
HAL Id: hal-03578333
https://uphf.hal.science/hal-03578333v1

Submitted on 4 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

COMMON FRAMEWORK : A HYBRID APPROACH
TO INTEGRATE CROSS-PLATFORM

COMPONENTS IN MOBILE APPLICATION
Joachim Perchat, Mikael Desertot, Sylvain Lecomte

To cite this version:
Joachim Perchat, Mikael Desertot, Sylvain Lecomte. COMMON FRAMEWORK : A HYBRID AP-
PROACH TO INTEGRATE CROSS-PLATFORM COMPONENTS IN MOBILE APPLICATION.
Journal of Computer Science, 2014, 10 (11), pp.2165-2181. �10.3844/jcssp.2014.2165.2181�. �hal-
03578333�

https://uphf.hal.science/hal-03578333v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Journal of Computer Science 10 (11): 2165-2181, 2014
ISSN: 1549-3636
© 2014 J. Perchat et al., This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license
doi:10.3844/jcssp.2014.2165.2181 Published Online 10 (11) 2014 (http://www.thescipub.com/jcs.toc

Corresponding Author: Joachim Perchat, Keyneosoft, 31 Rue De La Fonderie, 59200 Tourcoing, France

2165 Science Publications

JCS

COMMON FRAMEWORK: A HYBRID APPROACH TO
INTEGRATE CROSS-PLATFORM COMPONENTS IN MOBILE

APPLICATION

1,2Joachim Perchat, 2Mikael Desertot and 2Sylvain Lecomte

1Keyneosoft, 31 Rue De La Fonderie, 59200 Tourcoing, France
2Univ Lille Nord de France, F-59000 Lille, France, UVHC, HAMIH,

F-59313 Valenciennes, France CNRS, UMR 8201, F-59313 Valenciennes, France

Received 2014-04-06; Revised 2014-04-07; Accepted 2014-07-22

ABSTRACT

There is a multitude of mobile OS: iOS android, Windows Phone 8 and each OS provides its own standards
and tools. This heterogeneity in the mobile domain forces developers to implement an application for each
mobile platform. To achieve that, developers need to master several languages (Java, Objective-C…). They
also need to have several devices at their disposal (PC, Mac, many smartphones …). Then, after
applications distributions, developers have to maintain several source codes. In this study, we tackle this
problematic. Our goal is to soften the differences between each OS in order to simplify the development of
cross-platform third-party applications. To achieve that, we have defined a framework called COMMON
(Component Oriented programming for Mobile Multi OsiNtegration). This framework allows the
integration of cross-platform components in any application (iOS android). To run our components on any
OS, we provide an implementation for each platform. However, to make their integrations easier, we also
provide a common public interface of each component, which is platform-independent. Besides, we provide
a common language, also platform-independent, allowing the integration and use of any component in any
native application (iOS android). This language is based on annotations. Finally, we have implemented a
cross-compiler, which translates the source code written with our language to native source code: Objective-
C for iOS, Java for Android,… In this study, we have shown that our solution offers performance and
memory consumption closed to native applications. Finally, with COMMON, mobile developers implement
less lines of source code than with a native application. In your test application, we have saved 30%.

Keywords: Cross-Platform, Components, Common Language, Component Integration, Cross-Compiler,

Hybrid Application

1. INTRODUCTION

With the success of smartphones and their application
stores, many companies and individual developers have
chosen to implement mobile applications. Indeed,
smartphones are more and more powerful and their OS
support more and more new features and particularly the
ability of installing third-party applications. In 2013, more
than 50 billion third-party applications were downloaded
from the App Store (Apple press info, May 2013:
http://www.apple.com/pr/library/2013/05/16Apples-

App-Store-Marks-Historic-50-Billionth-Download.html.
(iOS store) and more than 25 billion from Google play
(Android official blog, September 2012:
http://officialandroid.blogspot.fr/2012/09/google-play-
hits-25-billion-downloads.html) (Android store). With all
these new applications available through the different
markets, the usages of this kind of phones have changed.
Smartphones are not only used to call or send SMS but
also to connect to the Internet, to get points of interest
according to the user's location, to play video game in
the subway, to read a book on the beach, to share

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2166 Science Publications

JCS

pictures via Facebook and many other things. With these
new usages, the user's mobility has opened new
perspectives in the mobile research. Now, the developers
must implement context-aware applications in order to
provide the best possible user experience.

In our previous works (Popovici et al., 2011), we have
designed the CATS for Context-Aware Transportation
Services framework, which helps the implementation of
context-aware applications. This kind of applications
adapts their behaviors according to the user's context. For
example, with the same application, if a user is inside his
car in a town, the application could launch a parking space
search service. Whereas, if the user is a pedestrian, the
application could launch a point of interest search service.
Of course, the application detects itself the context
changes and adapts its behavior without restart it. To
achieve that, the application is divided between several
context-aware components. Then, the components will be
loaded at runtime in the application according to the user's
context. We have implemented this framework, using OSGi
(Hall et al., 2011), for Android but it is impossible to easily
port this version on other mobile operating systems.

Ideally, CATS and more generally mobile
applications must be available at least on iOS and
Android. These are the two most popular platforms for
smartphones: 93% of the market (IDC Worldwide
Quarterly Mobile Phone Tracker, May 2013:
http://www.idc.com/getdoc.jsp?containerId=prUS24108
913). But, the development of cross-platform
applications is very hard to carry through to a successful
conclusion. Cross-platform applications means that
applications are able to run on several platforms and are
implemented entirely or in part from the same source
code. The major problem is due to the heterogeneity of
mobile operating systems. A developer who wants to
implement a cross-platform application must provide a
significant effort. He must use several programming
languages (Objective-C, Java,), IDEs (Xcode, Eclipse
android studio,), memory management systems (garbage
collector, reference counting,). Furthermore, the
maintenance of several source codes is also difficult.

