N

N

COMMON FRAMEWORK: A HYBRID APPROACH
TO INTEGRATE CROSS-PLATFORM
COMPONENTS IN MOBILE APPLICATION

Joachim Perchat, Mikael Desertot, Sylvain Lecomte

» To cite this version:

Joachim Perchat, Mikael Desertot, Sylvain Lecomte. COMMON FRAMEWORK: A HYBRID AP-
PROACH TO INTEGRATE CROSS-PLATFORM COMPONENTS IN MOBILE APPLICATION.
Journal of Computer Science, 2014, 10 (11), pp.2165-2181. 10.3844/jcssp.2014.2165.2181 . hal-
03578333

HAL Id: hal-03578333
https://uphf.hal.science/hal-03578333

Submitted on 4 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://uphf.hal.science/hal-03578333
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Journal of Computer Science 10 (11): 2165-2181, 2014

ISSN: 1549-3636

© 2014 J. Perchat al., This open access article is distributed undéremative Commons Attribution
(CC-BY) 3.0 license

doi:10.3844/jcssp.2014.2165.2181 Published Onlih€ll) 2014 (http://www.thescipub.com/jcs.toc

COMMON FRAMEWORK: A HYBRID APPROACH TO
INTEGRATE CROSS-PLATFORM COMPONENTSIN MOBILE
APPLICATION

230achim Perchat, “Mikael Desertot and ?Sylvain L ecomte

'Keyneosoft, 31 Rue De La Fonderie, 59200 Tourcdingnce
2Univ Lille Nord de France, F-59000 Lille, Francey”dC, HAMIH,
F-59313 Valenciennes, France CNRS, UMR 8201, F-582lé&nciennes, France

Received 2014-04-06; Revised 2014-04-07; Accepted-B7i22
ABSTRACT

There is a multitude of mobile OS: iOS android, Wiws Phone 8 and each OS provides its own standards
and tools. This heterogeneity in the mobile donfaices developers to implement an application &uhe
mobile platform. To achieve that, developers neechaster several languages (Java, Objective-C..6y Th
also need to have several devices at their disp(@@l Mac, many smartphones ...). Then, after
applications distributions, developers have to ma@inseveral source codes. In this study, we tathie
problematic. Our goal is to soften the differenbesveen each OS in order to simplify the develogrén
cross-platform third-party applications. To achiglat, we have defined a framework called COMMON
(Component Oriented programming for Mobile Multi iRgration). This framework allows the
integration of cross-platform components in anyligpgion (iOS android). To run our components oy an
OS, we provide an implementation for each platfoHowever, to make their integrations easier, we als
provide a common public interface of each companehich is platform-independent. Besides, we previd
a common language, also platform-independent, &liguwhe integration and use of any component in any
native application (iOS android). This languagdased on annotations. Finally, we have implemeated
cross-compiler, which translates the source codigenwrwith our language to native source code: €tbje-

C for i0S, Java for Android,... In this study, we kashown that our solution offers performance and
memory consumption closed to native applicatiomsalfy, with COMMON, mobile developers implement
less lines of source code than with a native apfitia. In your test application, we have saved 30%.

Keywords: Cross-Platform, Components, Common Language, Coerolmtegration, Cross-Compiler,
Hybrid Application

1. INTRODUCTION App-Store-Marks-Historic-50-Billionth-Download.html
(iOS store) and more than 25 billion from Googlaypl
With the success of smartphones and their apmicati (Android official blog, September 2012:
stores, many companies and individual developeve ha http://officialandroid.blogspot.fr/2012/09/googléap-
chosen to implement mobile applications. Indeed, hits-25-billion-downloads.html) (Android store). Wiall
smartphones are more and more powerful and their OShese new applications available through the difier
support more and more new features and particutbdy = markets, the usages of this kind of phones havegdth
ability of installing third-party applications. B013, more ~ Smartphones are not only used to call or send SMS b
than 50 billion third-party applications were dowatled also to connect to the Internet, to get pointsniériest
from the App Store (Apple press info, May 2013: according to the user's location, to play video gam
http://www.apple.com/pr/library/2013/05/16Apples- the subway, to read a book on the beach, to share
Corresponding Author: Joachim Perchat, Keyneosoft, 31 Rue De La Fonde9200 Tourcoing, France

///// Science Publications 2165 JCS

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

pictures via Facebook and many other things. Wigs¢ implementations are hidden to developers. Onlyrancon

new usages, the user's mobility has opened newnterface written in XML is visible. This interfaces
perspectives in the mobile research. Now, the dpezs platform-independent and represents the component
must implement context-aware applications in orer features. To integrate our components, we introdute
provide the best possible user experience. intermediate language based on annotations thavsall

In our previous works (Popoviet al., 2011), we have components integration in any application impleredrin
designed the CATS for Context-Aware Transportation native language from common interfaces. The inttmg
Services framework, which helps the implementatibn written with our language are common to any target
context-aware applications. This kind of applicasio platform. Finally, a cross-compiler translates tbede
adapts their behaviors according to the user'sgbritor written with our language to native language. A& #nd,
example, with the same application, if a user sidie his our tools provide a complete native application.
car in a town, the application could launch a paglspace Up to now, we have presented and published the
search service. Whereas, if the user is a pedesttia concepts of this new approach and we remind them in
application could launch a point of interest seaetvice. section 4. For this study, we have implemented and
Of course, the application detects itself the cxnte tested our proposal in order to entirely create an
changes and adapts its behavior without restarfdt. application, like presented in section 5. We also
achieve that, the application is divided betweeverse evaluated our prototype by comparing three appresich
context-aware components. Then, the componentsbeill Developing an application only with the Android SPK
loaded at runtime in the application accordingni® tiser's then using our approach and finally with Titanium
context. We have implemented this framework, uSSgsi mobile. We focused on the application feasibilitithw
(Hall et al., 2011), for Android but it is impossible to egsil our approach and Titanium mobile and we compared th
port this version on other mobile operating systems performances of each application version.

Ideally, CATS and more generally mobile This study is structured as follows: Section 2 show
applications must be available at least on iOS andthe smartphone market with its problems, section 3
Android. These are the two most popular platforms f presents the existing solutions to implement cross-
smartphones: 93% of the market (IDC Worldwide platform applications, section 4 and 5 explain our
Quarterly Mobile Phone Tracker, May 2013: proposal and its use for implementing an applicata
http://www.idc.com/getdoc.jsp?containerld=pruS24108 Android. Section 6 and 7 show the evaluation of our
913). But, the development of cross-platform proposal and the discussion about it. In sectiom®,
applications is very hard to carry through to acessful ~ conclude and present our perspectives.
conclusion. Cross-platform applications means that

applications are able to run on several platfornt are 2. SMARTPHONES MARKET
implemented entirely or in part from the same seurc) . .
code. The major problem is due to the heterogerity The mobile market is divided between many

mobile operating systems. A developer who wants toSmartphones manufacturers, the main ones beingeAppl
implement a cross-platform application must provade Samsung, LG or HTC. Each one provides theirs
significant effort. He must use several programming Smartphones with a different mobile OS. Among these
languages (Objective-C, Java,), IDEs (Xcode, Eelips OS. there are iOS from Apple android from Open

android studio,), memory management systems (garbagHandset Alliance (from a Google initiative), Windsw
collector, reference counting,). Furthermore, the Phone from Microsoft ... With th€able 1, we give rise

maintenance of several source codes is also difficu to some of the points which differ when a developer
In this study, we tackle the problematic of molsi& implements an application on several mobile platfor
heterogeneity. Our goal is to soften the differertmetween. 2 1. Current Situation
smartphones and more generally between devices
running a mobile OS (e.g., tablets) in order todifg Each platform uses different tools, programming
the development of cross-platform third-party languages, user interface declarations and memory
applications. To do that, we have introduced the management. If a developer wants to create an
component oriented programming in the mobile application that works on all platforms, he shoblay
development domain (Perchett al., 2013). Our tools one PC with Windows 8 and one Mac. Then, he will
and components are integrated in the Componenht®de have to follow different trainings, one per platfor
programming for Mobile Multi OsiNtegration (COMMON) Finally, he will have to buy at least one phone dach
framework. Our cross-platform components have ankind of platform and sometimes even multiple phoiioes
implementation per platform. Of course, all these one platform, the same as in the case of Android.

