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Abstract 

An ultrasound breast imaging system was implemented 

comprising sensors with a wide lateral radiation field 

distributed at equal distances on rings of different diameters 

covering the breast. The Green function was derived to 

calculate the acoustic field generated by these transducers 

when they were excited sequentially by a short radio 

frequency pulsation with a central frequency of 4.5 MHz. 

The temporal convolution function was used to define the 

maximum spatial resemblance between two signals. This 

made it possible to quantify the ultrasonic intensity for all 

the spatial positions in a single step through the principle of 

phantoms coupled to the signal envelope from each point 

considered as a potentially suspicious area. The results show 

the relevance of the system under consideration. 
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Abbreviations: TVDT-tumor volume doubling time; 2D; 

3D-two; three dimensions; USCT-Ultrasound Computer 

Tomography; SAFT-synthetic aperture focusing technique; 

ROI-region of interest; BIC-Bayesian Information Criterion; 

LLF-likelihood function; Ki
j
-wave number vectors; Cm

n
-

wave velocity; am
n
-amplitude of displacement; pm

n
-

normalized displacement polarization vector; E/R-ultrasonic 

Emitter/Receiver 

 

1. Introduction 

Breast cancer is the most common malignancy among 

women worldwide, with 1.7 million women diagnosed 

annually [1]. Breast tumors grow exponentially with a tumor 

volume doubling time (TVDT) of about 18 months. The 

TVDT increases with increasing tumor size, which in turn 

can increase the risk of metastatic spread and death. 

Detecting cancer before it metastasizes is practically the only 

way of stopping the progression of the disease and saving the 

patient. For this purpose, it is necessary to diagnose the 

disease at an early stage and determine whether the tumor is 

benign or malignant. The 5-year survival rate for early-stage 

breast cancer is currently between 75% and 90%. The 

structure of a healthy female breast is complex. It is 

composed of adipose and connective tissue, lobes, lobules, 

and lymph nodes, the amounts of which vary from woman to 

woman. Studying the anatomy of this structure would help 

improve understanding of the ultrasound images collected 

within the framework of this work. However, the ultrasound 

model of the mammary gland changes with age, health 

status, and hormonal cycle. Thus, ultrasound images may 

even differ between young, healthy women despite a similar 

number of mammary glands and amount of connective tissue 

fat. Changes in the menstrual cycle (increase in size, density, 

modularity, and tenderness of the chest in the second half of 

the cycle) do not produce a significant effect on the 

ultrasound model; increased echogenicity due to edema can 

be an advantage and highlights the ability of this technique to 

visualize solid or liquid masses. 

Moreover, mammography screening is currently available for 

women at average risk of breast cancer aged between 40 and 

75 years. Young women have relatively dense breasts so 

their mammograms can be difficult to interpret. However, 

several clinical studies have demonstrated that ultrasound 

imaging can detect micro-calcifications in dense breasts that 

potentially lead to 30% of metastatic cases. Ultrasound 

imaging systems used nowadays are bulky so examinations 

are time-consuming and have high false-positive rates, which 

warrants the need for a reliable, connected diagnostic system, 

delivering an almost real-time result that is accessible to all. 

Several studies have recently contributed to our 

understanding of the mechanisms that control tumor 

development and the diagnosis of cancer at physical, 

chemical, and biological levels. Györffy et al. [2] use a 

biomarker approach to develop multivariate prediction 

models by quantifying the estrogen receptor (ER) and 

proliferation-related genes. The studies by McCart Reed [3], 

Martelotto [4], Eriksoon [5], Haber [6], and Koopman [7] 

focus more on physical applications for the detection or 

quantification of tumor masses, whereas Padamsee et al. [8] 

summarize different known and unknown factors driving a 

woman's decisions regarding breast cancer risk management 

methods. During the past decade, many research teams and 

commercial companies have developed ultrasound imaging 

systems to visualize 2D or 3D images of the breast using 

antenna of different shapes (e.g., circular, semicircular, 

matrix or conical). Nevertheless, most of these systems are 

bulky and the images are acquired in a ventral decubitus 

position, as the patient must immerse her breast in a tank of 

water for more than half an hour.  