In this study, we tackle the problematic of mobile OS
heterogeneity. Our goal is to soften the differences between
smartphones and more generally between devices
running a mobile OS (e.g., tablets) in order to simplify
the development of cross-platform third-party
applications. To do that, we have introduced the
component oriented programming in the mobile
development domain (Perchat et al., 2013). Our tools
and components are integrated in the Component Oriented
programming for Mobile Multi OsiNtegration (COMMON)
framework. Our cross-platform components have an
implementation per platform. Of course, all these

implementations are hidden to developers. Only a common
interface written in XML is visible. This interface is
platform-independent and represents the component
features. To integrate our components, we introduce an
intermediate language based on annotations that allows
components integration in any application implemented in
native language from common interfaces. The instructions
written with our language are common to any target
platform. Finally, a cross-compiler translates the code
written with our language to native language. At the end,
our tools provide a complete native application.

Up to now, we have presented and published the
concepts of this new approach and we remind them in
section 4. For this study, we have implemented and
tested our proposal in order to entirely create an
application, like presented in section 5. We also
evaluated our prototype by comparing three approaches:
Developing an application only with the Android SDK,
then using our approach and finally with Titanium
mobile. We focused on the application feasibility with
our approach and Titanium mobile and we compared the
performances of each application version.

This study is structured as follows: Section 2 shows
the smartphone market with its problems, section 3
presents the existing solutions to implement cross-
platform applications, section 4 and 5 explain our
proposal and its use for implementing an application on
Android. Section 6 and 7 show the evaluation of our
proposal and the discussion about it. In section 8, we
conclude and present our perspectives.

2. SMARTPHONES MARKET

The mobile market is divided between many
smartphones manufacturers, the main ones being Apple,
Samsung, LG or HTC. Each one provides theirs
smartphones with a different mobile OS. Among these
OS, there are iOS from Apple android from Open
Handset Alliance (from a Google initiative), Windows
Phone from Microsoft … With the Table 1, we give rise
to some of the points which differ when a developer
implements an application on several mobile platform.

2.1. Current Situation

Each platform uses different tools, programming
languages, user interface declarations and memory
management. If a developer wants to create an
application that works on all platforms, he should buy
one PC with Windows 8 and one Mac. Then, he will
have to follow different trainings, one per platform.
Finally, he will have to buy at least one phone for each
kind of platform and sometimes even multiple phones for
one platform, the same as in the case of Android.

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2167 Science Publications

JCS

Table 1. Some differences between several mobile operating systems
Operating Virtual Programmi- User Memory Development
system machine nglanguage interface management IDE on: Devices
iOS No Objective-C CocoaTouch Reference counting Xcode Mac OS X Homogenous
Android Dalvik VM Java XML files Garbagecollector Eclipse Multi-platform Heterogenous
Windows Phone 8 CLR C# and VB.Net XAML files Garbagecollector Visual studio Windows 8 Homogenous

Design and implementation steps are the two critical

phases to create a cross-platform application. Indeed,
even if an application must run the same functions on
every platform, it is impossible to design it once and run
it everywhere. Depending on the host, the application
behaviors can be different too.

To demonstrate the importance of these two steps,
we have developed a basic application for iOS and
Android. This application consists in only one view.
On this view, we have added a button “close the
application”. When the user clicks on this button, the
application displays a popup that contains the message
“The application will be closed” and a button “OK”.
When the user clicks on the button “OK” the
application is closed.

We have analysed the source code and found
multiple differences. First, the source code is
implemented in two different development
environments: Xcode for iOS and Eclipse for Android.
Second, the user interface is implemented in two
different manners. In iOS, we use interface Builder.
This editor allows us to choose the graphical elements
and to drag and drop them on a view. Whereas on
Android, we define the user interface from XML files.
It is also possible to use the same process as on iOS
(drag and drop) with the graphical layout proposed by
eclipse but developers rarely use this tool. Indeed, it is
easier to implement the views in XML than with the
graphical layout because this tool does not provide a
simple mechanism to take into account the screen
heterogeneity of the Android devices. Third, the
languages to implement the application behaviours are
different: Objective-C for iOS and Java for Android as
shown in Fig. 1 and 2. Fourth, the links between the
source code and the user interface are different for
each platform. For example, to link an action to the
button “close the application”, on iOS, we must use
Interface Builder and link an IBAction on the “press
button” event whereas on Android, we must get an
element reference from the XML file and then add a
listener to it. Fifth, when we want to create a popup on
iOS, we must provide a delegate to the popup in order
to get the click events on its buttons. Whereas, on
Android, we must set a listener on each popup button.

Fig. 1. Popup creation on iOS

Fig. 2. Popup creation on android

With this basic example, we have found five
differences when implementing the same application
on iOS and Android. Of course, the complexity
increases when you add new features and target
platforms. The differences are not only located at the
programming language level but also in the manner of
thinking. Indeed, the developers will have to change
their manner of thinking according to the target
platform. For example: There are delegates for iOS
and listeners for Android. These changes are really
difficult to grasp for the developers during the
implementation process. Therefore, we want to hide
the notions that are different between target platforms.

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2168 Science Publications

JCS

2.2. Requirements

Developers need a unified way to design, to
implement and/or to run a third-party application on
all available platforms, which allows them to use
every component, software or hardware, on each host.
The unification does not mean that we want to lose the
specificity of each platform.

The applications generated with such solution must
be efficient. The success of an application is often due
to its reactivity and its appealing design. At the same
level, if the solution must be installed with the
generated application on the smartphone (e.g., virtual
machine), it must be lightweight because smartphones
have limited resources.

Finally, this solution needs to be easily adaptable.
Indeed, the mobile domain can evolve. For example,
in a couple of years, Apple iOS might not be present
anymore and a new participant might take its place.
So, the possibility of adding extensions must be
considered in order to manage new platforms easily.
In the best case, as soon as a new platform comes out,
our proposal must be able to integrate it without
modifying its internal architecture.

In the next section, we have studied the existing
solutions that allow the development of mobile cross-
platform applications.

3. RELATED WORK

The solutions which enable the implementation of
cross-platform applications, can be classified in four
categories: Cross-compilers, solutions based on model-
driven engineering, source code interpreters and finally
the solution which allows to run certain parts of an
application on the cloud.