///// Science Publications 2166 JCS

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

Table 1. Some differences between several mobile operatistgms

Operating Virtual Programmi- User Memory Develamn

system machine nglanguage interface management IDE on: Devices

i0S No Objective-C CocoaTouch Reference counting odéc Mac OS X Homogenous
Android Dalvik VM Java XML files Garbagecollector clipse Multi-platform Heterogenous
Windows Phone 8 CLR C# and VB.Net XAML files Garbagllector Visual studio Windows 8 Homogenous

Design and implementation steps are the two clitica - (void)alertView: (UIAlertView x)alertView
phases to create a cross-platform application. ddgde clickedButtonAtIndex: (NSInteger)buttonIndex {

even if an application must run the same functions } exit(0);
every platform, it is impossible to design it orased run . _
it everywhere. Depending on the host, the appbeati ~ ~(IBAction)closeApp: (id)sender {

UIAlertView *alertView = [[UIAlertView alloc]

behaviors can be different too. initWithTitle:@"Information"

To demonstrate the importance of these two steps, message:@"The application will be closed"
: ; ; ; delegate:self
we ha_ve de_velope_d a basic a_ppl|c_at|on for |O$ and cancelButtonTitle:@" ok"
Android. This application consists in only one view otherButtonTitles:nill;
On this view, we have added a button “close the [alertView show];

application”. When the user clicks on this buttdme
application displays a popup that contains the agss
“The application will be closed” and a button “OK”".
When the user clicks on the button “OK” the

Fig. 1. Popup creation on iOS

closeButton=(Button)this.findViewById(R.id.closeButton);

application is closed. closeButton.setOnClickListener(new OnClickListener() {
We have analysed the source code and found ééviﬁifﬁiy a popup

multiple differences. First, the source code is public void onClick(View v) {

|mp|emented |n two dlfferent development Builder builder = new Builder(MainActivity.this);
. . de f . d l f droid builder.setMessage("The applicaton will be closed");

environments: Xco e for i0S an _Ec ipse for An_ roi /7 when a user clicks on the ok button

Second, the user interface is implemented in two builder.setPositiveButton("ok",

different manners. In iOS, we use interface Builder new Dialoginterface.OnClicklistener® {

This editor allows us to choose the graphical eleme public void onClick(DialogInterface dialog,

and to drag and drop them on a view. Whereas on) it e 1?nttwhich> {

. . . . qui e application

Android, we define the user interface from XML 8le MainActivity.this.finish();

It is also possible to use the same process a®6n i }

(drag and drop) with the graphical layout propobgd N B

eclipse but developers rarely use this tool. Indéteid D

easier to implement the views in XML than with the
graphical layout because this tool does not prodde Fig. 2. Popup creation on android
simple mechanism to take into account the screen

heterogeneity of the Android devices. Third, the
languages to implement the application behavioves a
different: Objective-C for iOS and Java for Andraid

With this basic example, we have found five
differences when implementing the same application

shown inFig. 1 and 2. Fourth, the links between the on 10S andh Android. (?df coursfe, tthe comgletxny t
source code and the user interface are different fo '"Cr€asés when you a new features an arge

each platform. For example, to link an action te th pIatforms._The differences are not on!y locatedhat
button “close the application”, on iOS, we must use Programming language level but also in the maniier o
Interface Builder and link an IBAction on the “pses thinking. Indeed, the developers will have to chang
button” event whereas on Android, we must get antheir manner of thinking according to the target
element reference from the XML file and then add a Platform. For example: There are delegates for iOS
listener to it. Fifth, when we want to create a pppn and listeners for Android. These changes are really
iOS, we must provide a delegate to the popup ireord difficult to grasp for the developers during the
to get the click events on its buttons. Whereas, onimplementation process. Therefore, we want to hide
Android, we must set a listener on each popup butto the notions that are different between target ptats.

///// Science Publications 2167 JCS

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

2.2. Requirements based on a usual mobile SDK (e.g. android SDK & iO
. . SDK). In this principle, XMLVM (Puder and Yoon,
~ Developers need a unified way to design, 10 7010) enables the implementation of an applicafin
implement and/or to run a third-party applicatiom 0 Angroid, iOS and Palm Pre from Android source code.
all available platforms, which allows them to use One other part of existing solutions is based on
every component, software or hardware, on each hostmodel-driven engineering. With these kinds of sohs,
The unification does not mean that we want to e developers can define theirs applications from rtede
specificity of each platform. once for several target platforms. Then, these isode
The applications generated with such solution mustwill be translated into source code for each target
be efficient. The success of an application isrofiee platform. But like cross-compilers, the translation
to its reactivity and its appealing design. At deme between models and native source code is diffitalt
level, if the solution must be installed with the achieve, especially, if the solution providers waot
generated application on the smartphone (e.g.uafirt manage any native component. On one hand, UsiXML
machine), it must be lightweight because smartphone (Vellis et al., 2012) and Jelly (Meskeret al., 2010)
have limited resources. allow developers to produce user interface for ipldt

Finally, this solution needs to be easily adaptable Mobile platforms. On the other hand, MobiAmodeller
Indeed, the mobile domain can evolve. For example,(introduced by Balagtas-Fernandezal., 2010) and
in a couple of years, Apple iOS might not be présen AppllDE (_Qumtonet al., 2011), which are integrated
anymore and a new participant might take its place." CAPucine (Parr@t al., 2012), allow developers to
So, the possibility of adding extensions must be

produce a complete application and even a context-
considered in order to manage new platforms easily.

aware application. To create context-aware
In the best case, as soon as a new platform contes o application, CAPucine designers allow developers to
our proposal must be able to integrate it without

separate their applications in modules. Some afthe
modifying its internal architecture.

will be integrated in the application during the
: _ ._.._transformation whereas the others will be loaded at

In_ the next section, we have studied the_ existing oy acution time according to the context.
solutions that allow the development of mobile sros Interpreters translate, in real time with a dedidat

platform applications. engine, a source code to executable instructions.
Developers implement their cross-platform applmati
3. RELATED WORK and the interpreter manages their execution on many

)))) platforms. In this case, the interpreter developatst

The solutions which enable the implementation of implement a module able to interpret the code frhe
cross-platform applications, can be classified aurf target platform. We can identify two categoriestfie
categories: Cross-compilers, solutions based onemod mobile interpreter domain: Virtual Machines (VMs)ca
driven engineering, source code interpreters anallgi solutions based on web languages.
the solution which allows to run certain parts of a The most famous technology based on VM is Java
application on the cloud. ME. But, this technology is unpopular and is natdiby