 

Unfortunately, ultrasound imaging still has the disadvantage 

of being operator-dependent, which can lead to high false-

negative rates if the operator lacks experience. Several 

solutions have been developed to solve this problem. In this 

section, we present a non-exhaustive list of the technologies 

that have been developed such as the work by Anastasio et 
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al. [9] based on two circular antenna systemscomprising1024 

and 512 elements continuously emitting a cylindrical wave at 

1 MHz and 0.4 MHz, respectively. The reconstruction 

algorithm is similar to the conventional diffraction 

tomography procedure with an assumption of rectilinear 

propagation. Reiser et al. [10] use a circular antenna at 1.5 

MHz containing 256 elements. Their imaging technique 

consists in recovering the reflected fields and transmitting 

them with an apodization of 20°. The reconstruction 

algorithm is based on the Radon transform assuming 

rectilinear wave propagation; the reconstructed image has a 

resolution of 2.5 mm × 0.3 mm × 0.3 mm. Ruiter et al. [11, 

12] use tomography based on a cylinder 15 cm in length and 

18 cm in diameter containing 157 bars with 8 emitters and 32 

receivers each. The system (USCT1) is immersed in water 

and rotated six times to achieve a spatial resolution of (0.2 

mm × 0.2 mm). To optimize the isotropy of the 3D 

configuration, they propose another system (USCT2) based 

on a semi-elliptic shape with 628 emitters and 1413 receivers 

oriented randomly. The synthetic aperture focusing technique 

(SAFT) algorithm is used and the reconstruction is achieved 

by assembling the various echoes (A-scan). Rouyer et al. 

[13] use a semicircular antenna containing 1024 elements, 

which makes it possible to obtain sagittal cuts through 

rotations. The filtered elliptic back-projection reconstruction 

algorithm was used. Hence, the search for technologies to 

improve the quality and simplicity of tumor detection will 

help improve prospects with regard to treatment and surgery, 

empower women to make informed, coherent decisions, and 

contribute to positive health outcomes. 

 

Our present work based on an ultrasound system with 

sensors distributed uniformly on rings of different diameters 

thus covering almost the whole breast (Figure 1), aims to 

meet this need. The wide lateral radiation field of these 

sensors is the key feature in this study. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Illustration of the layout of the ultrasonic imaging system. Rings equipped with an adequate number of 

electromechanical elements (piezo) that can be adapted to the morphology of the breast. Cyclic excitation of Emitter/Receiver 

units covering the entire organ compile images of the transversal sections of the breast. 
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From a physiological point of view, the breast is a relatively 

uniform organ with about twenty identical lobes distributed 

symmetrically around the nipple. Figure 2 shows the 

different layers of the successive tissues constituting the 

breast. Observing these structures provides a direct means of 

quantifying any alterations that result from mammary 

pathologies as soon as they become perceptible. 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 2: Female Breast anatomy [14]. 

 

In this context, we have developed an ultrasound approach 

based on the phenomenon of lateral diffraction of the 

ultrasonic field coupled, by impedance breakdown, to a 

suspicious cellular biomass. According to Lockwood and 

Willette [14, 15], a diffusion impulse response formulation 

provides access to spatial (shape) information from 

secondary sources which are a core element relating to our 

study. Then, the definition of a critical convolution threshold 

for the resemblance functions associated with ultrasound 

measurements reduces the effects of phase fluctuation, 

leading to a systematized inspection of suspected cancerous 

areas. 

 

 

 

 

 

 

 

2. Methods 

2.1 Numerical approach: Quantification of backscattered 

signal intensity 

The backscattered echo envelope of the signal received was 

modeled using the Rayleigh statistical formula [16, 17] based 

on the Nakagami distribution. In this case, the density of the 

backscattered intensity was exploited to define the 

boundaries of the target regions through a gamma mixture 

differentiating the boundaries with distinct mechanical 

impedances (presence of speckles). The definition of 

phantom tissues led us to define retro intensity levels 

diffused in a gamma mixture by each "pixel". This pathway 

was explored for ultrasound speckle location delineating the 

boundaries of the region of interest (ROI). The signal-

shaping factor and the relative weight of the gamma mixture 

led to the delineation of regions containing suspicious 

boundaries (Figure 3). 
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Figure 3: Elementary image for inclusions based on thephantom scattering process. 

