed algorithm, the 
CDF9/7 þ SPIHT, DBT(CDF9/7)þEZW, DBT(GALL5/3)þSPIHT, DBT 
(CDF9/7)þSPIHT and DBT(LIFTING)þSPIHT algorithms are respec-
tively applied to the 8-bit, 512 � 512 grayscale medical video. Estimates 
and judgments of the compressed medical video quality are given by the 
PSNR, the MSSIM similarity index and VIF [28,29] evaluation parame-
ters. An input medical video is decomposed into four levels(See. 
Table 2). 

The original medical videos used in the compression test are shown 
in Fig. 4.  

- CORONARY: Coronary artery disease (CAD), also known as ischemic 
heart disease (IHD), involves the reduction of blood flow to the heart 
muscle due to build-up of plaque in the arteries of the heart. 

- MRI1, MRI2: Magnetic resonance imaging (MRI) is a medical im-
aging technique used in radiology to form pictures of the anatomy 
and the physiological processes of the body. MRI scanners use strong 
magnetic fields, magnetic field gradients, and radio waves to 
generate images of the organs in the body. MRI does not involve X- 
rays or the use of ionizing radiation, which distinguishes it from CT 
or CAT scans and PET scans. Magnetic resonance imaging is a med-
ical application of nuclear magnetic resonance (NMR). NMR can also 
be used for imaging in other applications such as NMR spectroscopy.  

- KERATINOCYTES AND NEURONAL CELLS: Keratinocytes are cells 
constituting 90% of the superficial layer of the skin (epidermis) and 
integuments (nails, hair, hairs, feathers, scales). They synthesize 
keratin (keratinization), a fibrous protein that is insoluble in water, 
which gives the skin its impermeability and external protection 
properties.  

- BLADER CANCER: Bladder cancer is a growth of abnormal tissue, 
known as a tumor, that develops in the bladder lining. In some cases, 
the tumor spreads into the bladder muscle. 

The all tested medical data are from: 

Table 2 
The characteristics of tested medical video.  

Tested medical video Number 
of Frames 

Number of 
Frames/ 
Second 

Width �Height Video 
Format 

CORONARY 594 30 360 � 360 AVI 
MRI1 145 30 240 � 240 AVI 
MRI2 296 30 340 � 352 AVI 
KERATINOCYTES 

AND NEURONAL 
CELLS 

1260 30 960 � 720 AVI 

BLADER CANCER 662 30 480 � 320 AVI  

                                                      (a)                                         (b)                                           (c)

                                                                             (d)                                         (e)

Fig. 4. Used medical video for evaluation, (a). CORONARY, (b). MRI1, (c). MRI2, (d). KERATINOCYTES AND NEURONAL CELLS, (e). BLADER CANCER.  

M. Beladgham et al.                                                                                                                                                                                                                            



Informatics in Medicine Unlocked 17 (2019) 100244

7

- INSERM (French National Institute of Health and Medical Research), 
including large databases used for the comparative analysis.  

- www.GEMedicalSystem.com 

Fig. 5 shows PSNR, MSSIM and VIF at several bit rates. As we can 
notice form this figure, our proposed method outperforms baseline 
CDF9/7 þ SPIHT, DBT(CDF9/7)þEZW, DBT(GALL5/3)þSPIHT and 
DBT(CDF9/7)þSPIHT. At the same bit rate, the PSNR, MSSIM and VIF 
values of the reconstructed medical videos for DBT(LIFTING)þSPIHT 
algorithm are higher than those for the other tested algorithms. The gain 
improvement in terms of PSNR, for example at 0.3Mbps for CORONARY 
ANGIOGRAPHY video, reaches 7,8701 dB, 4,3162 dB, 3,3902 dB, and 
3,4364 dB over the algorithms of CDF9/7 þ SPIHT, DBT(CDF9/7)þ
EZW, DBT(GALL5/3)þSPIHT and DBT(CDF9/7)þSPIHT respectively. 
Moreover, it can be seen that DBT(LIFTING)þSPIHT has better perfor-
mance for all bit rates (from 0.1 Mbps until 0.5Mbps). 

Fig. 6 shows the decoded CORONARY ANGIOGRAPHY video for the 
proposed algorithm at 0.3 Mbps, where we compare the perceptual 
quality between the all tested algorithms. It can be observed that the 
subjective quality of medical video in Fig. 6 f is improved over Fig. 6 b, 
Fig. 6 c, Fig. 6 d, and Fig. 6 e. The overview of visual comparison results 
of the local regions are shown in Fig. 7. 

As a second evaluation, the proposed algorithm is applied to the 

other medical sequences. The compression is performed to select se-
quences in which our algorithm outperforms preceding ones. From 
Fig. 8, we note that the DBT (LIFTING)þSPIHT algorithm performs 
better for the CORONARY video. As a final evaluation, the proposed 
algorithm is also intended for comparison with another compression 
standard known as H.264 (see Fig. 9). 

The H.264 is the newest international video coding standard. How-
ever this standard is based on the use of the popular transform termed 
the Discrete Cosine Transform (DCT) which suffers from blocking arti-
facts, limited block size, and is unable to capture complex geometries, so 
it kills all contours existing in the video and therefore reduces directly 
the visual quality, and data is lost in the reconstructed video sequence 
[30]. The obtained results show that bandelet based on the lifting 
scheme and SPIHT algorithm provide high visual quality and important 
PSNR gain values, especially for low bit rate (for example the PSNR gain 
(Fig. 8) is 6.69 dB, 4.58 dB and 1.54  dB at 0.25 Mbps, 0.30 Mbps and 
0.35Mbps respectively). 

9. Conclusion 

In this paper, an improved lossy medical video coding algorithm 
based on the modified bandelet basis and SPIHT coder is proposed. The 
simulation results indicate that the proposed algorithm can produce a 
better reconstructed medical video in terms of visual quality. The 
objective parameters (PSNR, MSSIM, etc.) of the proposed algorithm 
DBT(lifting)þSPIHT are better than the objective parameters of DBT þ

 (a)                                                      (b)                                                       (c)

(d)                                          (e)                                        (f)

Fig. 6. Performance of all tested algorithms for CORONARY-ANGIOGRAPHY 
video at 0.3 Mbps. (a). Original frame, (b). CDF9/7 þ SPIHT, (c). DBT(CDF9/ 
7)þEZW, (d). DBT(GALL5/3)þSPIHT, (e). DBT(CDF9/7)þSPIHT. 

                    (a)                                       (b)                         (c)

Fig. 7. The visual region of interest (ROI) comparison results for CORONARY- 
ANGIOGRAPHY video at 0.3 Mbps: (a) Original video. (b) ROI by DBT(CDF9/ 
7)þSPIHT. (c) ROI by DBT(LIFTING)þSPIHT. 
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M. Beladgham et al.                                                                                                                                                                                                                            

http://www.GEMedicalSystem.com


Informatics in Medicine Unlocked 17 (2019) 100244

8

SPIHT algorithm and H.264 standard at a given bit rate for all tested 
medical videos. The proposed improvement simplifies the coding and 
improves the visual quality of medical video. In perspective, we 
endeavor to apply this algorithm to color medical video and compare it 
with HEVC (H.265). 
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