The solutions based on cross-compilers enable themobile developers because the fragmentation ofcdevi
developers to write their applications from a commo and operating systems is always present and even
language for each target platform. Then, they gerer emphasized with the multitude of existing JSRs in
the associated native code for each of them (iOSwhich the application development is based. For all
android...). In this case, the reused code is cet@mgut that, many variations based on it exist: J2ME Polis
the mapping between all the common language ARlIs an (http://www.enough.de/) Bedrock
all the native target language APIs is very difficio (http://www.metismo.com/) AlcheMo
achieve. That's why, in most cases, cross-compilels (http://www.innaworks.com/). They often consist in
manage few platforms and are limited to common porting, such as cross-compilers, a Java ME
elements from each platform. This is the case ofapplication with some extensions on several
MoSync, (http://www.mosync.com/) Corona platforms. Kramekt al. (2011), the common language
(http://www.anscamobile.com/) and Neomades is not Java but a new language dedicated to thdlenob
(http://Ineomades.com/). This limitation is even enor domain: MobDSL. Thereafter, the applications writte
present when the common development language isvith MobDSL would run on a VM.

///// Science Publications 2168 JCS

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

Today, web languages are accessible to everyonereal goal of this research domain is to save demagy

that's why several solutions based on it have esderg
Multiple strategies were defined for mobile web

in distributing the heavy processes on serversadswlto
provide new features to mobile applications (Zhatg

applications. One of them allows uploading, on theal., 2011). But, these solutions can also facilitdie

device, of web applications, which can be compavit

development of mobile cross-platform applications.

mobile websites being able to access the deviceMarch et al. (2011) with uCloud, the developers must

hardware. PhoneGap
QuickConnectFamily
(http://'www.quickconnectfamily.org/) Rhodes
(http://www.rhomobile.com/) follow this strategy.
Several of these solutions are presented in Adteal.

(http://phonegap.com) divide their mobile applications into many compatsen

Each component is classified by its location: Cloud
mobile or hybrid. Then, at runtime, a conductor
orchestrates the application execution. Here, the
components running on the cloud are developed once

(2010). Another mobile web development branch isand are reused in any mobile application (iOS addro

based on widgets (Duarte and Afonso,

2011): ---). However, this kind of solutions does not wdrkhe

“Small"applications for mobile devices. These witge device is disconnected. A possible perspectiveois t

are implemented with web languages and run thraugh
cross-platform widget engine such as xFace (Jahad,
2010) or Opera (http://dev.opera.com/addons/widpets

implement hybrid components with another existing
solution (e.g., javaScript linked with PhoneGap or
Titanium mobile). In this case, the component could

Pan et al. (2010), the xFace designers introduced aWork on the cloud or on any device (i0S androidif.)
lightweight engine of widgets running on several the connection to the network is good, the compbnen

platforms. To port this engine on many platfornieeyt

define a porting layer, which is the combination of
graphics)

several components (e.g., file systems,
common to each platform. This separation facilitidue
mapping between the engine and the target OS.I¥inal
there are solutions, which are using the web laggsia
like any programmatic language in order to allow th
implementation of an application with mobile
specificities. Titanium mobile
(http://www.appcelerator.com) and Flex linked ta$H
builder (http://www.adobe.com/products/flash-
builder.html) are based on this strategy. In tretiee 6,

will run on the cloud, else it will run on the deei

The above solutions cited propose some interesting
directions to consider, however up to now no tamlld
respond to all our needs. The most contributiors ar
limited to most common hardware features for adase.
Besides, the user experience provided is not aaiolepfor
our needs and applications obviously have lessestiag
performances than native implementation.

4. COMMON FRAMEWORK

Perchatet al. (2013), we introduced the component
oriented programming for the mobile domain. Our

we compare our approach with Titanium mobile. This framework called COMMON for Component Oriented

solution probably provides the most mature framdwor

programming for Mobile Multi OsiNtegration allowke

Indeed, when we show the available features, we cardevelopers of mobile cross-platform applications to

easily think this is the best solution. All thessusions
often allow the use of all hardware features (sash
camera, gps). But, regarding more precisely,
available features are often limited. For examjdlaés
often possible to use the camera in order to taktenes
or videos but it is impossible to exploit its stredr his is
a real problem when the developers want to impléraen
barcode scanner. Therefore, these solutions dalloot
the implementation of advanced applications.

Finally, several solutions propose to use the clasid
an application platform (Mikkonen and Taivalsaari,
2013). The main goal is to delegate certain paitano
application to the cloud. For example, an apploathat
allows face recognitions will be divided in two marThe

the

integrate cross-platform components
mobile application.

With this framework, mobile developers must
implement the minimal structure of their applicatio
views and navigation between them, with the native
SDK of each target platform. So, mobile developeust
provide the implementation of their applications
structure with the Android SDK, then with the iIOBIS
and all the other target platforms. By implementthg
application structure with native SDKs, we allowile
developers to provide the best possible user expesi
for their applications for each host platform. ladeon
each platform, they will be able to use any graphic
element specific to each native SDK. For example, i

in any native

first one, executed in the device, allows capturing their application, on the iOS version, users wdldble to

pictures from the camera stream and the secondvidine
handle the face recognition in the cloud. Currentye

///// Science Publications

2169

use a navigation bar to navigate between their sjiew
whereas, on the Android version, this element moll be

JCS

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

necessary because devices have a back buttoradrnste are also be platform-independent and thus, are the
providing a unique user interface for each targetsame on each target platform as displayedriimp 4.
platform, we allow to provide applications thatWile Mobile developers define only once the use of a
entirely integrated in the host platform. method and reuse it in any native application.

Mobile developers will integrate cross-platform Finally, we have defined a cross-compiler that
components in their applications, thanks to a laggu translates all instructions written with our langeao
based on annotations. Indeed, we provide a setosS€¢ native language (for Android, iOS,). To achievettha
platform components that are application-indepehd®n the translation process is based on the complement
valid component must be reusable in severalinterface of each component. Indeed, mobile
applications. Besides, our components are platform-deve|opers specify the use of a method with our
independent. To do that, we haYe defined the siract common |anguage and the Comp|ement interface
of our components as shown fig. 3. A component contains all the methods of a component in XML.sThi
has one implementation per target platform: s a light process with some simple rules. Firsty o
Implemented with the i0OS SDK, then with the compiler parses all the complement interfaces af ou
Android SDK and so on. By providing native components. Then, it parses the developer's project
implementations, our components are able to use anyjets all instructions written from our annotatior@f
hardware or software element of any platform. course, it checks the validity of each instructferisting
Therefore, our components, graphics or running inmethods, good input parameters...). Thus, if thece
background, will be perfectly integrated in a nativ code is correct, the cross-compiler only translates
application without altering the host application. XML representation method to a native call with the