 

2.1.1 Region of interest (ROI): According to Shankar [17], 

Destrempes et al. [18, 19], and Tsui et al. [20], the density of 

the backscattered intensity from a homogeneous region is 

given by the following equation:  
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Where Z0 represents the average intensity,  is the gamma 

function, and m is a positive parameter.  

 

Conversely, Atapattu et al. [21], Pereyra et al. [22], and 

Vegas Sanchez-Ferrero et al. [23] suggest that scattering of a 

heterogeneous area can be treated as a contribution of the 

weighted sums from different types of scattering or 

“species”and the density function of the backscattered 

intensity can be expressed in terms of a gamma mixture of n 

components as  
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For n = 1, Eqn. (2) is related to the density of intensity in a 

homogenous speckle with m = 1 and Z0=11. The 

formatting parameters are I and the scale factors are i. 

Each component i = 1, 2, ..., n represents a unique kind of 

diffusion. Equation 2 defines (3n-1) parameters for n gamma 

density components. Theoretically, as the number of cells is 

smaller than the number of parameters to be estimated, the 

most suitable way of validating the density of the mixtures is 

the Bayesian Information Criterion [24] using the following 

equation: 

 

 2log( ) 3 1 log( )optBIC LLF n n   
   (4) 

 

The convergence of this equation is based on a two-step 

iterative method: 

 

The first step determines the expected value of the log-

likelihood of the data [25]. The second step maximizes the 

log-likelihood to obtain the parameters of the mixture of 

morphological intensities. Iterations are performed while 

continually adjusting the parameters until a stable log-

likelihood function is reached that reflects the optimal 

parameter values. By processing the data samples 

independently, the log likelihood (LLF) function is: 

 

1
1
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N
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LLF q f z p f z q Q 
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Where Q represents the iteration number and N is the number 

of data samples. 

 

The expression produces a set of optimal parameters for a 

given number of components n if 

 

( 1) ( ) 0LLF k LLF k       (6) 

 

The trend towards zero of this equation defines the lower 

threshold related to the heterogeneity of the breast tissue. A 

non-zero value indicates the probable presence of a 

suspicious speckle that can be assigned to a pixel of order 

“n”. According to Klaeskens et al. [26], the best model is 

obtained if the differences between the BIC values are small. 

Let BICmin and k be defined as 

 



k = BIC (k) – Bic(min); k = 1, 2, 3…., n   (7) 

 

Once the selection of a model (n = k) is based on k being 

zero, a detection threshold value is suggested. The choice of 

the value depends on the nature and the form of the signals 

received that are refracted by the heterogeneity of the tissues.  

 

In this context, the model with the lowest BIC value has the 

highest probability: 
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 , with BIC(min) = BIC(k) k = 1, …., n (8) 

 

leading to a noticeable simplification, as the case 

classification will be reduced over the range 0 to 1. 

 

Based on a Matlab Math works formulation, the algorithm 

solution gives parameters for Eqn. (3). Table 1 shows the 

following data in both extreme cases for a homogenous area 

without edges(no visible boundary) and for existing edge 

interface layers. 

 

 

 

 



J Cancer Sci Clin Ther 2019; 3 (4): 251-265  DOI: 10.26502/jcsct.5079039 

Journal of Cancer Science and Clinical Therapeutics    256 

 

ROI n α β Normalized BICmin LLF(k+1) – LLF(k) Probability 

No boundary 1 0.9 1.1 0.4 0.01 0.6 

Contains boundary 2 0.6 4 0.1 0.7 0.9 

 

Table 1: Data in both extreme cases for a homogenous area without edges(no visible boundary) and for existing edge interface 

layers. 