The solutions based on cross-compilers enable the
developers to write their applications from a common
language for each target platform. Then, they generate
the associated native code for each of them (iOS
android...). In this case, the reused code is complete but
the mapping between all the common language APIs and
all the native target language APIs is very difficult to
achieve. That's why, in most cases, cross-compilers only
manage few platforms and are limited to common
elements from each platform. This is the case of
MoSync, (http://www.mosync.com/) Corona
(http://www.anscamobile.com/) and Neomades
(http://neomades.com/). This limitation is even more
present when the common development language is

based on a usual mobile SDK (e.g. android SDK or iOS
SDK). In this principle, XMLVM (Puder and Yoon,
2010) enables the implementation of an application for
Android, iOS and Palm Pre from Android source code.

One other part of existing solutions is based on
model-driven engineering. With these kinds of solutions,
developers can define theirs applications from models
once for several target platforms. Then, these models
will be translated into source code for each target
platform. But like cross-compilers, the translation
between models and native source code is difficult to
achieve, especially, if the solution providers want to
manage any native component. On one hand, UsiXML
(Vellis et al., 2012) and Jelly (Meskens et al., 2010)
allow developers to produce user interface for multiple
mobile platforms. On the other hand, MobiAmodeller
(introduced by Balagtas-Fernandez et al., 2010) and
AppliDE (Quinton et al., 2011), which are integrated
in CAPucine (Parra et al., 2012), allow developers to
produce a complete application and even a context-
aware application. To create context-aware
application, CAPucine designers allow developers to
separate their applications in modules. Some of them
will be integrated in the application during the
transformation whereas the others will be loaded at
execution time according to the context.

Interpreters translate, in real time with a dedicated
engine, a source code to executable instructions.
Developers implement their cross-platform application
and the interpreter manages their execution on many
platforms. In this case, the interpreter developers must
implement a module able to interpret the code for each
target platform. We can identify two categories in the
mobile interpreter domain: Virtual Machines (VMs) and
solutions based on web languages.

The most famous technology based on VM is Java
ME. But, this technology is unpopular and is not used by
mobile developers because the fragmentation of devices
and operating systems is always present and even
emphasized with the multitude of existing JSRs in
which the application development is based. For all
that, many variations based on it exist: J2ME Polish
(http://www.enough.de/) Bedrock
(http://www.metismo.com/) AlcheMo
(http://www.innaworks.com/). They often consist in
porting, such as cross-compilers, a Java ME
application with some extensions on several
platforms. Kramer et al. (2011), the common language
is not Java but a new language dedicated to the mobile
domain: MobDSL. Thereafter, the applications written
with MobDSL would run on a VM.

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2169 Science Publications

JCS

Today, web languages are accessible to everyone,
that's why several solutions based on it have emerged.
Multiple strategies were defined for mobile web
applications. One of them allows uploading, on the
device, of web applications, which can be compared with
mobile websites being able to access the device
hardware. PhoneGap (http://phonegap.com)
QuickConnectFamily
(http://www.quickconnectfamily.org/) Rhodes
(http://www.rhomobile.com/) follow this strategy.
Several of these solutions are presented in Allen et al.
(2010). Another mobile web development branch is
based on widgets (Duarte and Afonso, 2011):
“Small”applications for mobile devices. These widgets
are implemented with web languages and run through a
cross-platform widget engine such as xFace (Jiang et al.,
2010) or Opera (http://dev.opera.com/addons/widgets/).
Pan et al. (2010), the xFace designers introduced a
lightweight engine of widgets running on several
platforms. To port this engine on many platforms, they
define a porting layer, which is the combination of
several components (e.g., file systems, graphics)
common to each platform. This separation facilitate the
mapping between the engine and the target OS. Finally,
there are solutions, which are using the web languages
like any programmatic language in order to allow the
implementation of an application with mobile
specificities. Titanium mobile
(http://www.appcelerator.com) and Flex linked to Flash
builder (http://www.adobe.com/products/flash-
builder.html) are based on this strategy. In the section 6,
we compare our approach with Titanium mobile. This
solution probably provides the most mature framework.
Indeed, when we show the available features, we can
easily think this is the best solution. All these solutions
often allow the use of all hardware features (such as
camera, gps). But, regarding more precisely, the
available features are often limited. For example, it is
often possible to use the camera in order to take pictures
or videos but it is impossible to exploit its stream. This is
a real problem when the developers want to implement a
barcode scanner. Therefore, these solutions do not allow
the implementation of advanced applications.

Finally, several solutions propose to use the cloud as
an application platform (Mikkonen and Taivalsaari,
2013). The main goal is to delegate certain parts of an
application to the cloud. For example, an application that
allows face recognitions will be divided in two parts. The
first one, executed in the device, allows capturing
pictures from the camera stream and the second one will
handle the face recognition in the cloud. Currently, the

real goal of this research domain is to save device energy
in distributing the heavy processes on servers and also to
provide new features to mobile applications (Zhang et
al., 2011). But, these solutions can also facilitate the
development of mobile cross-platform applications.
March et al. (2011) with µCloud, the developers must
divide their mobile applications into many components.
Each component is classified by its location: Cloud,
mobile or hybrid. Then, at runtime, a conductor
orchestrates the application execution. Here, the
components running on the cloud are developed once
and are reused in any mobile application (iOS android,
...). However, this kind of solutions does not work if the
device is disconnected. A possible perspective is to
implement hybrid components with another existing
solution (e.g., javaScript linked with PhoneGap or
Titanium mobile). In this case, the component could
work on the cloud or on any device (iOS android...). If
the connection to the network is good, the component
will run on the cloud, else it will run on the device.

The above solutions cited propose some interesting
directions to consider, however up to now no tool could
respond to all our needs. The most contributions are
limited to most common hardware features for a basic use.
Besides, the user experience provided is not acceptable for
our needs and applications obviously have less interesting
performances than native implementation.

4. COMMON FRAMEWORK

Perchat et al. (2013), we introduced the component
oriented programming for the mobile domain. Our
framework called COMMON for Component Oriented
programming for Mobile Multi OsiNtegration allows the
developers of mobile cross-platform applications to
integrate cross-platform components in any native
mobile application.