Of course, each component implementation isparameter defined by mobile developers. Finally, it
hidden to mobile developers. We want to have replaces our annotation with the native source code
platform-independent ~ components. All the Therefore, if we want to add a new platform to the
components features are represented in the commogompiler, it is possible to do that very fast (sodags).
public interface, which is platform-independent.iSh e present a concrete example in the section 6.
interface is written in XML because it is a flexgbl Besides, our cross-compiler are installed on the
enough language that does not depend on anynobile developer PC or Mac and our components are
platform. Finally, a component has a complementaryshared as executable files. Under this conditiom, o
|_nterface, which is also written in XML. This inface compiler cannot be accessed to component source cod
lists all the component native methods from all {4 {ransiate annotations. Thus, we must provide an
implementations. Therefore, each native method (iI0Sgjternative to source code, which are the complémen
android...) will have its XML representation in the . arfaces of each component.
complementary interfacg. This XML interface is To sum up, a developer of mobile applications,
platform dependent and is hidden to developers. Ourysing our solution, implements the minimal struetur
tools mainly use it: Cross-compiler and component of jts applications with the native SDKs of eachgtt
visualization software. Our tools from native platform. Then, he writes the required instructidas
implementations generate the two XML interfaces. integrate our cross-platform components or ratloer t

After having defined our components structure, we call their methods. All the instructions written thvi
provide a common language to integrate them, drerat our language will be the same for each target
to unify their integration. In our solution, the mithal ~ Platform. We unify the integration of our component
structure of an application is implemented in retiy Finally, our cross-compiler transforms all annaias
languages. Therefore we allow the integration of in native Ianguages. At the end .Of the Process, our
components directly in the native source codesddo framework provides complete native applications for

. - iOS android and so on.
that, we provide a language based on annotatioms. | In this study, we differentiate two kinds of

based on annotations because they are flexiblegéinou developers: Mobile developers and component
to be integrated anywhere in a native source COdedeveIopers. The first one uses our solution to
written with any language such as Java, Objective-C implement mobile applications. They will integrate
This common language allows the use of any methodour components. Whereas, the second one implements
of any component from their common public components which will be used by mobile developers.
interface. The instructions written with this large The mobile developers do not implement components.

///// Science Publications 2170 JCS

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

Component
e »
l Common public interface
Component interface }
ioS Android Windows Phone
implementation implementation implementation

Fig. 3. Component internal structure

Application implementation layer

Application for Android Application for iOS
View 1 View 2 View 1 View 2
I—— ————

N\ e —
Universal % layer \

Annotation-based method call of
the component A methods

N r——

‘ Annotation-based method call of ‘ ‘
the component B methods

Component package layer

Component A Component B

‘ Common public interfaces J L Common public interfaces

L Complement interfaces J L Complement interfaces J

Android i0S Android i0S
implementation | implementation implementation | implementation
Windows Phone Windows Phone

implementation ‘ implementation

Fig. 4. Component-oriented framework to create cross-guatimobile applications

In the next section, we are going to present ourmobile users. Thus, we will be able to generaline o
solution to implement a concrete application. We ar approach for all possible applications.
going to focus to component implementation by The user interface and the navigation between views

component developers and integration by mobile have been developed in native languages whereas mos

developers. of the other features were integrated with our camm
language based on annotations. The instructiontewri
5. COMMON FRAMEWORK IN with our language allow the use of six differenbss-
SITUATION platform components. In this section, we presemt th

Locaplace application, then the required functities),

To validate our solution, we have chosen to Which are provided by our framework. Finally, we
develop a utility application called LocaPlace. §hi present the integration process of a cross-platform
application is a concrete application with a component, which is representative of our compaient
professional style and an advanced user experience. The LocaPlace application consists in two parts
The goal is to provide a deployable application for illustrated inFig. 5. The first one allows users to

///// Science Publications 2171 JCS

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

search for a list of Points Of Interest (POIs) lreit The HttpRequestManager component is
proximity or in the city of their choice. After representative of our components and it can bgrated
discovering the POls, the application displays themin almost all applications. It is used to send néguests
(name, address) in two alternate views, a list orap. t0 web services. First, we have defined its fumio
Then, users can get more information about each Poindependently from any platform:

such as phone number, website, reviews, photos, gend an hitp request with an asynchronous process.
Users can also find an itinerary from their locatim The results will be returned through a delegate

any POI. The itinerary is displayed either as & dis « Cancel all the requests in progress

on a map. In the second part, the application alow ,
the decoding of QR-Code. The goal is to get

information contained inside and to display it et Then, we provided its implementations for Android
application. The information contained in the QR- and iOS as shown iRig. 6 and 7. Each native interface

Code represents a POl (name, address, phonéakes the functions and adapts them according ¢o th
target platform. For example, on Android, we do not
have a generic type for an http request. So, wet mus
duplicate the method sendHttpRequest. The firsionr
takes as input anHttpGet object and the secondades
aHttpPost object. Of course, these interfaces mdeh

Cancel a specific request

number). After displaying the information, usersca
find an itinerary from their location to the place.

In this application, the developer needs six
application-independent services:

e Auto-completion from an array to mobile developers. We intend to hide the native
« Auto-completion from a database with several source code to simplify and unify the use of congus.
columns selected After providing the component implementations,

- Sending of Http Requests to Google Web Services we have generated its common and complement
. XML Parser for the responses of Goog|e Web interfaces as illustrated IrFlg. 8 and 9. The

Services generation process is based on the component native
. Getting information about the device such as interfaces and is performed from a third-party
location service and network information software that we provide. _ o
« QR-Code Scanner The common public interface describedFiy. 8 is

entirely platform-independent. We do not consider t

To make these services available to mobile input parameters types, the parameters that are non
developers, we provide a set of components in ourfunctional. The main goal is to present the general
framework. Among them, we have six cross-platform component features and to focus only on these
components that implement the required services. features and not on the potential differences betwe

In the next parts of this section, we focus on the target platforms. The common public interface
another component: HttpRequestManager. We areonly contains public component methods. Indeed, our
going to present its native, common and Comp|ementcomponents can have several internal methods, which
interfaces in 5.1. We will only focus on component are hidden to users.
developer tasks; this part is hidden to mobile Unlike this interface, the complement interface
developers. Then, in 5.2, we will present the shown inFig. 9 is entirely dependent from all supported
component integration in the application. We will target platforms. It gets component native function
focus on users of our solution: Mobile developers. Signatures presented Fig. 6 and 7 to translate them
Finally, in section 5.3, we are going to preserg¢ th into XML. For example, inFig. 9, we show the
generated code associated to component integratiofiepresentation of the “sendHttpRequest” method

with our cross-compiler. signature on Android and iOS in XML. Our compilas,
presented in section 5.3, uses this interface aostate
5.1. Components annotations in native language.

This part concerns only component developers. We have presented here the necessary tasks to
Here, we show how a component is implemented forimplement and transform a native component intesro

our solution. This part is entirely hidden to mebil Pplatform component in our solution. Finally, we yide
developers, which use our solution. In the futue, to mobile developers an executable file and a commo

will provide them with the tools enabling the public interface, which is independent from thetfolam.
implementation of components. The complement interface is hidden.

///// Science Publications 2172 JCS

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

wv
o
Q
(]
<
on
=
2 2/
o | /7 \
E a |/ \
10 w0 7 /
/BEF ol
/ e (U]
/ BE
/ [
A
/ w) J
/ = User’s needs
/ we
\ Y
POIs Visualization
(list & map)
(%)
© c
o o
! &
& N
®
© 3
A
£ =
p = Ao
- 'ﬁ L
® 7]
T a
= 2
9 Lo
© Scan a QR- o Place details
B Code

Fig. 5. LocaPlace application views and navigation

public interface HttpRequestServiceInterface {
public void sendHttpGetRequest(Context context,
HttpGet getRequest,
HttpGetRequestServiceDelegate delegate);
public void sendHttpPostRequest(Context context,
HttpPost postRequest,
HttpPostRequestServiceDelegate delegate);
public void cancelAllHttpRequestsInProgress();
public void cancelTheRequest(HttpGet request);

public void cancelTheRequest(HttpPost request);
}

Fig. 6. Native interface on Android

5.2. Integration

This part only concerns mobile developers, whiah ar
using our solution. Indeed, we show how mobile tigpers
can integrate our components in Android or iOSemij

Gets more information

Pictures

Reviews

Place details
(opening hours,
website, phone

number, etc.)