 

2.2 Physical approaches: Ultrasonic Quantification 

Parameters 

This work reports a complete mathematical model of the 

behavior of ultrasonic waves in viscoelastic liquid/solid 

multilayer human breast tissue to quantify the optimal 

ultrasonic parameters to improve the preservation of human 

health and establish a “soft” therapeutic or diagnostic tool 

without the risks linked to current equipment, e.g. MRI and 

X-Ray. We discuss the displacement of ultrasonic fields and 

the boundary conditions at two interfaces between different 

media: skin, fat, lobes, and tumor. From a physical point of 

view, the continuity of the displacements and the normal and 

shear stresses are respected. To reach our goal, the transfer 

matrix approach involving the viscosity and the mixed 

boundary conditions was used to model wave propagation. 

With this method, the matrix describing the multilayer 

structure can be obtained by multiplying the matrices of the 

same order describing each layer. The displacement and 

stress at the multilayer surface can thus be expressed as a 

function of those at the posterior surface by taking into 

account the angle of refraction. 

 

2.2.1 Layer characterization using a matrix approach: 

Consider a multilayered structure consisting of N layers of 

different nature and thickness bounded by two fluid semi-

spaces, as shown in Figure 4. The layers and interfaces 

separating them are indexed i, with i varying from 1 to N. 

The upper and lower semi-spaces along with the 

corresponding interfaces are indexed 0 and N+1, 

respectively. The coordinate system was chosen so that the 

incident plane coincides with the x, z plane, hence the 

components of all vectors are only expressed in terms of x 

and z. For an incident plane wave on the upper interface of 

the structure with an incidence angle θ0, the number of 

partial plane waves n propagating in each medium depends 

on the nature of the latter. For each layer, a local spatial 

coordinate is selected at the top of the mth 
layer (z = zm−1) 

for waves propagating in the +z direction, denoted by the 

superscript n+, and at the bottom of the ith
 layer (z = zm) for 

waves propagating in the – z direction, denoted by the 

superscript n−, hence, n = n+, n−. The corresponding wave 

number vectors are 

 

𝒌𝑚
𝑛+

= [𝑘𝑥𝑚
𝑛+

𝑘𝑧,𝑚
𝑛+

]
T

, 𝒌𝑚
𝑛−

= [𝑘𝑥𝑚
𝑛−

𝑘𝑧,𝑚
𝑛−

]
T
  (9) 

 

Where T denotes the transpose vector and kz,m
n−

= −kz,m
n+

. 

Moreover, applying Snell’s law, the projection of these wave 

number vectors on the x-axis for all the modes in all layers 

should be equal, which gives 

 

𝑘𝑥𝑚
𝑛 = 𝑘𝑥0

= 𝑘0 sin 𝜃0 = 𝑘𝑥  ∀𝑛, 𝑚   (10) 

 

with k0 being the wave number in the incidence medium. In 

general, for a plane wave of index m in layer m, the wave 

number can be expressed as 

 

𝑘𝑚
𝑛 =

𝜔

𝑐𝑚
𝑛 = √(𝑘𝑥)2 + (𝑘𝑧𝑚

𝑛 )
2
    (11) 

 

with cm
n  being the corresponding wave velocity and ω the 

radial frequency. 
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Therefore, the total displacement in a given layer m is the 

summation of all displacements relative to each propagating 

wave mode and is expressed as follows: 

𝒖𝒎(𝑥, 𝑧) = 𝑒𝑗(𝑘𝑥𝑥−𝜔𝑡) (∑ 𝑎𝑚
𝑛+

𝒑𝒎
𝑛+

𝑒𝑗𝑘𝑧𝑚
𝑛+

(𝑧−𝑧𝑚−1)
𝑛+ +

∑ 𝑎𝑚
𝑛−

𝒑𝒎
𝑛−

𝑒𝑗𝑘𝑧𝑚
𝑛−

(𝑧−𝑧𝑚)
𝑚− )   (12) 

 

Where 𝑎𝑚
𝑛  is the amplitude of the displacement and 𝑝𝑚

𝑛  is the 

normalized displacement polarization vector that is parallel 

to the wave number vector for a longitudinal wave and 

orthogonal to it for a transverse wave. The harmonic time 

dependence term ejωt is intentionally suppressed in the 

following. An algorithm based on a matrix formalism was 

developed to deepen the understanding of the ultrasonic 

behavior of multilayer human tissue. The reflection and 

transmission of ultrasonic waves in a combination of 

different layers (lobular, fat...) were studied. Based on such 

an algorithm, the refraction coefficient diagrams were 

quantified with varying frequencies and wave angles of 

incidence. 