With this framework, mobile developers must
implement the minimal structure of their application,
views and navigation between them, with the native
SDK of each target platform. So, mobile developers must
provide the implementation of their applications
structure with the Android SDK, then with the iOS SDK
and all the other target platforms. By implementing the
application structure with native SDKs, we allow mobile
developers to provide the best possible user experience
for their applications for each host platform. Indeed, on
each platform, they will be able to use any graphic
element specific to each native SDK. For example, in
their application, on the iOS version, users will be able to
use a navigation bar to navigate between their views,
whereas, on the Android version, this element will not be

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2170 Science Publications

JCS

necessary because devices have a back button. Instead of
providing a unique user interface for each target
platform, we allow to provide applications that will be
entirely integrated in the host platform.

Mobile developers will integrate cross-platform
components in their applications, thanks to a language
based on annotations. Indeed, we provide a set of cross-
platform components that are application-independent. A
valid component must be reusable in several
applications. Besides, our components are platform-
independent. To do that, we have defined the structure
of our components as shown in Fig. 3. A component
has one implementation per target platform:
Implemented with the iOS SDK, then with the
Android SDK and so on. By providing native
implementations, our components are able to use any
hardware or software element of any platform.
Therefore, our components, graphics or running in
background, will be perfectly integrated in a native
application without altering the host application.

Of course, each component implementation is
hidden to mobile developers. We want to have
platform-independent components. All the
components features are represented in the common
public interface, which is platform-independent. This
interface is written in XML because it is a flexible
enough language that does not depend on any
platform. Finally, a component has a complementary
interface, which is also written in XML. This interface
lists all the component native methods from all
implementations. Therefore, each native method (iOS
android…) will have its XML representation in the
complementary interface. This XML interface is
platform dependent and is hidden to developers. Our
tools mainly use it: Cross-compiler and component
visualization software. Our tools from native
implementations generate the two XML interfaces.

After having defined our components structure, we
provide a common language to integrate them, or rather
to unify their integration. In our solution, the minimal
structure of an application is implemented in native
languages. Therefore we allow the integration of
components directly in the native source codes. To do
that, we provide a language based on annotations. It is
based on annotations because they are flexible enough
to be integrated anywhere in a native source code
written with any language such as Java, Objective-C,.
This common language allows the use of any method
of any component from their common public
interface. The instructions written with this language

are also be platform-independent and thus, are the
same on each target platform as displayed in Fig. 4.
Mobile developers define only once the use of a
method and reuse it in any native application.

Finally, we have defined a cross-compiler that
translates all instructions written with our language to
native language (for Android, iOS,). To achieve that,
the translation process is based on the complement
interface of each component. Indeed, mobile
developers specify the use of a method with our
common language and the complement interface
contains all the methods of a component in XML. This
is a light process with some simple rules. First, our
compiler parses all the complement interfaces of our
components. Then, it parses the developer's project; it
gets all instructions written from our annotations. Of
course, it checks the validity of each instruction (existing
methods, good input parameters...). Thus, if the source
code is correct, the cross-compiler only translates the
XML representation method to a native call with the
parameter defined by mobile developers. Finally, it
replaces our annotation with the native source code.
Therefore, if we want to add a new platform to the
compiler, it is possible to do that very fast (some days).
We present a concrete example in the section 6.

Besides, our cross-compiler are installed on the
mobile developer PC or Mac and our components are
shared as executable files. Under this condition, our
compiler cannot be accessed to component source code
to translate annotations. Thus, we must provide an
alternative to source code, which are the complement
interfaces of each component.

To sum up, a developer of mobile applications,
using our solution, implements the minimal structure
of its applications with the native SDKs of each target
platform. Then, he writes the required instructions to
integrate our cross-platform components or rather to
call their methods. All the instructions written with
our language will be the same for each target
platform. We unify the integration of our components.
Finally, our cross-compiler transforms all annotations
in native languages. At the end of the process, our
framework provides complete native applications for
iOS android and so on.

In this study, we differentiate two kinds of
developers: Mobile developers and component
developers. The first one uses our solution to
implement mobile applications. They will integrate
our components. Whereas, the second one implements
components which will be used by mobile developers.
The mobile developers do not implement components.

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2171 Science Publications

JCS

Fig. 3. Component internal structure

Fig. 4. Component-oriented framework to create cross-platform mobile applications

In the next section, we are going to present our
solution to implement a concrete application. We are
going to focus to component implementation by
component developers and integration by mobile
developers.

5. COMMON FRAMEWORK IN
SITUATION

To validate our solution, we have chosen to
develop a utility application called LocaPlace. This
application is a concrete application with a
professional style and an advanced user experience.
The goal is to provide a deployable application for

mobile users. Thus, we will be able to generalize our
approach for all possible applications.

The user interface and the navigation between views
have been developed in native languages whereas most
of the other features were integrated with our common
language based on annotations. The instructions written
with our language allow the use of six different cross-
platform components. In this section, we present the
Locaplace application, then the required functionalities,
which are provided by our framework. Finally, we
present the integration process of a cross-platform
component, which is representative of our components.

The LocaPlace application consists in two parts
illustrated in Fig. 5. The first one allows users to

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2172 Science Publications

JCS

search for a list of Points Of Interest (POIs) in their
proximity or in the city of their choice. After
discovering the POIs, the application displays them
(name, address) in two alternate views, a list or a map.
Then, users can get more information about each POI
such as phone number, website, reviews, photos.
Users can also find an itinerary from their location to
any POI. The itinerary is displayed either as a list or
on a map. In the second part, the application allows
the decoding of QR-Code. The goal is to get
information contained inside and to display it in the
application. The information contained in the QR-
Code represents a POI (name, address, phone
number). After displaying the information, users can
find an itinerary from their location to the place.

In this application, the developer needs six
application-independent services:

• Auto-completion from an array
• Auto-completion from a database with several

columns selected
• Sending of Http Requests to Google Web Services
• XML Parser for the responses of Google Web

Services
• Getting information about the device such as

location service and network information
• QR-Code Scanner

To make these services available to mobile
developers, we provide a set of components in our
framework. Among them, we have six cross-platform
components that implement the required services.