Gets more details (pictures, reviews, itinerary)

[- = =]
Itinerary Visualization
(list & Map)

(=
o
p=]
1]
=
a
£ /
Q /
Q7
-
— ey ot La Ok e
el D
g .
= (
i
\.
[= = =]
Itinerary Visualization
(list & Map)

@interface HttpRequest : NSObject {
BOOL activityIndicator;
}

+(HttpRequestx)sharedInstance;

—-(void)sendRequest: (NSURLRequestx)request
delegate: (id<HttpRequestDelegate>)delegate
andActivityIndicatorVisible: (BOOL)visible;

—-(void)cancelAllRequests;
—(void)cancelARequest: (NSURLRequestx)request;

@end

Fig. 7. Native interface on iOS

To integrate our components, we allow the call of
each component method using a new language based
on annotations from its common public interface.
Among these annotations, there are the “var”
annotation and the “method” annotation. These are
placed before instructions in native language. fits
annotation enables developers to declare the input
parameters of a component method.

///// Science Publications 2173 Jes

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

<Component xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xs1i:noNamespaceSchemalLocation="CommonInterfaceSchema.xsd" >
<description>
<componentName>RequestManager</componentName>
<version>1.0</version>
<date>01/01/2014</date>
<description>send http requests to any web service</description>
<dependancies>
<dependance componentName="DeviceInfoManager"/>
</dependancies>
</description>
<targetPlatforms>
<target platformName="android" executableName="RequestManager. jar"/>
<target platformName="i0S" executableName="RequestManager. framework"/>
</targetPlatforms>
<methods>
<method methodName="sendHttpRequest"
description="send a http request (Get, Post, Soap) with an asynchronous process">
<parameter i in" description="the http request to send"/>
<parameter io="in" description="the delegate which receives the responses"/>
</method>
<method methodName="cancelAllHttpRequestsInProgress"
description="cancel all http requests in progress">
</method>
<method methodName="cancelTheRequest" description="cancel a particular http request">
<parameter io="in" description="The http request to cancel"/>
</method>
</methods>
</Component>

Fig. 8. HttpRequestManager common public interface

<extraInformationOnMethod method "sendHttpRequest”
description="send a http request (Get, Post, Soap) with an asynchronous process">
<android methodName="sendHttpGetRequest" className="HttpRequestService"
packageName="com. keyneosoft. requestManager. implementations"” isSingleton="true"
description="send a http request (Get) with an asynchronous process">

<parameter parameterName="context" parameterType="Context" io="in" description="the application context"/>
<parameter parameterName="getRequest" parameterType="HttpGet" io="in" description="the http request to send"/>
<parameter parameterName="delegate"” parameterType="HttpGetRequestServiceDelegate"” io="in"
description="the delegate which receives the responses"/>
</android>

<android methodName="sendHttpPostRequest"” className="HttpRequestService"
pack "com. key ft.request iger. implementations”
isSingleton="true" description="send a http request (Post) with an asynchronous process">

<parameter parameterName="context" parameterType="Context" io="in" description="the application context"/>
<parameter parameterName="postRequest" parameterType="HttpPost" io="in" description="the http request to send"/>
<parameter parameterName="delegate" parameterType="HttpPostRequestServiceDelegate" io="in"
description="the delegate which receives the responses"/>
</android>
<10S className="HttpRequest" isSingleton="true">
<parameter parameterName="request"” parameterType="NSURLRequest*" io="in" description="the http request to send"/>
<parameter parameterName="delegate"” parameterType="id\x3CHttpRequestDelegate\x3E" io="in"
description="the delegate which receives the responses"/>
<parameter parameterName="visible" parameterType="BOOL" io="in"
description="true if the network indicator in the status bar must be activate, else false "/>
</10S>
</extralnformationOnMethod>

Fig. 9. An HitpRequestManager complement interface part

This annotation will link the variable placed aftér because mobile developers don't need to read the
with an input parameter of a component method, XML interfaces. Then, the software provides users
whereas the method annotation enables the call ofvith the different annotations that are necessary i
component methods. This annotation will link the order to call a component method as displayeHigm
method result with the following variable. 10. Thus, mobile developers only need to copy the
To make the integration of components easier, weannotations and paste them into their native source
provide developers with third-party software, which code (for example, in an Android application). As
describes the different steps to integrate themain shown inFig. 10, if a developer wants to call the
mobile project. This software takes as input a “sendHttpRequest” method of our
component and presents its different features. ItHttpRequestManager component, our software
facilitates the understanding of our components provides the instructions needed to declare theitinp

///// Science Publications 2174 Jes

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

parameters (request to send, delegate...) as wétleas for a particular platform. For example, on Andr@dd
instruction used to call the method. Windows Phone 8, it is possible to provide applices that
In Fig. 11a, the mobile developer has declared enable NFC tags capture. On iOS, it is impossijgle
three variables from “var” annotations: “Context”, doesn't integrate this technology. In this casejelipers
“getRequest” and “myDelegate”. He has linked eachwill not be allowed to integrate our annotations fthis
variable to the “sendHttpRequest” method with the component in iOS source codes, our compiler witlegate
var annotation parameter “methodName”. Then, errors. Of course, as shown kig. 10, our tools show
mobile developer called “sendHttpRequest” method platform list for which each component is compatibl

from a “method” annotation.
The component integration process will be the same 5.3. Generated Code

any platform. Indeed, the developers will use thme After calling the methods of our cross-platform
annotations in an Android or iOS application. Theight components with our language, mobile developers can
be slight changes in the var annotation. Accordinthe launch our cross-compiler. It translates all method

platform, the methods can have more or less paessiet annotations found to native languages (Java for
For example, in the Android interface of our comgaatn Android, Objective-C for iOS...). The source code
the sendHttpRequest method has a parameter “cbntextshown inFig. 11 ais transformed into the code shown
which does not exist on iOS, seig. 6 and 7. In Fig. 12a, in theFig. 11b. In this example, our compiler translated
we have used the same annotations in an iOS atiptica the method annotation, which allows the call to the
However, in some cases, we cannot provide a comypone method “sendHttpRequest” to native language (Java).