 

 

 

 

Figure 4: A Multilayered structure consisting of N layers. 

 

2.2.2 Model Validation: As discussed previously, the 

phantoms consist of a collection of target points in a highly 

diffusive region (ROI with edges). The phantoms are 

generated by finding their random position in a large cube, 

then assigning Gaussian amplitude to each phantom (Figure 

5).  
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Figure 5: Numerical model based on the incursion, in a given volume (same order of size as the breast), of heterogeneous 

porosities with various physical properties. This model, dedicated to the detection of internal boundaries through ultrasound 

groups in Emission/Reception, includes 10 sensors evenly distributed around a circular ring. 

 

 

In order to define the boundary conditions of the different 

interfaces encountered by the propagation of the wave (breast 

anatomy) and to quantify the necessary non-detrimental 

energy for optimal detection, a discrete study based on one 

ultrasonic ring was carried out in which we introduced 

phantoms in a given elementary volume. If the diffuser 

resided in a healthy region, the amplitude was set to zero. In 

a highly scattering region, the amplitude was multiplied by 

10. The target points were fixed a tan amplitude of 10 

compared to the standard deviation of the Gaussian 

distributions of 1. The quality of the ultrasound diagnosis 

depends on the operator as well as the position of the probe 

and the section considered. In fact, conventional ultrasound 

scans orthogonal to the path of ducts neglect an important 

marker, which is based on the symmetrical anatomy of the 

breast. Even though the anatomy varies more or less from 

one person to another, our approach not only provides a 

positioning reference system but also an effective inspection 

strategy. Physical models are based on the equidistant 

distribution of ultrasonic sensors with circumferences of 

different diameters centered on the horizontal axis passing 

through the nipple (Figure 6).  
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Figure 6: Illustration showing images of different lateral sections of the breast applying a detection threshold based on the BIC 

value applied. 

 

Figure 7 shows the results from the model based on the 

detection of phantoms imitating biological breast tissue. 

Based on the contribution of the sum of the refracted 

amplitudes received by the different receivers, the images 

show lateral sections of the breast given by each ultrasound 

ring. From a physical point of view and for in-vivo 

applications, the characteristics of each elementary sensor 

were adapted to obtain a wide lateral radiation field (Figure 

7) to compare the critical shape threshold for each E / R 

group by exploiting the symmetrical similarity of the lateral 

sections of the breast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Ultrasonic radiation field and physical characteristics of each elementary Emitter/Receiver sensor. 
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To minimize the computation time, we considered an area 

with a circumferential distribution (2D) whose spatial 

distribution of the sensors, uniformly distributed, respects the 

boundary conditions and the interference phenomenon. To 

cover the 2D plane of a lateral breast section, the ultrasound 

excitation/reception protocol follows a cyclic rotation so that 

the transmitter at the starting time t0 becomes a receiver at t(0 

+ 1) after a full rotation. Starting from a spatial reference 

based on the BIC (not exceeding a critical threshold) 

accessible by analysis of the signals from the successive E / 

R groups, the signal processing algorithm could be 

significantly reduced by eliminating data (signals) with a 

very high correlation coefficient and focusing only on the 

areas where the gamma mixture was detectable. 

 

3. Results  

3.1 Spatial Speckle detection and delimitation 

In practical terms, the likelihood algorithm was applied to 

compare the two signals received by receivers R1 and 

R(k+1) located on either side of the emitter Ei (Figure 8). For 

each transmission/reception trio (Ei / R1; R (k + 1)) 

associated with a given pixel, the morphology of the 

envelopes and the wave travel times were taken into account 

to estimate the intensities received and the exact spatial 

location of the “pixel”concerned. 