In the next parts of this section, we focus on
another component: HttpRequestManager. We are
going to present its native, common and complement
interfaces in 5.1. We will only focus on component
developer tasks; this part is hidden to mobile
developers. Then, in 5.2, we will present the
component integration in the application. We will
focus on users of our solution: Mobile developers.
Finally, in section 5.3, we are going to present the
generated code associated to component integration
with our cross-compiler.

5.1. Components

This part concerns only component developers.
Here, we show how a component is implemented for
our solution. This part is entirely hidden to mobile
developers, which use our solution. In the future, we
will provide them with the tools enabling the
implementation of components.

The HttpRequestManager component is
representative of our components and it can be integrated
in almost all applications. It is used to send http requests
to web services. First, we have defined its functions
independently from any platform:

• Send an http request with an asynchronous process.
The results will be returned through a delegate

• Cancel all the requests in progress
• Cancel a specific request

Then, we provided its implementations for Android
and iOS as shown in Fig. 6 and 7. Each native interface
takes the functions and adapts them according to the
target platform. For example, on Android, we do not
have a generic type for an http request. So, we must
duplicate the method sendHttpRequest. The first version
takes as input anHttpGet object and the second one takes
aHttpPost object. Of course, these interfaces are hidden
to mobile developers. We intend to hide the native
source code to simplify and unify the use of components.

After providing the component implementations,
we have generated its common and complement
interfaces as illustrated in Fig. 8 and 9. The
generation process is based on the component native
interfaces and is performed from a third-party
software that we provide.

The common public interface described in Fig. 8 is
entirely platform-independent. We do not consider the
input parameters types, the parameters that are non-
functional. The main goal is to present the general
component features and to focus only on these
features and not on the potential differences between
the target platforms. The common public interface
only contains public component methods. Indeed, our
components can have several internal methods, which
are hidden to users.

Unlike this interface, the complement interface
shown in Fig. 9 is entirely dependent from all supported
target platforms. It gets component native function
signatures presented in Fig. 6 and 7 to translate them
into XML. For example, in Fig. 9, we show the
representation of the “sendHttpRequest” method
signature on Android and iOS in XML. Our compiler, as
presented in section 5.3, uses this interface to translate
annotations in native language.

We have presented here the necessary tasks to
implement and transform a native component into cross-
platform component in our solution. Finally, we provide
to mobile developers an executable file and a common
public interface, which is independent from the platform.
The complement interface is hidden.

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2173 Science Publications

JCS

Fig. 5. LocaPlace application views and navigation

Fig. 6. Native interface on Android

5.2. Integration

This part only concerns mobile developers, which are
using our solution. Indeed, we show how mobile developers
can integrate our components in Android or iOS project.

Fig. 7. Native interface on iOS

To integrate our components, we allow the call of
each component method using a new language based
on annotations from its common public interface.
Among these annotations, there are the “var”
annotation and the “method” annotation. These are
placed before instructions in native language. The first
annotation enables developers to declare the input
parameters of a component method.

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2174 Science Publications

JCS

Fig. 8. HttpRequestManager common public interface

Fig. 9. An HttpRequestManager complement interface part

This annotation will link the variable placed after it
with an input parameter of a component method,
whereas the method annotation enables the call of
component methods. This annotation will link the
method result with the following variable.

To make the integration of components easier, we
provide developers with third-party software, which
describes the different steps to integrate them in a
mobile project. This software takes as input a
component and presents its different features. It
facilitates the understanding of our components

because mobile developers don't need to read the
XML interfaces. Then, the software provides users
with the different annotations that are necessary in
order to call a component method as displayed in Fig.
10. Thus, mobile developers only need to copy the
annotations and paste them into their native source
code (for example, in an Android application). As
shown in Fig. 10, if a developer wants to call the
“sendHttpRequest” method of our
HttpRequestManager component, our software
provides the instructions needed to declare the input

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2175 Science Publications

JCS

parameters (request to send, delegate…) as well as the
instruction used to call the method.

In Fig. 11a, the mobile developer has declared
three variables from “var” annotations: “Context”,
“getRequest” and “myDelegate”. He has linked each
variable to the “sendHttpRequest” method with the
var annotation parameter “methodName”. Then,
mobile developer called “sendHttpRequest” method
from a “method” annotation.

The component integration process will be the same on
any platform. Indeed, the developers will use the same
annotations in an Android or iOS application. There might
be slight changes in the var annotation. According to the
platform, the methods can have more or less parameters.
For example, in the Android interface of our component,
the sendHttpRequest method has a parameter “context”
which does not exist on iOS, see Fig. 6 and 7. In Fig. 12a,
we have used the same annotations in an iOS application.
However, in some cases, we cannot provide a component

for a particular platform. For example, on Android and
Windows Phone 8, it is possible to provide applications that
enable NFC tags capture. On iOS, it is impossible, Apple
doesn’t integrate this technology. In this case, developers
will not be allowed to integrate our annotations for this
component in iOS source codes, our compiler will generate
errors. Of course, as shown in Fig. 10, our tools show
platform list for which each component is compatible.

5.3. Generated Code

After calling the methods of our cross-platform
components with our language, mobile developers can
launch our cross-compiler. It translates all method
annotations found to native languages (Java for
Android, Objective-C for iOS…). The source code
shown in Fig. 11 ais transformed into the code shown
in the Fig. 11b. In this example, our compiler translated
the method annotation, which allows the call to the
method “sendHttpRequest” to native language (Java).

Fig. 10. Steps to follow in order to call the sendHttpRequest method

 (a) (b)

Fig. 11. (a) Necessary annotations to call (b) Generated code to call the sendHttpRequest thesendHttpRequest method on Android.

method with native language on Android (Java)

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2176 Science Publications

JCS

Fig. 12. (a) Necessary annotations to call (b) Generated code to call the sendHttpRequest thesendHttpRequest method on iOS.

method with native language on iOS (Objective-C)

First, it inserted the declaration of the component
and it initialized it. In this example, the component is a
singleton, so, the initialization method is
“getSharedInstance”. Then, the compiler inserted the
method call “sendHttpGetRequest” from the variable
previously declared. Finally, it filled in the input
parameters from the var annotations declarations.