Compenent methods sendHttpRequest Is a singletan

fsendHttpRequest | senda hitp request (Get, Post, Soap) with an asynchronous process

cancelAllHtpReguestsinProgre

cancelTheRequest —
ANDHOIDTIOS |

Input parameter: 'context’ described with: 'the application context'

@Var(componentMame = "ReguestManager” . methodName = *sendHttpRequest”.
parameterName="context’)
Context contaxt;

I
I
Input parameter: 'getRecgueast’ described with: 'the hitp reguest to send' !
@V ar(componentMame = "ReguesthManager” , methodName = "sendHttpReguest®
parameterhame="gaRequest”)

HitpGet getRequest

Input parameter. 'delegate’ described with: 'the delegate which receives the
responses’

Fig. 10. Steps to follow in order to call the sendHttpReduesthod

& W 0 @Var(componentName = "RequestManager",
@Var{componentName = “RequestManager , methodName = "sendHttpRequest”
methodName = "sendHttpRequest", parameterName = "context")
parameterName = "context") Context context = this.getApplicationContext();
Context context = this.getApplicationContext();
@Var(componentName = "RequestManager”,
i A methodName = "sendHttpRequest"”,
@Var(componentName = "RequestManager", parameterName = "getRequest™)
methodName = "sendHttpRequest", HttpGet getReguest = new HttpGet(url);
parameterName = "getRequest") uait . i " =
HttpGet getRequest = new HttpGet{url); EVar(componantiane = "RequestManager”,
P g q p ()’ methodName = "sendHttpRequest”,
§ parameterName = "delegate")
@Var(componentName = "RequestManager", HttpGetRequestServiceDelegate delegate = this;
methodName = "sendHttpRequest", ;
arameterName = "delegate" @Method(componentName = "RequestManager”,
HttnG tRp tServiceDel + gd 1) b Ehlee methodName = "sendHttpReguest"”) Generated code
puetkequestiervicelelegate delegate = 1s; HttpRegquestService componentHttpReguestService = HttpRequestService
.getSharedInstance();
@Method(componentName = "RequestManager”, lcomponentHttpRequestService. sendHttpGetRequest(context, getRequest,
methodName = "sendHttpRequest") delegate);
@ (b)

Fig. 11. (a)Necessary annotations to call (b) Generated codealtthe sendHttpRequest thesendHttpRequest meth@adroid.
method with native language on Android (Java)

////f Science Publications 2175 Jes

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

m = T @Var(componentName =
@Var(componentName = "RequestManager”, methodName = “se
methodName = "sendHttpRequest", parameterName = “visible"
parameterName = "visible") BOOL indicater = YES;
BOOL indi = YES;
OL indicator s @Var{componentName = "
" methodName = "se
@Var(componentName = "RequestManager"”, parameterName =)
methodName = "sendHttpReqguest", NSURLRequest xrequest = [[NSURLReguest alloc]
parameteriame = "request") initWithURL:url];
NSURLRequest *request = [[NSURLRequest alloc] ,
i . b @Var(componentName = "Re
initWithURL:url]; sethodiate. = Peand
parameterName = "deleq
@Var(componentName = "RequestManager", id<HttpRequestDelegate> delegate = self;
methodName = "sendHttpRequest", ¢
- e, " ethod (componentName = es ager",
parameterName = "delegate”) e P +oR ; Generated code

= "g& Reqguest
HttpRequest *requestManager = [HttpRequest sharedInstance]
[requestManager sendRequest:request
@Vethod(componentName = "RequestManager”, delegate:delegate
methodName = "sendHttpRequest") andActivityIndicatorVisible:indicator];

id<HttpRequestDelegate> delegate = self;

Fig. 12. (a) Necessary annotations to call (Bgnerated code to call the sendHttpRequest thesgrRituest method on iOS.
method with native language on iOS (Objective-C)

First, it inserted the declaration of the component We have chosen Titanium mobile to implement thel thi
and it initialized it. In this example, the compahés a version because this solution seems representdtivebile
singleton, so, the initialization method is web-applications (Hashingt al., 2010; Allenet al., 2010)
“getSharedinstance”. Then, the compiler inserted th and it is the most mature solution in the marketthw
method call “sendHttpGetRequest” from the variable Titanium mobile, the application developers writesit
previously declared. Finally, it filled in the inpu entire application in JavaScript. Then, the apptica are
parameters from the var annotations declarations. embedded on the phone with an engine, which is able

Today our compiler is implemented in order to to interpret JavaScript and the Titanium APIs. By
translate annotations in Java language for Android.choosing Titanium mobile, we can compare our
The transformation for iOS application is not solution with web-applications. However, the Titami
implemented yet but we are able to extrapolate themobile version is not reliable. Depending on theicde
same process on i0S. IRig. 12a, we show the on which the application is deployed, the applimati
necessary source code in objective-C and annotationcan stop its execution on certain views in a random
to call the “sendHttpRequest” method.Hig. 12b, we way. Analysing the logs, bugs are not coming frdwm t
have added the source code, which will be generategrovided application but from Titanium SDK itself.
by our compiler. Today, such application cannot be subject to a

widespread deployement for the general public.
6. RESULTS In the next subsections, we have first calculatesl t
lines of code saved using our approach, comparéaeto

Before beginning the COMMON implementation for native application. Secondly, we have compared the
several platforms, we wanted to calculate the giaien performances regarding the three versions of LaxaP|
additional cost on applications using our solution Results will be discussed in section 7.
limitation, performance, memory consumption...). To .

Ejo that, we F;lave chosen Androidybecause Kndroisl)ase 6.1. Lines of Code Saved

virtual machine to execute applications: Dalvik. We We have compared the number of lines of code
wanted to ensure us that Dalvik will be able topgrp written in the native version and in the versiorthwi
the loading and execution of several components. our framework, sedable 2. For this evaluation, we

We have developed the LocaPlace application fordo not consider the Titanium mobile version because
Android under three different ways. The first it is unusable. We are not able to determine the
implementation has been developed entirely in Jeta number of lines of code that need to be written to
the Android SDK. The second one has been implemdente make it usable. To calculate the line numbers @hea
with our framework and the Android SDK. This versio application version, we have used the “metricsgjru
was presented in the previous section. The thirdinstalled in eclipse (Metrics plugin website:
implementation has been realized with Titanium rieobi http://metrics.sourceforge.ne).

///// Science Publications 2176 JCS

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

Table 2. Lines of code written for each application way, for the Titanium mobile version, we have used
Application version Lines of code Saved the APIs provided by Titanium mobile SDK.

100% native 6932

Application with components 5004 1928 (28%) 7. DISCUSSION

Using our approach, the developer writes two Before any commentsabout the performances
thousand lines of code less than by using the @ativ evaluation, we will discuss the feasibility of L&taceusing
SDK. Besides, the parts, which are not implemerdeel, the three tools, especially in terms of user iatsfand user

often the most complex ones (parsing, scanninglisgn oyperience. Then we will comment the lines of csateed
of http request...). With our approach, the developerand analyse the performances

only needs to implement the application views amal t
navigation between them. 7.1. Feasbility

6.2. Performances Of course, we succeeded in implementing the

Even if the application Titanium mobile version is complete qpphcaﬂon with the native SDK. It alsa_swa
not marketable, we are able to compare theSUCCess with our fram_ework. In_deed, we allpw thivaa
performance of several services between the threeSDK use for the user interface implementation. Thiues
versions. The compared tasks can be implemented irfleveloper can use any native graphic element.
many applications and not just in our application. ~ With Titanium mobile, the implementation is
Therefore, this comparison can be considered adaborious. Indeed, the Titanium mobile SDK does not
application-independent. However, it is mandatary t provide all the existing graphical elements avd#dab
evaluate our approach from a real application aoid n on Android (or other platforms). Thus, we cannot

just from a “test” or “basic” application becauseeal provide the same user interface and user experience
application uses more resources than a “test’defined in the LocaPlace application specifications
application (images loaded in memory, cache.). Moreover, it is impossible to put the graphical

As shown inFig. 13, we have measured the elements anywhere in a view. We must place each
execution time of certain tasks implemented in the glement with pixel precision. This is really

Locaplace application. For each task, we haveproplematic for Android devices because there are
measured the execution time (ms) one hundred timeSgifferent screen sizes. In order to hide this