  

 

 

Figure 8: Ultrasonic measurement principle adopting a cyclic Emission/Reception protocol taking into account the wave 

propagation time of flight and the angle of refraction at the tissue interfaces. 

 

To define a spatial reference for the positioning of the 

ultrasound ring, we considered the tendency towards zero for 

Eq. 6. In other words, the maximum resemblance between 

two signals received jointly by the receivers forming the 

group E / Ri, R (k + 1). Consequently, the transfer function 

governing the position of the scattering point will allow its 

spatial identification, which leads to the measurement of the 

time of flight of the wave emitted and refracted by the ROI in 

the mass. Indeed, the analysis of the ultrasonic magnitudes of 

the signals received will make it possible, based on 

exceeding a certain critical similarity threshold between the 

two receivers, to define the existence of the interfaces in a 

separate gamma mixture and consequently suspicious ROI. 

For the latter, the amplitudes resulting from the contribution 

of different sensors are then added together until a significant 

image of the suspicious speckle is obtained. Clinically, a bra 

equipped with 10 ultrasonic sensors integrated into a ring 10 

cm in diameter covering the base of the breast was used to 

compare data obtained in a real situation using our concept 

and other techniques such as X-Rays. A 1000 x 1000-pixel 
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sample of the lateral section of the breast was obtained with 

spatial identification of each pixel. Physically, these results 

in a spatial sampling of the computing grid equivalent to a 

wavelength of 0.3 mm. Each pixel on the map is assigned an 

ultrasonic velocity, an impedance, and an angle of refraction, 

which are assumed to be representative of the type of tissue 

constituting the breast, e.g. fat, lobes. 

 

From a statistical point of view, the spatial correlation 

functions per sensor group (E / Ri, Rj) were used to describe 

the size, shape, distribution, and mechanical properties of the 

medium. By exploiting the Gaussian form factor and the 

density of the envelope intensity, we were able to isolate and 

then amplify the ROI zone, thus expressing the presence of 

heterogeneity that goes beyond the anatomical standard of 

the breast. In the medical field, this would indicate the 

presence of structural anomalies. Figure 9 shows good 

agreement between the 2D image, the sample from the model 

adopted in this study, and the X-Ray mammography.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: In vivo clinical application showing the speckle detection potential using a prototype ultrasound “bra” compared 

with an X-Rayimage. 

 

4. Discussion 

To make this concept useful, reliable, and safe, the bra 

covering the whole breast will be equipped with a 

"mechatronics" system thus ensuring the standardization of 

the measurement parameters (normalized positioning of the 

sensors) with optimal physical adaptation. This "Hard" 

concept of optimal coupling conditions (medical gel 

microinjection, if necessary, between the sensor and the 

breast) will optimize the transition and the reliability of the  

information carried by the ultrasonic signal and 

consequently ensure minimum uncertainty regarding the 

analyses and an optimized algorithm for "real-time" 

diagnosis. Moreover, a communication module and "smart 

phone" interface will be integrated into the bra to make the 

overall concept autonomous and connected. 
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5. Conclusion 

In this work, we implemented "soft" ultrasound 

characterization and imaging technology for diagnosing 

breast cancer. One of the objectives of this work was to 

attain unrestricted access to early screening and apply the 

result to a preventive therapeutic tool to mitigate overall 

breast cancer metastasis. The information resulting from an 

application like this will have a preventive role through an 

individual examination in order to:  

1. Evaluate the variation in the physical properties of the 

matter in relation to normal biological variations (stress, 

hardening, calcification...) 

2. Verify good conditions for prosthesis implantation: 

physical compatibility  

3. Use radiation-free, "soft" technology that monitors the 

progression of the physical condition of a “treated organ”, 

especially for people at risk who have undergone surgery 

and/or chemotherapy. 

 

In this context, a prototype instrumented bra (possibility of 

being connected to a cell phone interface) was developed 

using ultrasonic sensors with optimized field radiation 

integrated in torings to cover the entire organ under 

investigation. 
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