Today our compiler is implemented in order to
translate annotations in Java language for Android.
The transformation for iOS application is not
implemented yet but we are able to extrapolate the
same process on iOS. In Fig. 12a, we show the
necessary source code in objective-C and annotations
to call the “sendHttpRequest” method. In Fig. 12b, we
have added the source code, which will be generated
by our compiler.

6. RESULTS

Before beginning the COMMON implementation for
several platforms, we wanted to calculate the potential
additional cost on applications using our solution
(limitation, performance, memory consumption…). To
do that, we have chosen Android because Android uses a
virtual machine to execute applications: Dalvik. We
wanted to ensure us that Dalvik will be able to support
the loading and execution of several components.

We have developed the LocaPlace application for
Android under three different ways. The first
implementation has been developed entirely in Java with
the Android SDK. The second one has been implemented
with our framework and the Android SDK. This version
was presented in the previous section. The third
implementation has been realized with Titanium mobile.

We have chosen Titanium mobile to implement the third
version because this solution seems representative of mobile
web-applications (Hashimi et al., 2010; Allen et al., 2010)
and it is the most mature solution in the market. With
Titanium mobile, the application developers write their
entire application in JavaScript. Then, the applications are
embedded on the phone with an engine, which is able
to interpret JavaScript and the Titanium APIs. By
choosing Titanium mobile, we can compare our
solution with web-applications. However, the Titanium
mobile version is not reliable. Depending on the device
on which the application is deployed, the application
can stop its execution on certain views in a random
way. Analysing the logs, bugs are not coming from the
provided application but from Titanium SDK itself.
Today, such application cannot be subject to a
widespread deployement for the general public.

In the next subsections, we have first calculated the
lines of code saved using our approach, compared to the
native application. Secondly, we have compared the
performances regarding the three versions of LocaPlace.
Results will be discussed in section 7.

6.1. Lines of Code Saved

We have compared the number of lines of code
written in the native version and in the version with
our framework, see Table 2. For this evaluation, we
do not consider the Titanium mobile version because
it is unusable. We are not able to determine the
number of lines of code that need to be written to
make it usable. To calculate the line numbers of each
application version, we have used the “metrics” plugin
installed in eclipse (Metrics plugin website:
http://metrics.sourceforge.ne).

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2177 Science Publications

JCS

Table 2. Lines of code written for each application
Application version Lines of code Saved
100% native 6932
Application with components 5004 1928 (28%)

Using our approach, the developer writes two
thousand lines of code less than by using the native
SDK. Besides, the parts, which are not implemented, are
often the most complex ones (parsing, scanning, sending
of http request…). With our approach, the developer
only needs to implement the application views and the
navigation between them.

6.2. Performances

Even if the application Titanium mobile version is
not marketable, we are able to compare the
performance of several services between the three
versions. The compared tasks can be implemented in
many applications and not just in our application.
Therefore, this comparison can be considered as
application-independent. However, it is mandatory to
evaluate our approach from a real application and not
just from a “test” or “basic” application because a real
application uses more resources than a “test”
application (images loaded in memory, cache.).

As shown in Fig. 13, we have measured the
execution time of certain tasks implemented in the
Locaplace application. For each task, we have
measured the execution time (ms) one hundred times.
Then, for each task, we have calculated the average
between results. We have gotten these results on the
Samsung Galaxy Nexus i9250. This phone was
released in 2011, it is equipped with a Dual-core 1.2
GHz Cortex-A9, it has 1 GB of RAM and a screen of
4.65 inches. The installed Android version on the
device is Jelly Bean (4.2.2, API 17).

During our evaluation, we have compared the
weight of each application version on the device. As
shown in Table 3, the version with our approach has
the same weight as the native version. The Titanium
mobile version is 2.3 times heavier than the native
version. The Titanium mobile engine, which interprets
the web-application, weights around 10 MB.

Finally, in Fig. 14, we have compared the memory
consumption (RAM). For each task, we have
measured the used RAM before and after their
execution. The used RAM is the addition of the used
RAM for the OS, then for the other applications in
execution and finally for our application. To get these
measures from the native version and the one
implemented with COMMON, we have used the
standard APIs provided by Android SDK. In the same

way, for the Titanium mobile version, we have used
the APIs provided by Titanium mobile SDK.

7. DISCUSSION

Before any commentsabout the performances
evaluation, we will discuss the feasibility of LocaPlaceusing
the three tools, especially in terms of user interface and user
experience. Then we will comment the lines of code saved
and analyse the performances.

7.1. Feasibility

Of course, we succeeded in implementing the
complete application with the native SDK. It also was a
success with our framework. Indeed, we allow the native
SDK use for the user interface implementation. Thus, the
developer can use any native graphic element.

With Titanium mobile, the implementation is
laborious. Indeed, the Titanium mobile SDK does not
provide all the existing graphical elements available
on Android (or other platforms). Thus, we cannot
provide the same user interface and user experience
defined in the LocaPlace application specifications.
Moreover, it is impossible to put the graphical
elements anywhere in a view. We must place each
element with pixel precision. This is really
problematic for Android devices because there are
different screen sizes. In order to hide this
heterogeneity, the Android SDK provides an
automatic mechanism to create dynamic views
without fixed size. The developers do not need to
calculate the position of each graphical element, for
example they can use a RelativeLayout, which allows
the graphical element positioning according to others.
With the Titanium mobile SDK, this mechanism does
not exist. Another issue is related to the dynamical
views of an application (some elements are hidden
whereas other ones appear). In the Titanium mobile
SDK, this situation is not really considered.
Therefore, when the views change their states, the
application freezes.

With our approach, developers do not face any
limitation when implementing an Android application
and the generated applications will be reliable and
professional quality. They will be able to use any
graphical or hardware elementaccessible through the
Android SDK. On the contrary, with Titanium mobile,
developers will have to adapt their applications
according to the existing elements inside the Titanium
mobile SDK.