Then, for each task, we have calculated the averad@eterogeneity, the Android SDK provides an
between results. We have gotten these results en thautomatic m’echanism to create dynamic views

Samsung Galaxy Nexus i9250. This phone was, . : :
released in 2011, it is equipped with a Dual-cor 1 without fixed size. The developers do not need to

GHz Cortex-A9, it has 1 GB of RAM and a screen of calculate the position of each. graphical elgmeot, f
4.65 inches. The installed Android version on the example they can use a RelativeLayout, which allows

device is Jelly Bean (4.2.2, API 17) the graphical element positioning according to cghe
During our evaluation. we have compared the With the Titanium mobile SDK, this mechanism does

weight of each application version on the device. A NOt exist. Another issue is related to the dynainica
shown inTable 3, the version with our approach has Views of an application (some elements are hidden
the same weight as the native version. The Titanium'/Néreas other ones appear). In the Titanium mobile
mobile version is 2.3 times heavier than the native SDK. this situation is not really considered.
version. The Titanium mobile engine, which intesre | herefore, when the views change their states, the
the web-application, weights around 10 MB. application freezes.

Finally, in Fig. 14, we have compared the memory _ With our approach, developers do not face any
consumption (RAM). For each task, we have limitation when implementing an Android application
measured the used RAM before and after theirand the generated applications will be reliable and
execution. The used RAM is the addition of the usedprofessional quality. They will be able to use any
RAM for the OS, then for the other applications in graphical or hardware elementaccessible through the
execution and finally for our application. To gbese Android SDK. On the contrary, with Titanium mobile,
measures from the native version and the onedevelopers will have to adapt their applications
implemented with COMMON, we have used the according to the existing elements inside the Tian
standard APIs provided by Android SDK. In the same mobile SDK.

///// Science Publications 2177 JCS

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

® Native application ® Application with components @ Application with titanium

1000

800

200

o I
Categorv
auto-completion

a

Itinerarv Place detail
computation parser

Place search
parser

Fig. 13. Average execution times of some LocaPlace apitatasks

= 6
R % B
RSN
== 4
2= 2/
57
sz 1
o0 op
S g o/ i
g3
= Categorv Get Send
auto-completion location service http request
B Native application
= 100
==
T
=i
e Tt
{ w
o
3%
2
=
-
=

Get
location service

Category Send

auto-completion

@ Application with components

http request

B Application with titanium

i

City auto-
completion

Place detail
parser

Itinerary
computation

Place search
parser

Fig. 14. Used RAM for each LocaPlace application versioarafeveral tasks execution

Table 3. Weight of each application version

Application version Weight
100% native 8.49 MB
Application with component 8.62 MB
Application with Titanium mobile 19.43 MB

7.2. Lines of Code Saved

As shown inTable 2, with our solution, LocaPlace
developers saved 28% of lines of code comparedtteen
version. However, we have written more than foausfand
lines of code to provide the required componentstHis

Table 4. Lines of code written for each Android version of
our components
Component (Android version)

Lines of code

Auto-completion 1044

City auto-completion 325

DevicelnfoManager 320
HttpRequestManager 782
GoogleWSParser 1773
Total 4244

7.3. Performances Analysis

As shown inFig. 13, for almost every evaluated task,

application, Tgble 4. This is a classic analysis in the the application implemented with our approach piesi
componeryt—onented programming. Our compongnts ml{Sthe same (or almost the same) execution time as the
be generic to be integrated in any application.sThi native version. For example, for the sending op htt

adaptability has a cost especially in number @diof code.
Besides, components often provide more functioas the
ones required in the LocaPlace application.

requests, with our approach, the application takes
ms whereas with the native SDK, the applicatioresak
1.27 ms. The time difference is negligible. Therefo

The second time that our components will be with our approach, we can consider that the geedrat

integrated into a similar application, we can assuhat
the developers will, once again, save two thoudaed
of code. At that moment, the number of lines wnitfer
the components will be the same as the numbemnesli
saved by developers. Starting from the third iraégn,
our solution will become profitable.

///// Science Publications

2178

application will have the same performance as a@at
one. The calls of methods through our cross-platfor
components do not take more time than native calls.
Moreover, for all the evaluated tasks, our approach
provides better results than the application imgetad
with Titanium mobile.

JCS

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

Table 5. Some differences between web-apps solutions and @ON framework

Solutions Performance Resources consumption Usafdne Reliability General limitation
COMMON framework As native As native No limitation sAative No limitations

Web-apps solutions Less efficient More consumption limited to common Not reliable Limited to commormlents
(Titanium mobile) elements

In the best case, Titanium mobile is 1.15 times les programming languages. These differences have a
efficient than our approach (city auto-completion). significant cost for the developer. That's why,tlis
This good coefficient is due to the low-level ofeth study, we propose a new approach which soften the
task. Indeed, in this task, we executed sql reguest differences between each OS. Our framework, called
sqlite database. We can think that Titanium mobile COMMON for Component Oriented programming for
delegates these actions to the native SDK. In theséMobile Multi OsiNtegration, allows developers of
conditions, we can consider that it is a similar mobile cross-platform applications to integratess-o
approach with ours and therefore, the solutionbie a platform components, with platform-independent a
to provide good results. Unlike the low-level tasks language, in any native application.
the others are much slower. In the worst case, COMMON is based on a set of cross-platform
Titanium mobile is 11.22 times less efficient thaur components. Components have one implementation per
approach (itinerary computation). Here, the prodess target platform. Each one is implemented in native
entirely executed from JavaScript source code. Thislanguage to allow the use of any native software or
means that the execution of a web language (likehardware element. In order to hide the differences
JavaScript) has an additional cost that is notbetween each implementation, we have defined a
insignificant. PhoneGap, another popular web-basedcommon public interface written in XML. This intade
solution, provides the same ratio in terms of exiecu is entirely platform-independent. Then, to unifyeth
time as Titanium mobile (Corrat al., 2012). integration of our component, we have defined a new

Finally, as shown irFig. 14, with our approach, language based on annotations. This language @ als
the application uses the same ratio of RAM as theplatform-independent because it is based on theramm
native version (to around 70% until 80%). The logdi public interface of our components. Finally, we d&av
of components (jar files) has no influence on tVR designed a cross-compiler, which translates the
consumption. Whereas, with the Titanium mobile instructions written with our language to nativedeo
version, the application uses all the time to 958tilu The generated applications only contain native code
99% of the available RAM on the device. This In this study, we have evaluated our framework on
consumption may have a cost in energy consumptionAndroid. To do that, we have developed the same
and probably the application often stops its exiecut application with the native SDK and with our
because it has no more available RAM. framework. In term of development tasks, the

Nowadays, we can read many discussions aboutleveloper has saved 28% of code lines for our sampl
Web-apps versus native applications (Mikkonen andapplication. The evaluation has also shown results
Taivalsaari, 2013; Corraét al., 2011; Charland and closed to native application. Indeed, our solution
Leroux, 2011). But as shown with the resuligple 5, provides execution times similar to native applimas.
we can conclude that the use of web languages tdNe observe the same result in term of used RAM, or
implement mobile application has a non-negligibbstc ~ application weight. We can conclude that our soluti
in terms of performances and consumes more RAM tharfloes not bring an additional cost to mobile appicres.
our application. This supports our decision to keep ~ Furthermore, we have also compared our approacdh wit

solution tied to native code. Titanium mobile. We obtained better results than
Titanium mobile on all evaluation criterias and
8. CONCLUSION especially, we do not limit the use of native elatse

(software or hardware) contrary to Titanium mobile.
The development of mobile cross-platform Using our solution, developers can implement the
applications is very hard to accomplish due to @& user interface and its behaviour in native langeagéis
heterogeneity. Indeed, mobile developers mustflexibility allows them to implement any applicatio
provide one version per target platform. Each \mrsi withoutany limitations. However, this part of soarc
will be implemented with different standards, code is very important in an application (arounds}0

///// Science Publications 2179 JCS

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

This process could be replaced by a solution based Corral, L., A. Sillitti, G. Succi, A. Garibbo and.P

model-driven engineering. Today, most of these
solutions only allow the generation of user inteefaBy
coupling this kind of solutions with COMMON,
developers will be able to generate an application,
writing a minimum amount of code.