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2178 Science Publications

JCS

Fig. 13. Average execution times of some LocaPlace applications tasks

Fig. 14. Used RAM for each LocaPlace application version after several tasks execution

Table 3. Weight of each application version
Application version Weight
100% native 8.49 MB
Application with component 8.62 MB
Application with Titanium mobile 19.43 MB

7.2. Lines of Code Saved

As shown in Table 2, with our solution, LocaPlace
developers saved 28% of lines of code compared to native
version. However, we have written more than four thousand
lines of code to provide the required components for this
application, Table 4. This is a classic analysis in the
component-oriented programming. Our components must
be generic to be integrated in any application. This
adaptability has a cost especially in number of lines of code.
Besides, components often provide more functions than the
ones required in the LocaPlace application.

The second time that our components will be
integrated into a similar application, we can assume that
the developers will, once again, save two thousand lines
of code. At that moment, the number of lines written for
the components will be the same as the number of lines
saved by developers. Starting from the third integration,
our solution will become profitable.

Table 4. Lines of code written for each Android version of
our components

Component (Android version) Lines of code
Auto-completion 1044
City auto-completion 325
DeviceInfoManager 320
HttpRequestManager 782
GoogleWSParser 1773
Total 4244

7.3. Performances Analysis

As shown in Fig. 13, for almost every evaluated task,
the application implemented with our approach provides
the same (or almost the same) execution time as the
native version. For example, for the sending of http
requests, with our approach, the application takes 1.28
ms whereas with the native SDK, the application takes
1.27 ms. The time difference is negligible. Therefore,
with our approach, we can consider that the generated
application will have the same performance as a native
one. The calls of methods through our cross-platform
components do not take more time than native calls.

Moreover, for all the evaluated tasks, our approach
provides better results than the application implemented
with Titanium mobile.

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2179 Science Publications

JCS

Table 5. Some differences between web-apps solutions and COMMON framework
Solutions Performance Resources consumption User interface Reliability General limitation
COMMON framework As native As native No limitation As native No limitations
Web-apps solutions Less efficient More consumption limited to common Not reliable Limited to common elements
(Titanium mobile) elements

In the best case, Titanium mobile is 1.15 times less

efficient than our approach (city auto-completion).
This good coefficient is due to the low-level of the
task. Indeed, in this task, we executed sql requests to
sqlite database. We can think that Titanium mobile
delegates these actions to the native SDK. In these
conditions, we can consider that it is a similar
approach with ours and therefore, the solution is able
to provide good results. Unlike the low-level tasks,
the others are much slower. In the worst case,
Titanium mobile is 11.22 times less efficient than our
approach (itinerary computation). Here, the process is
entirely executed from JavaScript source code. This
means that the execution of a web language (like
JavaScript) has an additional cost that is not
insignificant. PhoneGap, another popular web-based
solution, provides the same ratio in terms of execution
time as Titanium mobile (Corral et al., 2012).

Finally, as shown in Fig. 14, with our approach,
the application uses the same ratio of RAM as the
native version (to around 70% until 80%). The loading
of components (jar files) has no influence on the RAM
consumption. Whereas, with the Titanium mobile
version, the application uses all the time to 95% until
99% of the available RAM on the device. This
consumption may have a cost in energy consumption
and probably the application often stops its execution
because it has no more available RAM.

Nowadays, we can read many discussions about
Web-apps versus native applications (Mikkonen and
Taivalsaari, 2013; Corral et al., 2011; Charland and
Leroux, 2011). But as shown with the results, Table 5,
we can conclude that the use of web languages to
implement mobile application has a non-negligible cost
in terms of performances and consumes more RAM than
our application. This supports our decision to keep our
solution tied to native code.

8. CONCLUSION

The development of mobile cross-platform
applications is very hard to accomplish due to the OS
heterogeneity. Indeed, mobile developers must
provide one version per target platform. Each version
will be implemented with different standards,

programming languages. These differences have a
significant cost for the developer. That's why, in this
study, we propose a new approach which soften the
differences between each OS. Our framework, called
COMMON for Component Oriented programming for
Mobile Multi OsiNtegration, allows developers of
mobile cross-platform applications to integrate cross-
platform components, with platform-independent a
language, in any native application.

COMMON is based on a set of cross-platform
components. Components have one implementation per
target platform. Each one is implemented in native
language to allow the use of any native software or
hardware element. In order to hide the differences
between each implementation, we have defined a
common public interface written in XML. This interface
is entirely platform-independent. Then, to unify the
integration of our component, we have defined a new
language based on annotations. This language is also
platform-independent because it is based on the common
public interface of our components. Finally, we have
designed a cross-compiler, which translates the
instructions written with our language to native code.
The generated applications only contain native code.

In this study, we have evaluated our framework on
Android. To do that, we have developed the same
application with the native SDK and with our
framework. In term of development tasks, the
developer has saved 28% of code lines for our sample
application. The evaluation has also shown results
closed to native application. Indeed, our solution
provides execution times similar to native applications.
We observe the same result in term of used RAM, or
application weight. We can conclude that our solution
does not bring an additional cost to mobile applications.
Furthermore, we have also compared our approach with
Titanium mobile. We obtained better results than
Titanium mobile on all evaluation criterias and
especially, we do not limit the use of native elements
(software or hardware) contrary to Titanium mobile.

Using our solution, developers can implement the
user interface and its behaviour in native languages. This
flexibility allows them to implement any application
withoutany limitations. However, this part of source
code is very important in an application (around 50%).

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2180 Science Publications

JCS

This process could be replaced by a solution based on
model-driven engineering. Today, most of these
solutions only allow the generation of user interface. By
coupling this kind of solutions with COMMON,
developers will be able to generate an application,
writing a minimum amount of code.

In our future works, we will provide an
implementation of COMMON allowing the integration
of components from iOS and Windows 8 native source
code. The main goal is to evaluate our approach on
several platforms. We also want to assist the component
developers. Today, the component providers in our
solution must implement each component for each
platform. In the future, we want to generate the structure
of components and even generate one implementation
from another one. For example, we will be able to
generate an iOS implementation from an Android
implementation. However, the translation must not impact
the possibilities offered by each platform such as the
existing solutions. Finally, we want to help implementing
cross-platform context-aware applications using our
previous works on the context (Popovici et al., 2011).