In our future works, we will provide an
implementation of COMMON allowing the integration
of components from iOS and Windows 8 native source
code. The main goal is to evaluate our approach on
several platforms. We also want to assist the compb
developers. Today, the component providers in our
solution must implement each component for each
platform. In the future, we want to generate thactire

of components and even generate one implementation

from another one. For example, we will be able to
generate an iOS implementation from an Android
implementation. However, the translation must ngtact
the possibilities offered by each platform such tias
existing solutions. Finally, we want to help implkemting
cross-platform context-aware applications using our
previous works on the context (Popowatal., 2011).

Ramella, 2011. Evolution of mobile software

development from platform-specific to web-based
multiplatform paradigm. Proceedings of the 10th
SIGPLAN Symposium on New ldeas, New

Paradigms and Reflections on Programming and
Software, Oct, 22-27, New York, pp: 181-183.

DOI: 10.1145/2048237.2157457

Duarte, C. and A.P. Afonso, 2011. Developing once,

deploying everywhere: A case study using jil.
Procedia Comput. Sci.,, 5: 641-644. DOI:
10.1016/j.procs.2011.07.083

Hall, R., K. Pauls and S. McCulloch, 2011. OSGi in

Action: Creating Modular Applications in Java.
1st Edn., Manning Publications Company,
Greenwich, ISBN-10: 1933988916, pp: 548.

Hashimi, S., S. Komatineni and D. MaclLean, 2010.

Titanium Mobile: A Webkit-Based Approach to
Android Development. In: Pro Android 2,
Hashimi, S.Y., S. Komatineni and D. MacLean
(Eds.)., Apress, ISBN: 1430226595, pp: 627-660.

Jiang, F., Z. Feng and L. Luo, 2010. Xface: A

9. ACKNOWLEDGEMENT

The present research work has been supported
Keyneosoft. The authors gratefully acknowledge the
support of this company.

10. REFERENCES

Allen, S., V. Graupera and L. Lundrigan, 2010. Pro
Smartphone Cross-Platform Development: iPhone,
Blackberry, Windows Mobile and Android
Development and Distribution. 1st Edn., Apress,
New York, ISBN-10: 1430228687. pp: 288.

Balagtas-Fernandez, F., M. Tafelmayer and H.
Hussmann, 2010. Mobia Modeler: Easing the
creation process of mobile applications for non-
technical users. Proceedings of the 15th internatio
conference on Intelligent user interfacésp. 07-10,
ACM New York, pp: 269-272. DOI:
10.1145/1719970.1720008

Charland, A. and B. Leroux, 2011. Mobile applicatio
development: Web Vs. native. Commun. ACM, 54:
49-53. DOI: 10.1145/1941487.1941504

Corral, L., A. Sillitti and G. Succi, 2012. Mobile
multiplatform development: An experiment for
performance analysis. Procedia Comput. Sci., 10:
736-743. DOI: 10.1016/j.procs.2012.06.094

///// Science Publications 2180

Mikkonen,

lightweight web application engine on multiple
mobile platforms. Proceedings of the IEEE 10th
IEEE International Conference on Computer and
Information Technology,Jun. 29-Jul. 1, IEEE
Xplore Press,Bradford, pp: 2055-2060. DOI:
10.1109/CIT.2010.349

Kramer, D., T. Clark and S. Oussena, 2011. Platform

independent, higher-order, statically checked
mobile applications. Int. J. Design, Analysis
Tools Circuits Syst.

March, V., Y. Gu, E. Leonardi, G. Goh and M.

Kirchberg et al., 2011.Mcloud: Towards a new
paradigm of rich mobile applications. Procedia
Comput. Sci., 5: 618-624. DOI:
10.1016/j.procs.2011.07.080

Meskens, J., K. Luyten and K. Coninx, 2010. Jefy:

multi-device design environment for managing

consistency across devices. Proceedings of the
International Conference on Advanced Visual

Interfaces, May 26-28, New York, pp: 289-296.

DOI: 10.1145/1842993.1843044

T. and A. Taivalsaari, 2013. Cloud

computing and its impact on mobile software

development: Two roads diverged. J. Syst.
Software, 86: 2318-2320. DOI:
10.1016/j.jss.2013.01.063

JCS

Joachim Perchat al. / Journal of Computer Science 10 (11): 2165.22814

Pan, B., K. Xiao and L. Luo, 2010. Component-basedQuinton, C., S. Mosser, C. Parra and L. Duchien,

mobile web application of cross-platform. Procegdin

of the IEEE 10th International Conference on
Computer and Information Technology, Jun. 29-Jul.
1, IEEE Xplore Press, Bradford, pp: 2072-2077. DOI:

10.1109/CIT.2010.352

Parra, C.A., C. Quinton and L. Duchien, 2012. CAReIC
Context-aware service-oriented product line for ieo
apps. ERCIM News, 88: 38-39.

Perchat, J., M. Desertot and S. Lecomte, 2013.
Component based framework to create mobile cross-
platform applications. Procedia Comput. Sci., 19:

1004-1011. DOI: 10.1016/j.procs.2013.06.140

Popovici, D., M. Desertot, S. Lecomte and N. Peon,
2011. Context-aware transportation services (cats)

2011. Using multiple feature models to design
applications for mobile phone. Proceeding of the
15th International Software Product Line
Conference, Aug. 22-26, New York. DOI:
10.1145/2019136.2019162

b Vellis, G., D. Kotsalis, D. Akoumianakis and J.

Vanderdonckt, 2012. Model-based engineering of
multi-platform, synchronous and collaborative
Uls-extending UsiXML for polymorphic user
interface specification. Proceeding of the 16th
Panhellenic Conference on Informatics, Oct. 5-7,
IEEE Xplore PressPiraeus, pp: 339-344. DOI:
10.1109/PCi.2012.27

framework for mobile environments. Int. J. Next- Zhang, X., A. Kunjithapatham, S. Jeong and S. Gibbs

Generat. Comput.

Puder, A. and I. Yoon, 2010. Smartphone cross-

compilation framework for multiplayer online

games. Proceeding of the Second International
Conference on Mobile, Hybrid and On-Line
Learning, Feb. 10-16, IEEE Xplore Press, Saint

Maarten, pp: 87-92. DOI: 10.1109/eLmL.2010.13

///// Science Publications 2181

2011. Towards an elastic application model for
augmenting the computing capabilities of mobile
devices with cloud computing. Mobile Netw.
Applic., 16: 270-284. DOI: 10.1007/s11036-011-
0305-7

JCS