9. ACKNOWLEDGEMENT

The present research work has been supported
Keyneosoft. The authors gratefully acknowledge the
support of this company.

10. REFERENCES

Allen, S., V. Graupera and L. Lundrigan, 2010. Pro
Smartphone Cross-Platform Development: iPhone,
Blackberry, Windows Mobile and Android
Development and Distribution. 1st Edn., Apress,
New York, ISBN-10: 1430228687. pp: 288.

Balagtas-Fernandez, F., M. Tafelmayer and H.
Hussmann, 2010. Mobia Modeler: Easing the
creation process of mobile applications for non-
technical users. Proceedings of the 15th international
conference on Intelligent user interfaces, Feb. 07-10,
ACM New York, pp: 269-272. DOI:
10.1145/1719970.1720008

Charland, A. and B. Leroux, 2011. Mobile application
development: Web Vs. native. Commun. ACM, 54:
49-53. DOI: 10.1145/1941487.1941504

Corral, L., A. Sillitti and G. Succi, 2012. Mobile
multiplatform development: An experiment for
performance analysis. Procedia Comput. Sci., 10:
736-743. DOI: 10.1016/j.procs.2012.06.094

Corral, L., A. Sillitti, G. Succi, A. Garibbo and P.
Ramella, 2011. Evolution of mobile software
development from platform-specific to web-based
multiplatform paradigm. Proceedings of the 10th
SIGPLAN Symposium on New Ideas, New
Paradigms and Reflections on Programming and
Software, Oct, 22-27, New York, pp: 181-183.
DOI: 10.1145/2048237.2157457

Duarte, C. and A.P. Afonso, 2011. Developing once,
deploying everywhere: A case study using jil.
Procedia Comput. Sci., 5: 641-644. DOI:
10.1016/j.procs.2011.07.083

Hall, R., K. Pauls and S. McCulloch, 2011. OSGi in
Action: Creating Modular Applications in Java.
1st Edn., Manning Publications Company,
Greenwich, ISBN-10: 1933988916, pp: 548.

Hashimi, S., S. Komatineni and D. MacLean, 2010.
Titanium Mobile: A Webkit-Based Approach to
Android Development. In: Pro Android 2,
Hashimi, S.Y., S. Komatineni and D. MacLean
(Eds.)., Apress, ISBN: 1430226595, pp: 627-660.

Jiang, F., Z. Feng and L. Luo, 2010. Xface: A
lightweight web application engine on multiple
mobile platforms. Proceedings of the IEEE 10th
IEEE International Conference on Computer and
Information Technology, Jun. 29-Jul. 1, IEEE
Xplore Press, Bradford, pp: 2055-2060. DOI:
10.1109/CIT.2010.349

Kramer, D., T. Clark and S. Oussena, 2011. Platform
independent, higher-order, statically checked
mobile applications. Int. J. Design, Analysis
Tools Circuits Syst.

March, V., Y. Gu, E. Leonardi, G. Goh and M.
Kirchberg et al., 2011. Μcloud: Towards a new
paradigm of rich mobile applications. Procedia
Comput. Sci., 5: 618-624. DOI:
10.1016/j.procs.2011.07.080

Meskens, J., K. Luyten and K. Coninx, 2010. Jelly: A
multi-device design environment for managing
consistency across devices. Proceedings of the
International Conference on Advanced Visual
Interfaces, May 26-28, New York, pp: 289-296.
DOI: 10.1145/1842993.1843044

Mikkonen, T. and A. Taivalsaari, 2013. Cloud
computing and its impact on mobile software
development: Two roads diverged. J. Syst.
Software, 86: 2318-2320. DOI:
10.1016/j.jss.2013.01.063

Joachim Perchat et al. / Journal of Computer Science 10 (11): 2165.2181, 2014

2181 Science Publications

JCS

Pan, B., K. Xiao and L. Luo, 2010. Component-based
mobile web application of cross-platform. Proceeding
of the IEEE 10th International Conference on
Computer and Information Technology, Jun. 29-Jul.
1, IEEE Xplore Press, Bradford, pp: 2072-2077. DOI:
10.1109/CIT.2010.352

Parra, C.A., C. Quinton and L. Duchien, 2012. CAPucine:
Context-aware service-oriented product line for mobile
apps. ERCIM News, 88: 38-39.

Perchat, J., M. Desertot and S. Lecomte, 2013.
Component based framework to create mobile cross-
platform applications. Procedia Comput. Sci., 19:
1004-1011. DOI: 10.1016/j.procs.2013.06.140

Popovici, D., M. Desertot, S. Lecomte and N. Peon,
2011. Context-aware transportation services (cats)
framework for mobile environments. Int. J. Next-
Generat. Comput.

Puder, A. and I. Yoon, 2010. Smartphone cross-
compilation framework for multiplayer online
games. Proceeding of the Second International
Conference on Mobile, Hybrid and On-Line
Learning, Feb. 10-16, IEEE Xplore Press, Saint
Maarten, pp: 87-92. DOI: 10.1109/eLmL.2010.13

Quinton, C., S. Mosser, C. Parra and L. Duchien,
2011. Using multiple feature models to design
applications for mobile phone. Proceeding of the
15th International Software Product Line
Conference, Aug. 22-26, New York. DOI:
10.1145/2019136.2019162

Vellis, G., D. Kotsalis, D. Akoumianakis and J.
Vanderdonckt, 2012. Model-based engineering of
multi-platform, synchronous and collaborative
UIs-extending UsiXML for polymorphic user
interface specification. Proceeding of the 16th
Panhellenic Conference on Informatics, Oct. 5-7,
IEEE Xplore Press, Piraeus, pp: 339-344. DOI:
10.1109/PCi.2012.27

Zhang, X., A. Kunjithapatham, S. Jeong and S. Gibbs,
2011. Towards an elastic application model for
augmenting the computing capabilities of mobile
devices with cloud computing. Mobile Netw.
Applic., 16: 270-284. DOI: 10.1007/s11036-011-
0305-7

